DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

Abstract

Amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers—inserted between substrate and (front or rear) contacts—since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap siliconoxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. As a consequence, device implementation of such films as window layers—without degraded carrier collection—demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.

Authors:
 [1];  [2];  [3];  [3];  [2];  [1];  [1]
  1. Photovoltaics and Thin-Film Electronics Laboratory, Institute of Microengineering (IMT), Ecole Polytechnique Federale de Lausanne (EPFL), Neuchatel (Switzerland)
  2. Yildiz Technical University, Istanbul (Turkey). Dept. of Physics
  3. CSEM, PV-Center, Neuchatel (Switzerland)
Publication Date:
Research Org.:
Ecole Polytechnique Federale de Lausanne (Switzerland)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1278695
Alternate Identifier(s):
OSTI ID: 1279021; OSTI ID: 1354906
Grant/Contract Number:  
EE0006335
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 120; Journal Issue: 5; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; amorphous silicon; silicon oxide; passivation; silicon heterojunction; solar cells

Citation Formats

Seif, Johannes Peter, Menda, Deneb, Descoeudres, Antoine, Barraud, Loris, Özdemir, Orhan, Ballif, Christophe, and De Wolf, Stefaan. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance. United States: N. p., 2016. Web. doi:10.1063/1.4959988.
Seif, Johannes Peter, Menda, Deneb, Descoeudres, Antoine, Barraud, Loris, Özdemir, Orhan, Ballif, Christophe, & De Wolf, Stefaan. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance. United States. https://doi.org/10.1063/1.4959988
Seif, Johannes Peter, Menda, Deneb, Descoeudres, Antoine, Barraud, Loris, Özdemir, Orhan, Ballif, Christophe, and De Wolf, Stefaan. Mon . "Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance". United States. https://doi.org/10.1063/1.4959988. https://www.osti.gov/servlets/purl/1278695.
@article{osti_1278695,
title = {Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance},
author = {Seif, Johannes Peter and Menda, Deneb and Descoeudres, Antoine and Barraud, Loris and Özdemir, Orhan and Ballif, Christophe and De Wolf, Stefaan},
abstractNote = {Amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers—inserted between substrate and (front or rear) contacts—since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap siliconoxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. As a consequence, device implementation of such films as window layers—without degraded carrier collection—demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.},
doi = {10.1063/1.4959988},
journal = {Journal of Applied Physics},
number = 5,
volume = 120,
place = {United States},
year = {Mon Aug 01 00:00:00 EDT 2016},
month = {Mon Aug 01 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell
journal, November 2014


Influence of oxygen impurity in the intrinsic layer of amorphous silicon solar cells
journal, October 1994

  • Isomura, Masao; Kinoshita, Toshihiro; Hishikawa, Yoshihiro
  • Applied Physics Letters, Vol. 65, Issue 18
  • DOI: 10.1063/1.112732

22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector
journal, August 2015

  • Geissbühler, Jonas; Werner, Jérémie; Martin de Nicolas, Silvia
  • Applied Physics Letters, Vol. 107, Issue 8
  • DOI: 10.1063/1.4928747

High-efficiency Silicon Heterojunction Solar Cells: A Review
journal, January 2012


Efficient silicon solar cells with dopant-free asymmetric heterocontacts
journal, January 2016


Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells
journal, January 2014

  • Peter Seif, Johannes; Descoeudres, Antoine; Filipič, Miha
  • Journal of Applied Physics, Vol. 115, Issue 2
  • DOI: 10.1063/1.4861404

Current Losses at the Front of Silicon Heterojunction Solar Cells
journal, January 2012


Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency
journal, December 2015

  • Adachi, Daisuke; Hernández, José Luis; Yamamoto, Kenji
  • Applied Physics Letters, Vol. 107, Issue 23
  • DOI: 10.1063/1.4937224

Doping type and thickness dependence of band offsets at the amorphous/crystalline silicon heterojunction
journal, March 2011

  • Korte, L.; Schmidt, M.
  • Journal of Applied Physics, Vol. 109, Issue 6
  • DOI: 10.1063/1.3559296

Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells
journal, February 2016

  • Gerling, Luis G.; Mahato, Somnath; Morales-Vilches, Anna
  • Solar Energy Materials and Solar Cells, Vol. 145
  • DOI: 10.1016/j.solmat.2015.08.028

Band lineup in amorphous/crystalline silicon heterojunctions and the impact of hydrogen microstructure and topological disorder
journal, April 2011


Silicon heterojunction solar cell with passivated hole selective MoO x contact
journal, March 2014

  • Battaglia, Corsin; de Nicolás, Silvia Martín; De Wolf, Stefaan
  • Applied Physics Letters, Vol. 104, Issue 11
  • DOI: 10.1063/1.4868880

Properties of high efficiency silicon heterojunction cells
journal, January 2011


Amorphous/Crystalline Silicon Interface Passivation: Ambient-Temperature Dependence and Implications for Solar Cell Performance
journal, May 2015

  • Seif, Johannes P.; Krishnamani, Gopal; Demaurex, Benedicte
  • IEEE Journal of Photovoltaics, Vol. 5, Issue 3
  • DOI: 10.1109/JPHOTOV.2015.2397602

Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells
journal, September 2007

  • Fujiwara, Hiroyuki; Kaneko, Tetsuya; Kondo, Michio
  • Applied Physics Letters, Vol. 91, Issue 13
  • DOI: 10.1063/1.2790815

Evaluation of recombination processes using the local ideality factor of carrier lifetime measurements
journal, October 2013


Development status of high-efficiency HIT solar cells
journal, January 2011

  • Mishima, Takahiro; Taguchi, Mikio; Sakata, Hitoshi
  • Solar Energy Materials and Solar Cells, Vol. 95, Issue 1
  • DOI: 10.1016/j.solmat.2010.04.030

Transparent Electrodes in Silicon Heterojunction Solar Cells: Influence on Contact Passivation
journal, January 2016


>21% Efficient Silicon Heterojunction Solar Cells on n- and p-Type Wafers Compared
journal, January 2013


Correlated Nonideal Effects of Dark and Light I–V Characteristics in a-Si/c-Si Heterojunction Solar Cells
journal, May 2014

  • Chavali, Raghu Vamsi Krishna; Wilcox, John R.; Ray, Biswajit
  • IEEE Journal of Photovoltaics, Vol. 4, Issue 3
  • DOI: 10.1109/JPHOTOV.2014.2307171

Electronic states and band lineups in c-Si(100)/a- Si 1 x C x :H heterojunctions
journal, April 1997


Determination of the conduction band offset between hydrogenated amorphous silicon and crystalline silicon from surface inversion layer conductance measurements
journal, April 2008

  • Kleider, J. P.; Gudovskikh, A. S.; Roca i. Cabarrocas, P.
  • Applied Physics Letters, Vol. 92, Issue 16
  • DOI: 10.1063/1.2907695

Influence of Oxygen and Nitrogen in the Intrinsic Layer of a-Si:H Solar Cells
journal, July 1996

  • Kinoshita, Toshihiro; Isomura, Masao; Hishikawa, Yoshihiro
  • Japanese Journal of Applied Physics, Vol. 35, Issue Part 1, No. 7
  • DOI: 10.1143/JJAP.35.3819

Valence band offset in heterojunctions between crystalline silicon and amorphous silicon (sub)oxides (a-SiO x :H, 0 < x < 2)
journal, January 2015

  • Liebhaber, M.; Mews, M.; Schulze, T. F.
  • Applied Physics Letters, Vol. 106, Issue 3
  • DOI: 10.1063/1.4906195

Shunt types in crystalline silicon solar cells
journal, January 2004

  • Breitenstein, O.; Rakotoniaina, J. P.; Al Rifai, M. H.
  • Progress in Photovoltaics: Research and Applications, Vol. 12, Issue 7
  • DOI: 10.1002/pip.544

Temperature Dependence of Amorphous/Crystalline Silicon Heterojunction Solar Cells
journal, February 2008

  • Taguchi, Mikio; Maruyama, Eiji; Tanaka, Makoto
  • Japanese Journal of Applied Physics, Vol. 47, Issue 2
  • DOI: 10.1143/JJAP.47.814

On the Nature of Shunt Leakage in Amorphous Silicon p-i-n Solar Cells
journal, November 2010


Improved quantitative description of Auger recombination in crystalline silicon
journal, October 2012


Universality of non-Ohmic shunt leakage in thin-film solar cells
journal, December 2010

  • Dongaonkar, S.; Servaites, J. D.; Ford, G. M.
  • Journal of Applied Physics, Vol. 108, Issue 12
  • DOI: 10.1063/1.3518509

Model for a-Si:H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds
journal, July 2007


Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells
journal, November 2015


Doping effect of oxygen or nitrogen impurity in hydrogenated amorphous silicon films
journal, October 1991

  • Morimoto, Akiharu; Matsumoto, Minoru; Yoshita, Masahiro
  • Applied Physics Letters, Vol. 59, Issue 17
  • DOI: 10.1063/1.106102

Valence band alignment and hole transport in amorphous/crystalline silicon heterojunction solar cells
journal, July 2015

  • Mews, Mathias; Liebhaber, Martin; Rech, Bernd
  • Applied Physics Letters, Vol. 107, Issue 1
  • DOI: 10.1063/1.4926402

High-efficiency crystalline silicon solar cells: status and perspectives
journal, January 2016

  • Battaglia, Corsin; Cuevas, Andres; De Wolf, Stefaan
  • Energy & Environmental Science, Vol. 9, Issue 5
  • DOI: 10.1039/C5EE03380B

Effects of oxygen incorporation in solar cells with a-SiO x :H absorber layer
journal, December 2014

  • Wang, Shuo; Smirnov, Vladimir; Chen, Tao
  • Japanese Journal of Applied Physics, Vol. 54, Issue 1
  • DOI: 10.7567/JJAP.54.011401

Works referencing / citing this record:

Sonochemical Modification of SiGe Layers for Photovoltaic Applications
journal, July 2019

  • Nadtochiy, Andriy; Korotchenkov, Oleg; Schlosser, Viktor
  • physica status solidi (a), Vol. 216, Issue 17
  • DOI: 10.1002/pssa.201900154

Enhanced photoresponse of Ge/Si nanostructures by combining amorphous silicon deposition and annealing
journal, September 2018

  • Podolian, A.; Nadtochiy, A.; Korotchenkov, O.
  • Journal of Applied Physics, Vol. 124, Issue 9
  • DOI: 10.1063/1.5029948

Photoelectric Properties of SiGe Films Covered with Amorphous- and Polycrystalline-Silicon Layers
journal, June 2019

  • Shmid, V.; Podolian, A.; Nadtochiy, A.
  • Ukrainian Journal of Physics, Vol. 64, Issue 5
  • DOI: 10.15407/ujpe64.5.415