DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural insights into the polyphyletic origins of glycyl tRNA synthetases

Abstract

Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. Furthermore, a structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a newmore » subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor.« less

Authors:
 [1];  [2];  [3];  [1];  [1];  [4];  [5];  [5]; ORCiD logo [6]; ORCiD logo [6];  [7];  [3]; ORCiD logo [1]
  1. Univ. Nacional Autonoma de Mexico, Mexico City (Mexico)
  2. Univ. Nacional Autonoma de Mexico, Mexico City (Mexico); Centro de Investigacion y Estudios Avanzados del Instituto Politecnico Nacional, Guanajuato (Mexico)
  3. Univ. of Gothenburg, Gothenburg (Sweden)
  4. Lab. de Biologie Integrative des Milieux Marins, Roscoff (France)
  5. Institute of Genetics and of Molecular and Cellular Biology, Illkirch (France)
  6. European Molecular Biology Lab., Hamburg (Germany)
  7. Centro de Investigacion y Estudios Avanzados del Instituto Politecnico Nacional, Guanajuato (Mexico)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1267479
Grant/Contract Number:  
AC02-06CH11357; 085P1000817
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Biological Chemistry
Additional Journal Information:
Journal Volume: 291; Journal Issue: 28; Journal ID: ISSN 0021-9258
Publisher:
American Society for Biochemistry and Molecular Biology
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES; aminoacyl tRNA synthetase; crystal structure; molecular evolution; structure-function; substrate specificity

Citation Formats

Valencia-Sánchez, Marco Igor, Rodríguez-Hernández, Annia, Ferreira, Ruben, Santamaría-Suárez, Hugo Aníbal, Arciniega, Marcelino, Dock-Bregeon, Anne-Catherine, Moras, Dino, Beinsteiner, Brice, Mertens, Haydyn, Svergun, Dmitri, Brieba, Luis G., Grøtli, Morten, and Torres-Larios, Alfredo. Structural insights into the polyphyletic origins of glycyl tRNA synthetases. United States: N. p., 2016. Web. doi:10.1074/jbc.M116.730382.
Valencia-Sánchez, Marco Igor, Rodríguez-Hernández, Annia, Ferreira, Ruben, Santamaría-Suárez, Hugo Aníbal, Arciniega, Marcelino, Dock-Bregeon, Anne-Catherine, Moras, Dino, Beinsteiner, Brice, Mertens, Haydyn, Svergun, Dmitri, Brieba, Luis G., Grøtli, Morten, & Torres-Larios, Alfredo. Structural insights into the polyphyletic origins of glycyl tRNA synthetases. United States. https://doi.org/10.1074/jbc.M116.730382
Valencia-Sánchez, Marco Igor, Rodríguez-Hernández, Annia, Ferreira, Ruben, Santamaría-Suárez, Hugo Aníbal, Arciniega, Marcelino, Dock-Bregeon, Anne-Catherine, Moras, Dino, Beinsteiner, Brice, Mertens, Haydyn, Svergun, Dmitri, Brieba, Luis G., Grøtli, Morten, and Torres-Larios, Alfredo. Mon . "Structural insights into the polyphyletic origins of glycyl tRNA synthetases". United States. https://doi.org/10.1074/jbc.M116.730382. https://www.osti.gov/servlets/purl/1267479.
@article{osti_1267479,
title = {Structural insights into the polyphyletic origins of glycyl tRNA synthetases},
author = {Valencia-Sánchez, Marco Igor and Rodríguez-Hernández, Annia and Ferreira, Ruben and Santamaría-Suárez, Hugo Aníbal and Arciniega, Marcelino and Dock-Bregeon, Anne-Catherine and Moras, Dino and Beinsteiner, Brice and Mertens, Haydyn and Svergun, Dmitri and Brieba, Luis G. and Grøtli, Morten and Torres-Larios, Alfredo},
abstractNote = {Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. Furthermore, a structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of α2β2 GlyRS, convergent with α2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor.},
doi = {10.1074/jbc.M116.730382},
journal = {Journal of Biological Chemistry},
number = 28,
volume = 291,
place = {United States},
year = {Mon May 23 00:00:00 EDT 2016},
month = {Mon May 23 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: $α$-Subunit of the tetrameric $α$2$β$2 GlyRS from A. aeolicus ($α$-AaGlyRS) is able to activate the amino acid. A, schematic diagram of the first step of aminoacyation. B, control experiments. Comparison of full aminoacylation reaction versus amino acid activation. Lanes 1–10, aminoacylation reaction performed as described previously (57–59). Lanemore » 1, no enzyme added, and no P1 nuclease added. Lane 2, Anaeolinea thermophila, a protein that bears in the same sequence both subunits ($αβ$-GlyRS) added, and no P1 nuclease added. Lane 3, A. aeolicus ($α$+$β$-GlyRS) added, and no P1 nuclease added. Lane 4, no enzyme added, and P1 nuclease added. Lanes 5–7, 5, 10, and 15 min of aminoacylation reaction using$α$+$β$-GlyRS (with P1 nuclease added). Lanes 8–10, 5, 10, and 15 min of aminoacylation reaction using $αβ$-GlyRS (with P1 nuclease added). Lanes 11–22, glycine activation reaction. Lane 11, zero time point using $α$-AaGlyRS. Lanes 12–16, 10, 20, 30, 40, and 50 min of the glycine activation reaction using$α$-AaGlyRS. Lane 17, zero time point using $αβ$-GlyRS. Lanes 18–22, 10, 20, 30, 40,and 50 min of the glycine activation reaction using the $αβ$-GlyRS. C, amino acid activation. $α$-AaGglyRS at 40 $μ$M, in the presence of decreasing glycine concentrations, 0.5mM ATP, 50mM Tris, pH 8.0, 50mM KCl, 10mM MgCl2. Time points were taken every 10 min for 60 min for each concentration, and the formation ofAMPwas monitored for each point. D, initial velocities (kinetics of AMP formation from the experiment in C). Steady state time courses using different glycine concentrations. E, Michaelis-Menten plot. Initial velocities were plotted against substrate concentration; error bars indicate the standard deviation for each point.« less

Save / Share:

Works referenced in this record:

Multiple protein sequence alignment from tertiary structure comparison: Assignment of global and residue confidence levels
journal, October 1992

  • Russell, Robert B.; Barton, Geoffrey J.
  • Proteins: Structure, Function, and Genetics, Vol. 14, Issue 2
  • DOI: 10.1002/prot.340140216

The evolution of Class II Aminoacyl-tRNA synthetases and the first code
journal, October 2015


Evolutionary Profiles Derived from the QR Factorization of Multiple Structural Alignments Gives an Economy of Information
journal, February 2005


DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering
journal, January 2009

  • Franke, Daniel; Svergun, Dmitri I.
  • Journal of Applied Crystallography, Vol. 42, Issue 2, p. 342-346
  • DOI: 10.1107/S0021889809000338

PHENIX: a comprehensive Python-based system for macromolecular structure solution.
text, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.45787

New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0
journal, March 2010

  • Guindon, Stéphane; Dufayard, Jean-François; Lefort, Vincent
  • Systematic Biology, Vol. 59, Issue 3
  • DOI: 10.1093/sysbio/syq010

Dali server: conservation mapping in 3D
journal, May 2010

  • Holm, Liisa; Rosenstr�m, P�ivi
  • Nucleic Acids Research, Vol. 38, Issue suppl_2
  • DOI: 10.1093/nar/gkq366

Ancient horizontal gene transfer and the last common ancestors
journal, April 2015

  • Fournier, Gregory P.; Andam, Cheryl P.; Gogarten, Johann Peter
  • BMC Evolutionary Biology, Vol. 15, Issue 1
  • DOI: 10.1186/s12862-015-0350-0

The crystal structures of the α-subunit of the α2β2 tetrameric Glycyl-tRNA synthetase
journal, October 2012

  • Tan, Kemin; Zhou, Min; Zhang, Rongguang
  • Journal of Structural and Functional Genomics, Vol. 13, Issue 4
  • DOI: 10.1007/s10969-012-9142-6

CRYSOL – a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates
journal, December 1995

  • Svergun, D.; Barberato, C.; Koch, M. H. J.
  • Journal of Applied Crystallography, Vol. 28, Issue 6
  • DOI: 10.1107/S0021889895007047

Heat Maps for Intramolecular Communication in an RNP Enzyme Encoding Glutamine
journal, March 2011


BALBES : a molecular-replacement pipeline
journal, December 2007

  • Long, Fei; Vagin, Alexei A.; Young, Paul
  • Acta Crystallographica Section D Biological Crystallography, Vol. 64, Issue 1
  • DOI: 10.1107/S0907444907050172

Determination of the regularization parameter in indirect-transform methods using perceptual criteria
journal, August 1992


tRNA-dependent Aminoacyl-adenylate Hydrolysis by a Nonediting Class I Aminoacyl-tRNA Synthetase
journal, April 2005

  • Gruic-Sovulj, Ita; Uter, Nathan; Bullock, Timothy
  • Journal of Biological Chemistry, Vol. 280, Issue 25
  • DOI: 10.1074/jbc.M414260200

Glycyl transfer ribonucleic acid synthetase from Escherichia coli. Purification, properties, and substrate binding
journal, March 1974


PRIMUS: a Windows PC-based system for small-angle scattering data analysis
journal, September 2003

  • Konarev, Petr V.; Volkov, Vladimir V.; Sokolova, Anna V.
  • Journal of Applied Crystallography, Vol. 36, Issue 5, p. 1277-1282
  • DOI: 10.1107/S0021889803012779

Getting past appearances: the many-fold consequences of remote homology
journal, November 2001

  • Lichtarge, Olivier
  • Nature Structural Biology, Vol. 8, Issue 11, p. 918-920
  • DOI: 10.1038/nsb1101-918

Overproduction, purification, and subunit structure of Escherichia coli glycyl transfer ribonucleic acid synthetase
journal, April 1980

  • McDonald, Timothy; Breite, Lawrence; Pangburn, Kerry L. W.
  • Biochemistry, Vol. 19, Issue 7
  • DOI: 10.1021/bi00548a022

Aminoacyl-tRNA Synthesis
journal, June 2000


The Enzymic Synthesis of Amino Acyl Derivatives of Ribonucleic Acid
journal, June 1961


Mistranslation and its control by tRNA synthetases
journal, October 2011

  • Schimmel, Paul
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 366, Issue 1580
  • DOI: 10.1098/rstb.2011.0158

A small and robust active beamstop for scattering experiments on high-brilliance undulator beamlines
journal, February 2015

  • Blanchet, Clement E.; Hermes, Christoph; Svergun, Dmitri I.
  • Journal of Synchrotron Radiation, Vol. 22, Issue 2, p. 461-464
  • DOI: 10.1107/S160057751402829X

Aminoacyl-tRNA Synthetases, the Genetic Code, and the Evolutionary Process
journal, March 2000


Horizontal gene transfer from extinct and extant lineages: biological innovation and the coral of life
journal, August 2009

  • Fournier, Gregory P.; Huang, Jinling; Gogarten, J. Peter
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 364, Issue 1527
  • DOI: 10.1098/rstb.2009.0033

Human glycyl-tRNA synthetase. Wide divergence of primary structure from bacterial counterpart and species-specific aminoacylation.
journal, November 1994


[3′-32P]-labeling tRNA with nucleotidyltransferase for assaying aminoacylation and peptide bond formation
journal, February 2008


Structural Phylogenomics Retrodicts the Origin of the Genetic Code and Uncovers the Evolutionary Impact of Protein Flexibility
journal, August 2013


New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0
text, January 2010

  • Guindon, Stéphane; Dufayard, Jean-François; Lefort, Vincent
  • Oxford University Press
  • DOI: 10.5167/uzh-155669

ValLigURL: a server for ligand-structure comparison and validation
journal, July 2007

  • Kleywegt, Gerard J.; Harris, Mark R.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 63, Issue 8
  • DOI: 10.1107/S090744490703315X

Inference of Macromolecular Assemblies from Crystalline State
journal, September 2007


Alanyl-tRNA Synthetase Crystal Structure and Design for Acceptor-Stem Recognition
journal, March 2004


phyloXML: XML for evolutionary biology and comparative genomics
journal, October 2009


iMOSFLM : a new graphical interface for diffraction-image processing with MOSFLM
journal, March 2011

  • Battye, T. Geoff G.; Kontogiannis, Luke; Johnson, Owen
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S0907444910048675

An Enzymatic Mechanism for Linking Amino Acids to RNA
journal, February 1958

  • Berg, P.; Offengand, E. J.
  • Proceedings of the National Academy of Sciences, Vol. 44, Issue 2
  • DOI: 10.1073/pnas.44.2.78

Evolution of different oligomeric glycyl-tRNA synthetases
journal, February 2005


Multiple Alignment of protein structures and sequences for VMD
journal, December 2005


Acyl Adenylates: The Synthesis and Properties of Adenyl Acetate
journal, October 1956


The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification
journal, January 2014

  • Majorek, Karolina A.; Dunin-Horkawicz, Stanislaw; Steczkiewicz, Kamil
  • Nucleic Acids Research, Vol. 42, Issue 7
  • DOI: 10.1093/nar/gkt1414

Cavin1 intrinsically disordered domains are essential for fuzzy electrostatic interactions and caveola formation
journal, February 2021


Coot model-building tools for molecular graphics
journal, November 2004

  • Emsley, Paul; Cowtan, Kevin
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12, p. 2126-2132
  • DOI: 10.1107/S0907444904019158

Anticodon G recognition by tRNA synthetases mimics the tRNA core
journal, May 2013


Aminoacyl tRNA Synthetases, Chemistry of
book, May 2008


The Chemical Nature of the Rna-Amino acid Compound Formed by Amino Acid-Activating Enzymes
journal, March 1959

  • Preiss, J.; Berg, P.; Ofengand, E. J.
  • Proceedings of the National Academy of Sciences, Vol. 45, Issue 3
  • DOI: 10.1073/pnas.45.3.319

An operational RNA code for amino acids and possible relationship to genetic code.
journal, October 1993

  • Schimmel, P.; Giege, R.; Moras, D.
  • Proceedings of the National Academy of Sciences, Vol. 90, Issue 19
  • DOI: 10.1073/pnas.90.19.8763

Bio3d: an R package for the comparative analysis of protein structures
journal, August 2006


TCS: A New Multiple Sequence Alignment Reliability Measure to Estimate Alignment Accuracy and Improve Phylogenetic Tree Reconstruction
journal, April 2014

  • Chang, Jia-Ming; Di Tommaso, Paolo; Notredame, Cedric
  • Molecular Biology and Evolution, Vol. 31, Issue 6
  • DOI: 10.1093/molbev/msu117

Functional and evolutionary implications of gene orthology
journal, April 2013

  • Gabaldón, Toni; Koonin, Eugene V.
  • Nature Reviews Genetics, Vol. 14, Issue 5
  • DOI: 10.1038/nrg3456

Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee
journal, July 2006

  • Armougom, F.; Moretti, S.; Poirot, O.
  • Nucleic Acids Research, Vol. 34, Issue Web Server
  • DOI: 10.1093/nar/gkl092

Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition
journal, May 2006


Solid-Phase Synthesis of 5′-O-[N-(Acyl)sulfamoyl]adenosine Derivatives
journal, May 2012

  • Redwan, Itedale Namro; Ingemyr, Hanna Jacobson; Ljungdahl, Thomas
  • European Journal of Organic Chemistry, Vol. 2012, Issue 19
  • DOI: 10.1002/ejoc.201200329

New developments in the ATSAS program package for small-angle scattering data analysis
journal, March 2012

  • Petoukhov, Maxim V.; Franke, Daniel; Shkumatov, Alexander V.
  • Journal of Applied Crystallography, Vol. 45, Issue 2
  • DOI: 10.1107/S0021889812007662

tRNA synthetase: tRNA aminoacylation and beyond: Aminoacyl-tRNA synthetases
journal, April 2014

  • Pang, Yan Ling Joy; Poruri, Kiranmai; Martinis, Susan A.
  • Wiley Interdisciplinary Reviews: RNA, Vol. 5, Issue 4
  • DOI: 10.1002/wrna.1224

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

An introduction to data reduction: space-group determination, scaling and intensity statistics
journal, March 2011

  • Evans, Philip R.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S090744491003982X

A mutation in the small (alpha) subunit of glycyl-tRNA synthetase affects amino acid activation and subunit association parameters.
journal, January 1990


Automated matching of high- and low-resolution structural models
journal, February 2001


Recognition sites of glycine tRNA for glycyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1
journal, September 2005

  • Okamoto, Koji; Kuno, Atsushi; Hasegawa, Tsunemi
  • Nucleic Acids Symposium Series, Vol. 49, Issue 1
  • DOI: 10.1093/nass/49.1.299

Crystallographic Studies on Multiple Conformational States of Active-site Loops in Pyrrolysyl-tRNA Synthetase
journal, May 2008

  • Yanagisawa, Tatsuo; Ishii, Ryohei; Fukunaga, Ryuya
  • Journal of Molecular Biology, Vol. 378, Issue 3
  • DOI: 10.1016/j.jmb.2008.02.045

New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0
text, January 2010


Glycyl-tRNA Synthetase: An Oligomeric Protein Containing Dissimilar Subunits
journal, December 1970

  • Ostrem, D. L.; Berg, P.
  • Proceedings of the National Academy of Sciences, Vol. 67, Issue 4
  • DOI: 10.1073/pnas.67.4.1967

The β subunit of E. coil glycyl-tRNA synthetase plays a major role in tRNA recognition
journal, January 1984

  • Nagel, Glenn M.; Cumberledge, Susan; Johnson, Mark S.
  • Nucleic Acids Research, Vol. 12, Issue 10
  • DOI: 10.1093/nar/12.10.4377

The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability
journal, September 2007

  • Niesen, Frank H.; Berglund, Helena; Vedadi, Masoud
  • Nature Protocols, Vol. 2, Issue 9
  • DOI: 10.1038/nprot.2007.321

Crystal structure of glycyl-tRNA synthetase from Thermus thermophilus.
journal, September 1995


Structural relationships and the classification of aminoacyl-tRNA synthetases.
journal, September 1991


Deletions in the large (beta) subunit of a hetero-oligomeric aminoacyl-tRNA synthetase.
journal, January 1990


Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs
journal, September 1990

  • Eriani, Gilbert; Delarue, Marc; Poch, Olivier
  • Nature, Vol. 347, Issue 6289, p. 203-206
  • DOI: 10.1038/347203a0

A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å
journal, September 1990

  • Cusack, Stephen; Berthet-Colominas, Carmen; Härtlein, Michael
  • Nature, Vol. 347, Issue 6290
  • DOI: 10.1038/347249a0

Aminoacylation of tRNA 2′- or 3′-hydroxyl by phosphoseryl- and pyrrolysyl-tRNA synthetases
journal, September 2013


A small and robust active beamstop for scattering experiments on high-brilliance undulator beamlines
text, January 2015

  • Blanchet, Clement; Hermes, Christoph; Svergun, Dmitri I.
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2017-05899

Structural Diversity and Protein Engineering of the Aminoacyl-tRNA Synthetases
journal, October 2012

  • Perona, John J.; Hadd, Andrew
  • Biochemistry, Vol. 51, Issue 44
  • DOI: 10.1021/bi301180x

Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine 1 1Edited by R. Huber
journal, March 1999

  • Arnez, John G.; Dock-Bregeon, Anne-Catherine; Moras, Dino
  • Journal of Molecular Biology, Vol. 286, Issue 5
  • DOI: 10.1006/jmbi.1999.2562

Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation
journal, June 2007

  • Kavran, J. M.; Gundllapalli, S.; O'Donoghue, P.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 27
  • DOI: 10.1073/pnas.0704769104

Synthesis of Glu-tRNA Gln by Engineered and Natural Aminoacyl-tRNA Synthetases
journal, August 2010

  • Rodríguez-Hernández, Annia; Bhaskaran, Hari; Hadd, Andrew
  • Biochemistry, Vol. 49, Issue 31
  • DOI: 10.1021/bi100886z

On the Evolution of Structure in Aminoacyl-tRNA Synthetases
journal, December 2003


Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase
journal, June 2000

  • Sankaranarayanan, Rajan; Dock-Bregeon, Anne-Catherine; Rees, Bernard
  • Nature Structural Biology, Vol. 7, Issue 6, p. 461-465
  • DOI: 10.1038/75856

The PDB_REDO server for macromolecular structure model optimization
journal, May 2014


Paradox of mistranslation of serine for alanine caused by AlaRS recognition dilemma
journal, December 2009

  • Guo, Min; Chong, Yeeting E.; Shapiro, Ryan
  • Nature, Vol. 462, Issue 7274
  • DOI: 10.1038/nature08612

Understanding structural relationships proteins of unsolved three-dimensional structure
journal, January 1990

  • Burbaum, Jonathan J.; Starzyk, Ruth M.; Schimmel, Paul
  • Proteins: Structure, Function, and Genetics, Vol. 7, Issue 2
  • DOI: 10.1002/prot.340070202

Development of tRNA synthetases and connection to genetic code and disease
journal, October 2008


Works referencing / citing this record:

Aminoacyl-tRNA synthetase evolution and sectoring of the genetic code
text, January 2018


Aminoacyl-tRNA synthetase evolution and sectoring of the genetic code
text, January 2018


Aminoacyl-tRNA synthetase evolution and sectoring of the genetic code
journal, May 2018