DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A coarse-grained model for synergistic action of multiple enzymes on cellulose

Abstract

In this study, degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing -1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, -glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose, several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates. As a result, we present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model bymore » including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages) and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose. In conclusion, our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures the endo-exo synergism of cellulase enzyme cocktails. This model constitutes a critical step towards testing hypotheses and understanding approaches for maximizing synergy and substrate properties with a goal of cost effective enzymatic hydrolysis.« less

Authors:
 [1];  [2];  [2];  [3];  [4];  [2];  [2]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Notre Dame, Notre Dame, IN (United States); Rensselaer Polytechnic Inst., Troy, NY (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Tennessee, Knoxville, TN (United States)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1265960
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Biotechnology for Biofuels
Additional Journal Information:
Journal Volume: 5; Journal Issue: 1; Journal ID: ISSN 1754-6834
Publisher:
BioMed Central
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Asztalos, Andrea, Daniels, Marcus, Sethi, Anurag, Shen, Tongye, Langan, Paul, Redondo, Antonio, and Gnanakaran, Sandrasegaram. A coarse-grained model for synergistic action of multiple enzymes on cellulose. United States: N. p., 2012. Web. doi:10.1186/1754-6834-5-55.
Asztalos, Andrea, Daniels, Marcus, Sethi, Anurag, Shen, Tongye, Langan, Paul, Redondo, Antonio, & Gnanakaran, Sandrasegaram. A coarse-grained model for synergistic action of multiple enzymes on cellulose. United States. https://doi.org/10.1186/1754-6834-5-55
Asztalos, Andrea, Daniels, Marcus, Sethi, Anurag, Shen, Tongye, Langan, Paul, Redondo, Antonio, and Gnanakaran, Sandrasegaram. Wed . "A coarse-grained model for synergistic action of multiple enzymes on cellulose". United States. https://doi.org/10.1186/1754-6834-5-55. https://www.osti.gov/servlets/purl/1265960.
@article{osti_1265960,
title = {A coarse-grained model for synergistic action of multiple enzymes on cellulose},
author = {Asztalos, Andrea and Daniels, Marcus and Sethi, Anurag and Shen, Tongye and Langan, Paul and Redondo, Antonio and Gnanakaran, Sandrasegaram},
abstractNote = {In this study, degradation of cellulose to glucose requires the cooperative action of three classes of enzymes, collectively known as cellulases. Endoglucanases randomly bind to cellulose surfaces and generate new chain ends by hydrolyzing -1,4-D-glycosidic bonds. Exoglucanases bind to free chain ends and hydrolyze glycosidic bonds in a processive manner releasing cellobiose units. Then, -glucosidases hydrolyze soluble cellobiose to glucose. Optimal synergistic action of these enzymes is essential for efficient digestion of cellulose. Experiments show that as hydrolysis proceeds and the cellulose substrate becomes more heterogeneous, the overall degradation slows down. As catalysis occurs on the surface of crystalline cellulose, several factors affect the overall hydrolysis. Therefore, spatial models of cellulose degradation must capture effects such as enzyme crowding and surface heterogeneity, which have been shown to lead to a reduction in hydrolysis rates. As a result, we present a coarse-grained stochastic model for capturing the key events associated with the enzymatic degradation of cellulose at the mesoscopic level. This functional model accounts for the mobility and action of a single cellulase enzyme as well as the synergy of multiple endo- and exo-cellulases on a cellulose surface. The quantitative description of cellulose degradation is calculated on a spatial model by including free and bound states of both endo- and exo-cellulases with explicit reactive surface terms (e.g., hydrogen bond breaking, covalent bond cleavages) and corresponding reaction rates. The dynamical evolution of the system is simulated by including physical interactions between cellulases and cellulose. In conclusion, our coarse-grained model reproduces the qualitative behavior of endoglucanases and exoglucanases by accounting for the spatial heterogeneity of the cellulose surface as well as other spatial factors such as enzyme crowding. Importantly, it captures the endo-exo synergism of cellulase enzyme cocktails. This model constitutes a critical step towards testing hypotheses and understanding approaches for maximizing synergy and substrate properties with a goal of cost effective enzymatic hydrolysis.},
doi = {10.1186/1754-6834-5-55},
journal = {Biotechnology for Biofuels},
number = 1,
volume = 5,
place = {United States},
year = {Wed Aug 01 00:00:00 EDT 2012},
month = {Wed Aug 01 00:00:00 EDT 2012}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 30 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis
journal, January 1988


Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis
journal, January 1988


Modeling cellulase kinetics on lignocellulosic substrates
journal, November 2009


Modeling cellulase kinetics on lignocellulosic substrates
journal, November 2009


fA cellular automaton model of crystalline cellulose hydrolysis by cellulases
journal, January 2011

  • Warden, Andrew C.; Little, Bryce A.; Haritos, Victoria S.
  • Biotechnology for Biofuels, Vol. 4, Issue 1
  • DOI: 10.1186/1754-6834-4-39

fA cellular automaton model of crystalline cellulose hydrolysis by cellulases
journal, January 2011

  • Warden, Andrew C.; Little, Bryce A.; Haritos, Victoria S.
  • Biotechnology for Biofuels, Vol. 4, Issue 1
  • DOI: 10.1186/1754-6834-4-39

Directed cell migration towards softer environments
journal, July 2022


High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei
journal, January 1998

  • Divne, Christina; Ståhlberg, Jerry; Teeri, Tuula T.
  • Journal of Molecular Biology, Vol. 275, Issue 2, p. 309-325
  • DOI: 10.1006/jmbi.1997.1437

Applications of computational science for understanding enzymatic deconstruction of cellulose
journal, April 2011

  • Beckham, Gregg T.; Bomble, Yannick J.; Bayer, Edward A.
  • Current Opinion in Biotechnology, Vol. 22, Issue 2
  • DOI: 10.1016/j.copbio.2010.11.005

Cellulose hydrolysis in evolving substrate morphologies III: Time-scale analysis
journal, June 2010

  • Zhou, Wen; Xu, Ying; Schüttler, Heinz-Bernd
  • Biotechnology and Bioengineering, Vol. 107, Issue 2
  • DOI: 10.1002/bit.22814

Fuel Ethanol from Cellulosic Biomass
journal, March 1991


A mechanistic model of the enzymatic hydrolysis of cellulose
journal, May 2010

  • Levine, Seth E.; Fox, Jerome M.; Blanch, Harvey W.
  • Biotechnology and Bioengineering, Vol. 107, Issue 1
  • DOI: 10.1002/bit.22789

Cellulose hydrolysis in evolving substrate morphologies III: Time-scale analysis
journal, June 2010

  • Zhou, Wen; Xu, Ying; Schüttler, Heinz-Bernd
  • Biotechnology and Bioengineering, Vol. 107, Issue 2
  • DOI: 10.1002/bit.22814

Cellulose hydrolysis in evolving substrate morphologies II: Numerical results and analysis
journal, October 2009

  • Zhou, Wen; Hao, Zhiqian; Xu, Ying
  • Biotechnology and Bioengineering, Vol. 104, Issue 2
  • DOI: 10.1002/bit.22388

Cellulose hydrolysis in evolving substrate morphologies I: A general modeling formalism
journal, October 2009

  • Zhou, Wen; Schüttler, Heinz-Bernd; Hao, Zhiqian
  • Biotechnology and Bioengineering, Vol. 104, Issue 2
  • DOI: 10.1002/bit.22389

The 1.4-β-glucan cellobiohydrolases of Trichoderma reesei QM 9414: A new type of cellulolytic synergism
journal, September 1980


A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics I: Depolymerization by EGI and CBHI
journal, October 2011

  • Griggs, Andrew J.; Stickel, Jonathan J.; Lischeske, James J.
  • Biotechnology and Bioengineering, Vol. 109, Issue 3
  • DOI: 10.1002/bit.23355

A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics II: Cooperative enzyme action, solution kinetics, and product inhibition
journal, October 2011

  • Griggs, Andrew J.; Stickel, Jonathan J.; Lischeske, James J.
  • Biotechnology and Bioengineering, Vol. 109, Issue 3
  • DOI: 10.1002/bit.23354

Hydrogen Bond Dissociation and Reformation in Methanol Oligomers Following Hydroxyl Stretch Relaxation
journal, November 2002

  • Gaffney, K. J.; Davis, Paul H.; Piletic, I. R.
  • The Journal of Physical Chemistry A, Vol. 106, Issue 50
  • DOI: 10.1021/jp021696g

A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
journal, December 1976


High Speed Atomic Force Microscopy Visualizes Processive Movement of Trichoderma reesei Cellobiohydrolase I on Crystalline Cellulose
journal, October 2009

  • Igarashi, Kiyohiko; Koivula, Anu; Wada, Masahisa
  • Journal of Biological Chemistry, Vol. 284, Issue 52
  • DOI: 10.1074/jbc.M109.034611

Kinetics of enzymatic hydrolysis of cellulose: Analytical description of a mechanistic model
journal, May 1978

  • Okazaki, M.; Moo-Young, M.
  • Biotechnology and Bioengineering, Vol. 20, Issue 5
  • DOI: 10.1002/bit.260200503

The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei
journal, July 1994


The endo-1,4-beta-glucanase I from Trichoderma reesei. Action on beta-1, 4-oligomers and polymers derived from d-glucose and d-xylose
journal, August 1991


Ethanol for a Sustainable Energy Future
journal, February 2007


A functionally based model for hydrolysis of cellulose by fungal cellulase
journal, January 2006

  • Zhang, Y. -H. Percival; Lynd, Lee R.
  • Biotechnology and Bioengineering, Vol. 94, Issue 5
  • DOI: 10.1002/bit.20906

Surface Diffusion of Cellulases and Their Isolated Binding Domains on Cellulose
journal, September 1997

  • Jervis, Eric J.; Haynes, Charles A.; Kilburn, Douglas G.
  • Journal of Biological Chemistry, Vol. 272, Issue 38
  • DOI: 10.1074/jbc.272.38.24016

The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose.
journal, October 1996

  • Linder, M.; Teeri, T. T.
  • Proceedings of the National Academy of Sciences, Vol. 93, Issue 22
  • DOI: 10.1073/pnas.93.22.12251

Surface Diffusion of Cellulases and Their Isolated Binding Domains on Cellulose
journal, September 1997

  • Jervis, Eric J.; Haynes, Charles A.; Kilburn, Douglas G.
  • Journal of Biological Chemistry, Vol. 272, Issue 38
  • DOI: 10.1074/jbc.272.38.24016

The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds
journal, August 2009

  • Bu, Lintao; Beckham, Gregg T.; Crowley, Michael F.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 31
  • DOI: 10.1021/jp904003z

Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose Iβ
journal, November 2007


A mechanistic model of the enzymatic hydrolysis of cellulose
journal, May 2010

  • Levine, Seth E.; Fox, Jerome M.; Blanch, Harvey W.
  • Biotechnology and Bioengineering, Vol. 107, Issue 1
  • DOI: 10.1002/bit.22789

Fuel Ethanol from Cellulosic Biomass
journal, March 1991


Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina)
journal, May 2008

  • Martinez, Diego; Berka, Randy M.; Henrissat, Bernard
  • Nature Biotechnology, Vol. 26, Issue 5
  • DOI: 10.1038/nbt1403

The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei
journal, July 1994


Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems
journal, November 2004

  • Zhang, Yi-Heng Percival; Lynd, Lee R.
  • Biotechnology and Bioengineering, Vol. 88, Issue 7, p. 797-824
  • DOI: 10.1002/bit.20282

Cellulose: Fascinating Biopolymer and Sustainable Raw Material
journal, May 2005

  • Klemm, Dieter; Heublein, Brigitte; Fink, Hans-Peter
  • Angewandte Chemie International Edition, Vol. 44, Issue 22
  • DOI: 10.1002/anie.200460587

Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose
journal, August 1997

  • Koyama, M.; Helbert, W.; Imai, T.
  • Proceedings of the National Academy of Sciences, Vol. 94, Issue 17
  • DOI: 10.1073/pnas.94.17.9091

Identification of Two Functionally Different Classes of Exocellulases
journal, January 1996

  • Barr, Brian K.; Hsieh, Yin-Liang; Ganem, Bruce
  • Biochemistry, Vol. 35, Issue 2
  • DOI: 10.1021/bi9520388

Molecular modeling suggests induced fit of Family I carbohydrate-binding modules with a broken-chain cellulose surface
journal, January 2007

  • Nimlos, Mark R.; Matthews, James F.; Crowley, Michael F.
  • Protein Engineering, Design and Selection, Vol. 20, Issue 4
  • DOI: 10.1093/protein/gzm010

Cellulose hydrolysis in evolving substrate morphologies II: Numerical results and analysis
journal, October 2009

  • Zhou, Wen; Hao, Zhiqian; Xu, Ying
  • Biotechnology and Bioengineering, Vol. 104, Issue 2
  • DOI: 10.1002/bit.22388

Studies of the cellulolytic system of the filamentous fungus Trichoderma reesei QM 9414. Substrate specificity and transfer activity of endoglucanase I
journal, August 1990

  • Claeyssens, M.; van Tilbeurgh, H.; Kamerling, J. P.
  • Biochemical Journal, Vol. 270, Issue 1
  • DOI: 10.1042/bj2700251

Cellulose hydrolysis in evolving substrate morphologies I: A general modeling formalism
journal, October 2009

  • Zhou, Wen; Schüttler, Heinz-Bernd; Hao, Zhiqian
  • Biotechnology and Bioengineering, Vol. 104, Issue 2
  • DOI: 10.1002/bit.22389

A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics II: Cooperative enzyme action, solution kinetics, and product inhibition
journal, October 2011

  • Griggs, Andrew J.; Stickel, Jonathan J.; Lischeske, James J.
  • Biotechnology and Bioengineering, Vol. 109, Issue 3
  • DOI: 10.1002/bit.23354

A mechanistic model for enzymatic saccharification of cellulose using continuous distribution kinetics I: Depolymerization by EGI and CBHI
journal, October 2011

  • Griggs, Andrew J.; Stickel, Jonathan J.; Lischeske, James J.
  • Biotechnology and Bioengineering, Vol. 109, Issue 3
  • DOI: 10.1002/bit.23355

Cleavage of cellulose by a CBM33 protein
journal, August 2011

  • Forsberg, Zarah; Vaaje-Kolstad, Gustav; Westereng, Bjørge
  • Protein Science, Vol. 20, Issue 9
  • DOI: 10.1002/pro.689

Cellulase for commodity products from cellulosic biomass
journal, August 1999

  • Himmel, Michael E.; Ruth, Mark F.; Wyman, Charles E.
  • Current Opinion in Biotechnology, Vol. 10, Issue 4, p. 358-364
  • DOI: 10.1016/s0958-1669(99)80065-2

Synergism of Cellulases from Trichoderma reesei in the Degradation of Cellulose
journal, August 1985

  • Henrissat, B.; Driguez, H.; Viet, C.
  • Bio/Technology, Vol. 3, Issue 8
  • DOI: 10.1038/nbt0885-722

Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose?
journal, May 1998

  • Teeri, T. T.; Koivula, A.; Linder, M.
  • Biochemical Society Transactions, Vol. 26, Issue 2
  • DOI: 10.1042/bst0260173

Microbial Cellulose Utilization: Fundamentals and Biotechnology
journal, September 2002

  • Lynd, L. R.; Weimer, P. J.; van Zyl, W. H.
  • Microbiology and Molecular Biology Reviews, Vol. 66, Issue 3, p. 506-577
  • DOI: 10.1128/MMBR.66.3.506-577.2002

Structures and mechanisms of glycosyl hydrolases
journal, September 1995


A Model Explaining Declining Rate in Hydrolysis of Lignocellulose Substrates with Cellobiohydrolase I (Cel7A) and Endoglucanase I (Cel7B) of Trichoderma reesei
journal, January 2002

  • Eriksson, Torny; Karlsson, Johan; Tjerneld, Folke
  • Applied Biochemistry and Biotechnology, Vol. 101, Issue 1
  • DOI: 10.1385/ABAB:101:1:41

Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei
journal, July 1990


Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I
journal, December 1999


The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 Å resolution, and a comparison with related enzymes
journal, September 1997

  • Kleywegt, Gerard J.; Zou, Jin-Yu; Divne, Christina
  • Journal of Molecular Biology, Vol. 272, Issue 3, p. 383-397
  • DOI: 10.1006/jmbi.1997.1243

The endo-1,4-beta-glucanase I from Trichoderma reesei. Action on beta-1, 4-oligomers and polymers derived from d-glucose and d-xylose
journal, August 1991


Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei
journal, July 1990


Cellulose- and Xylan-Degrading Thermophilic Anaerobic Bacteria from Biocompost
journal, February 2011

  • Sizova, M. V.; Izquierdo, J. A.; Panikov, N. S.
  • Applied and Environmental Microbiology, Vol. 77, Issue 7
  • DOI: 10.1128/aem.01219-10

A functionally based model for hydrolysis of cellulose by fungal cellulase
journal, January 2006

  • Zhang, Y. -H. Percival; Lynd, Lee R.
  • Biotechnology and Bioengineering, Vol. 94, Issue 5
  • DOI: 10.1002/bit.20906

Outlook for cellulase improvement: Screening and selection strategies
journal, September 2006


Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction
journal, March 1994

  • Nidetzky, B.; Steiner, W.; Hayn, M.
  • Biochemical Journal, Vol. 298, Issue 3
  • DOI: 10.1042/bj2980705

Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina)
journal, May 2008

  • Martinez, Diego; Berka, Randy M.; Henrissat, Bernard
  • Nature Biotechnology, Vol. 26, Issue 5
  • DOI: 10.1038/nbt1403

Applications of computational science for understanding enzymatic deconstruction of cellulose
journal, April 2011

  • Beckham, Gregg T.; Bomble, Yannick J.; Bayer, Edward A.
  • Current Opinion in Biotechnology, Vol. 22, Issue 2
  • DOI: 10.1016/j.copbio.2010.11.005

The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds
journal, August 2009

  • Bu, Lintao; Beckham, Gregg T.; Crowley, Michael F.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 31
  • DOI: 10.1021/jp904003z

Kinetics of enzymatic hydrolysis of cellulose: Analytical description of a mechanistic model
journal, May 1978

  • Okazaki, M.; Moo-Young, M.
  • Biotechnology and Bioengineering, Vol. 20, Issue 5
  • DOI: 10.1002/bit.260200503

The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose.
journal, October 1996

  • Linder, M.; Teeri, T. T.
  • Proceedings of the National Academy of Sciences, Vol. 93, Issue 22
  • DOI: 10.1073/pnas.93.22.12251

Ethanol for a Sustainable Energy Future
journal, February 2007


Cleavage of cellulose by a CBM33 protein
journal, August 2011

  • Forsberg, Zarah; Vaaje-Kolstad, Gustav; Westereng, Bjørge
  • Protein Science, Vol. 20, Issue 9
  • DOI: 10.1002/pro.689

Crystalline cellulose degradation: new insight into the function of cellobiohydrolases
journal, May 1997


Trichoderma reesei cellobiohydrolases: why so efficient on crystalline cellulose?
journal, May 1998

  • Teeri, T. T.; Koivula, A.; Linder, M.
  • Biochemical Society Transactions, Vol. 26, Issue 2
  • DOI: 10.1042/bst0260173

Cross-synergistic interactions between components of the cellulase systems of Talaromyces emersonii, Fusarium solani, Penicillium funiculosum and Trichoderma koningii
journal, April 1987

  • Coughlan, Michael P.; Moloney, Aidan P.; McCRAE, Sheila I.
  • Biochemical Society Transactions, Vol. 15, Issue 2
  • DOI: 10.1042/bst0150263

The 1.4-β-glucan cellobiohydrolases of Trichoderma reesei QM 9414: A new type of cellulolytic synergism
journal, September 1980


Synergism of Cellulases from Trichoderma reesei in the Degradation of Cellulose
journal, August 1985

  • Henrissat, B.; Driguez, H.; Viet, C.
  • Bio/Technology, Vol. 3, Issue 8
  • DOI: 10.1038/nbt0885-722

Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose Iβ
journal, November 2007


Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol
journal, March 1997

  • Nieves, R. A.; Ehrman, C. I.; Adney, W. S.
  • World Journal of Microbiology and Biotechnology, Vol. 14, Issue 2, p. 301-304
  • DOI: 10.1023/A:1008871205580

A rigorous derivation of the chemical master equation
journal, September 1992


Studies of the cellulolytic system of the filamentous fungus Trichoderma reesei QM 9414. Substrate specificity and transfer activity of endoglucanase I
journal, August 1990

  • Claeyssens, M.; van Tilbeurgh, H.; Kamerling, J. P.
  • Biochemical Journal, Vol. 270, Issue 1
  • DOI: 10.1042/bj2700251

A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
journal, December 1976


Exact stochastic simulation of coupled chemical reactions
journal, December 1977

  • Gillespie, Daniel T.
  • The Journal of Physical Chemistry, Vol. 81, Issue 25
  • DOI: 10.1021/j100540a008

Hydrogen Bond Dissociation and Reformation in Methanol Oligomers Following Hydroxyl Stretch Relaxation
journal, November 2002

  • Gaffney, K. J.; Davis, Paul H.; Piletic, I. R.
  • The Journal of Physical Chemistry A, Vol. 106, Issue 50
  • DOI: 10.1021/jp021696g

The interaction of carbohydrate-binding modules with insoluble non-crystalline cellulose is enthalpically driven
journal, January 2005


Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction
journal, March 1994

  • Nidetzky, B.; Steiner, W.; Hayn, M.
  • Biochemical Journal, Vol. 298, Issue 3
  • DOI: 10.1042/bj2980705

Works referencing / citing this record:

Development and validation of a stochastic molecular model of cellulose hydrolysis by action of multiple cellulase enzymes
journal, December 2017


Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production
journal, January 2013


Cellular automata modeling depicts degradation of cellulosic material by a cellulase system with single-molecule resolution
journal, March 2016


Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production
journal, January 2013


Cellular automata modeling depicts degradation of cellulosic material by a cellulase system with single-molecule resolution
journal, March 2016