DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Three-Dimensionally Mesostructured Fe2O3 Electrodes with Good Rate Performance and Reduced Voltage Hysteresis

Abstract

Ni scaffolded mesostructured 3D Fe2O3 electrodes were fabricated by colloidal templating and pulsed electrodeposition. The scaffold provided short pathways for both lithium ions and electrons in the active phase, enabling fast kinetics and thus a high power density. The scaffold also resulted in a reduced voltage hysteresis. The electrode showed a reversible capacity of ~1000 mA h g-1 at 0.2 A g-1 (~0.2 C) for about 20 cycles, and at a current density of 20 A g-1 (~20 C) the deliverable capacity was about 450 mA h g-1. The room temperature voltage hysteresis at 0.1 A g-1 (~0.1 C) was 0.62 V, which is significantly smaller than that normally reported in the literature. And it could be further reduced to 0.42 V when cycling at 45 ºC. Potentiostatic electrochemical impedance spectroscopy (PEIS) studies indicated the small voltage hysteresis may be due to a reduction in the Li2O/Fe interfacial area in the electrode during cycling relative to convention-al conversion systems.

Authors:
 [1];  [1];  [2];  [3]
  1. Univ. of Illinois, Urbana-Champaign, IL (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Illinois at Urbana-Champaign, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1265755
Alternate Identifier(s):
OSTI ID: 1876447
Grant/Contract Number:  
AC05-00OR22725; FG02-07ER46471
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 27; Journal Issue: 8; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Electrodes; Hysteresis; Lithium; Materials; Nanoparticles

Citation Formats

Wang, Junjie, Braun, Paul V., Zhou, Hui, and Nanda, Jagjit. Three-Dimensionally Mesostructured Fe2O3 Electrodes with Good Rate Performance and Reduced Voltage Hysteresis. United States: N. p., 2015. Web. doi:10.1021/cm504365s.
Wang, Junjie, Braun, Paul V., Zhou, Hui, & Nanda, Jagjit. Three-Dimensionally Mesostructured Fe2O3 Electrodes with Good Rate Performance and Reduced Voltage Hysteresis. United States. https://doi.org/10.1021/cm504365s
Wang, Junjie, Braun, Paul V., Zhou, Hui, and Nanda, Jagjit. Thu . "Three-Dimensionally Mesostructured Fe2O3 Electrodes with Good Rate Performance and Reduced Voltage Hysteresis". United States. https://doi.org/10.1021/cm504365s. https://www.osti.gov/servlets/purl/1265755.
@article{osti_1265755,
title = {Three-Dimensionally Mesostructured Fe2O3 Electrodes with Good Rate Performance and Reduced Voltage Hysteresis},
author = {Wang, Junjie and Braun, Paul V. and Zhou, Hui and Nanda, Jagjit},
abstractNote = {Ni scaffolded mesostructured 3D Fe2O3 electrodes were fabricated by colloidal templating and pulsed electrodeposition. The scaffold provided short pathways for both lithium ions and electrons in the active phase, enabling fast kinetics and thus a high power density. The scaffold also resulted in a reduced voltage hysteresis. The electrode showed a reversible capacity of ~1000 mA h g-1 at 0.2 A g-1 (~0.2 C) for about 20 cycles, and at a current density of 20 A g-1 (~20 C) the deliverable capacity was about 450 mA h g-1. The room temperature voltage hysteresis at 0.1 A g-1 (~0.1 C) was 0.62 V, which is significantly smaller than that normally reported in the literature. And it could be further reduced to 0.42 V when cycling at 45 ºC. Potentiostatic electrochemical impedance spectroscopy (PEIS) studies indicated the small voltage hysteresis may be due to a reduction in the Li2O/Fe interfacial area in the electrode during cycling relative to convention-al conversion systems.},
doi = {10.1021/cm504365s},
journal = {Chemistry of Materials},
number = 8,
volume = 27,
place = {United States},
year = {Thu Mar 26 00:00:00 EDT 2015},
month = {Thu Mar 26 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 64 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications
journal, June 2006

  • Taberna, P. L.; Mitra, S.; Poizot, P.
  • Nature Materials, Vol. 5, Issue 7, p. 567-573
  • DOI: 10.1038/nmat1672

Revisiting LiClO[sub 4] as an Electrolyte for Rechargeable Lithium-Ion Batteries
journal, January 2010

  • Marom, Rotem; Haik, Ortal; Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 157, Issue 8
  • DOI: 10.1149/1.3447750

Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries
journal, March 2013

  • Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R.
  • Chemical Reviews, Vol. 113, Issue 7
  • DOI: 10.1021/cr3001884

Assembling carbon-coated α-Fe 2 O 3 hollow nanohorns on the CNT backbone for superior lithium storage capability
journal, January 2012

  • Wang, Zhiyu; Luan, Deyan; Madhavi, Srinivasan
  • Energy Environ. Sci., Vol. 5, Issue 1
  • DOI: 10.1039/C1EE02831F

A Transmission Electron Microscopy Study of the Reactivity Mechanism of Tailor-Made CuO Particles toward Lithium
journal, January 2001

  • Débart, A.; Dupont, L.; Poizot, P.
  • Journal of The Electrochemical Society, Vol. 148, Issue 11
  • DOI: 10.1149/1.1409971

High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes
journal, April 2013

  • Pikul, James H.; Gang Zhang, Hui; Cho, Jiung
  • Nature Communications, Vol. 4, Article No. 1732
  • DOI: 10.1038/ncomms2747

α-Fe 2 O 3 Nanostructures: Inorganic Salt-Controlled Synthesis and Their Electrochemical Performance toward Lithium Storage
journal, October 2008

  • Wu, Xing-Long; Guo, Yu-Guo; Wan, Li-Jun
  • The Journal of Physical Chemistry C, Vol. 112, Issue 43
  • DOI: 10.1021/jp8058307

Electrode architectures for high capacity multivalent conversion compounds: iron (ii and iii) fluoride
journal, January 2014

  • Martha, Surendra K.; Nanda, Jagjit; Zhou, Hui
  • RSC Advances, Vol. 4, Issue 13
  • DOI: 10.1039/c3ra47266c

Fabrication of Nano/Micro Hierarchical Fe[sub 2]O[sub 3]∕Ni Micrometer-Wire Structure and Characteristics for High Rate Li Rechargeable Battery
journal, January 2006

  • Hosono, Eiji; Fujihara, Shinobu; Honma, Itaru
  • Journal of The Electrochemical Society, Vol. 153, Issue 7
  • DOI: 10.1149/1.2195887

First-Principles Investigation of the Li−Fe−F Phase Diagram and Equilibrium and Nonequilibrium Conversion Reactions of Iron Fluorides with Lithium
journal, August 2008

  • Doe, Robert E.; Persson, Kristin A.; Meng, Y. Shirley
  • Chemistry of Materials, Vol. 20, Issue 16
  • DOI: 10.1021/cm801105p

Multifunctional 3D nanoarchitectures for energy storage and conversion
journal, January 2009

  • Rolison, Debra R.; Long, Jeffrey W.; Lytle, Justin C.
  • Chemical Society Reviews, Vol. 38, Issue 1, p. 226-252
  • DOI: 10.1039/B801151F

Nanomaterials for Rechargeable Lithium Batteries
journal, April 2008

  • Bruce, Peter G.; Scrosati, Bruno; Tarascon, Jean-Marie
  • Angewandte Chemie International Edition, Vol. 47, Issue 16, p. 2930-2946
  • DOI: 10.1002/anie.200702505

Hierarchical battery electrodes based on inverted opal structures
journal, August 2002

  • Sakamoto, Jeffrey S.; Dunn, Bruce
  • Journal of Materials Chemistry, Vol. 12, Issue 10
  • DOI: 10.1039/b205634h

Synthesis of mixed-conducting carbon coated porous γ-Fe2O3 microparticles and their properties for reversible lithium ion storage
journal, January 2011

  • Ma, Yue; Ji, Ge; Lee, Jim Yang
  • Journal of Materials Chemistry, Vol. 21, Issue 34
  • DOI: 10.1039/c1jm12070k

On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential
journal, January 2002

  • Laruelle, S.; Grugeon, S.; Poizot, P.
  • Journal of The Electrochemical Society, Vol. 149, Issue 5, p. A627-A634
  • DOI: 10.1149/1.1467947

The Iron Oxides Strike Back: From Biomedical Applications to Energy Storage Devices and Photoelectrochemical Water Splitting
journal, July 2011

  • Tartaj, Pedro; Morales, Maria P.; Gonzalez-Carreño, Teresita
  • Advanced Materials, Vol. 23, Issue 44
  • DOI: 10.1002/adma.201101368

Graphene-Based Electrodes
journal, August 2012


Controlled Formation of Mixed Nanoscale Domains of High Capacity Fe 2 O 3 –FeF 3 Conversion Compounds by Direct Fluorination
journal, February 2015


Effect of capping and particle size on Raman laser-induced degradation of γ-Fe2O3 nanoparticles
journal, November 2004

  • Varadwaj, K. S. K.; Panigrahi, M. K.; Ghose, J.
  • Journal of Solid State Chemistry, Vol. 177, Issue 11
  • DOI: 10.1016/j.jssc.2004.08.025

?-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications
journal, March 2005


Iron-Oxide-Based Advanced Anode Materials for Lithium-Ion Batteries
journal, November 2013

  • Zhang, Lei; Wu, Hao Bin; Lou, Xiong Wen David
  • Advanced Energy Materials, Vol. 4, Issue 4
  • DOI: 10.1002/aenm.201300958

α-Fe2O3 Nanoflakes as an Anode Material for Li-Ion Batteries
journal, October 2007

  • Reddy, M. V.; Yu, T.; Sow, C. H.
  • Advanced Functional Materials, Vol. 17, Issue 15
  • DOI: 10.1002/adfm.200601186

Electrochemical lithiation of tin and tin-based intermetallics and composites
journal, September 1999


Effect of Particle Size on Lithium Intercalation into α-Fe[sub 2]O[sub 3]
journal, January 2003

  • Larcher, D.; Masquelier, C.; Bonnin, D.
  • Journal of The Electrochemical Society, Vol. 150, Issue 1
  • DOI: 10.1149/1.1528941

Nanostructured Reduced Graphene Oxide/Fe2O3 Composite As a High-Performance Anode Material for Lithium Ion Batteries
journal, April 2011

  • Zhu, Xianjun; Zhu, Yanwu; Murali, Shanthi
  • ACS Nano, Vol. 5, Issue 4, p. 3333-3338
  • DOI: 10.1021/nn200493r

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

Self-Assembled Fe 2 O 3 /Graphene Aerogel with High Lithium Storage Performance
journal, March 2013

  • Xiao, Li; Wu, Dongqing; Han, Sheng
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 9
  • DOI: 10.1021/am400387t

Quasiemulsion-Templated Formation of α-Fe 2 O 3 Hollow Spheres with Enhanced Lithium Storage Properties
journal, November 2011

  • Wang, Bao; Chen, Jun Song; Wu, Hao Bin
  • Journal of the American Chemical Society, Vol. 133, Issue 43
  • DOI: 10.1021/ja208346s

Raman microspectroscopy of some iron oxides and oxyhydroxides
journal, November 1997


Hollow Iron Oxide Nanoparticles for Application in Lithium Ion Batteries
journal, April 2012

  • Koo, Bonil; Xiong, Hui; Slater, Michael D.
  • Nano Letters, Vol. 12, Issue 5, p. 2429-2435
  • DOI: 10.1021/nl3004286

An Electrochemical Deposition Route for Obtaining α-Fe[sub 2]O[sub 3] Thin Films
journal, January 2006

  • Schrebler, Ricardo; Bello, Karen; Vera, Francisca
  • Electrochemical and Solid-State Letters, Vol. 9, Issue 7
  • DOI: 10.1149/1.2200141

Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
journal, August 2010

  • Cabana, Jordi; Monconduit, Laure; Larcher, Dominique
  • Advanced Materials, Vol. 22, Issue 35
  • DOI: 10.1002/adma.201000717

Three-Dimensional Battery Architectures
journal, October 2004

  • Long, Jeffrey W.; Dunn, Bruce; Rolison, Debra R.
  • Chemical Reviews, Vol. 104, Issue 10, p. 4463-4492
  • DOI: 10.1021/cr020740l

Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes
journal, January 2012

  • Wu, Hui; Zheng, Guangyuan; Liu, Nian
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203967r

Combined Surface and Electrochemical Study of the Lithiation/Delithiation Mechanism of the Iron Oxide Thin-Film Anode for Lithium-Ion Batteries
journal, October 2013

  • Tian, Bingbing; Światowska, Jolanta; Maurice, Vincent
  • The Journal of Physical Chemistry C, Vol. 117, Issue 42
  • DOI: 10.1021/jp4064438

Origin of the Voltage Hysteresis in the CoP Conversion Material for Li-Ion Batteries
journal, January 2013

  • Khatib, R.; Dalverny, A. -L.; Saubanère, M.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 2
  • DOI: 10.1021/jp310366a

Thermodynamics and Kinetics of the Li/FeF 3 Reaction by Electrochemical Analysis
journal, February 2012

  • Liu, Ping; Vajo, John J.; Wang, John S.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 10
  • DOI: 10.1021/jp211927g

Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents
journal, January 2009

  • Tasaki, Ken; Goldberg, Alex; Lian, Jian-Jie
  • Journal of The Electrochemical Society, Vol. 156, Issue 12
  • DOI: 10.1149/1.3239850

Nano-sized γ-Fe2O3 as lithium battery cathode
journal, August 2005


Photonic Crystal Structures as a Basis for a Three-Dimensionally Interpenetrating Electrochemical-Cell System
journal, July 2006

  • Ergang, N. S.; Lytle, J. C.; Lee, K. T.
  • Advanced Materials, Vol. 18, Issue 13
  • DOI: 10.1002/adma.200600295

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes
journal, March 2011

  • Zhang, Huigang; Yu, Xindi; Braun, Paul V.
  • Nature Nanotechnology, Vol. 6, Issue 5, p. 277-281
  • DOI: 10.1038/nnano.2011.38

Li[sub x]Cu[sub 6]Sn[sub 5] (0<x<13): An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries
journal, January 1999

  • Kepler, Keith D.
  • Electrochemical and Solid-State Letters, Vol. 2, Issue 7
  • DOI: 10.1149/1.1390819

Carbon Nanocapsules as Nanoreactors for Controllable Synthesis of Encapsulated Iron and Iron Oxides: Magnetic Properties and Reversible Lithium Storage
journal, February 2011

  • Wu, Ping; Du, Ning; Zhang, Hui
  • The Journal of Physical Chemistry C, Vol. 115, Issue 9
  • DOI: 10.1021/jp1113653

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Factors Influencing the Rate of Fe[sub 2]O[sub 3] Conversion Reaction
journal, January 2007

  • Jiao, Feng; Bao, Jianli; Bruce, Peter G.
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 12
  • DOI: 10.1149/1.2783268

Intercalation of lithium into graphite and other carbons
journal, August 1975


Carbon Nanomaterials for Advanced Energy Conversion and Storage
journal, March 2012


Controllable Synthesis and Magnetism of Iron Oxides Nanorings
journal, April 2010

  • Lv, Baoliang; Xu, Yao; Gao, Qiang
  • Journal of Nanoscience and Nanotechnology, Vol. 10, Issue 4
  • DOI: 10.1166/jnn.2010.2161

Combined XRD, EXAFS, and Mossbauer Studies of the Reduction by Lithium of α-Fe2O3 with Various Particle Sizes
journal, January 2003

  • Larcher, D.; Bonnin, D.; Cortes, R.
  • Journal of The Electrochemical Society, Vol. 150, Issue 12, p. A1643-A1650
  • DOI: 10.1149/1.1622959

LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density
journal, June 1980


Works referencing / citing this record:

Three-dimensional ordered porous electrode materials for electrochemical energy storage
journal, March 2019


Polynuclear Iron-Oxo/Hydroxy Complexes of Ketoacidoximate Ligands: Synthesis, Structures and Conversion to Ferric Oxide
journal, June 2017

  • Davaasuren, Bambar; Khanderi, Jayaprakash; Rothenberger, Alexander
  • ChemistrySelect, Vol. 2, Issue 17
  • DOI: 10.1002/slct.201701034

A review on porous polymer composite materials for multifunctional electronic applications
journal, November 2018

  • Sadasivuni, Kishor Kumar; Cabibihan, John-John; Deshmukh, Kalim
  • Polymer-Plastics Technology and Materials, Vol. 58, Issue 12
  • DOI: 10.1080/03602559.2018.1542729

A critical review-promises and barriers of conversion electrodes for Li-ion batteries
journal, April 2017

  • Kraytsberg, Alexander; Ein-Eli, Yair
  • Journal of Solid State Electrochemistry, Vol. 21, Issue 7
  • DOI: 10.1007/s10008-017-3580-9

Electrodeposition Technologies for Li‐Based Batteries: New Frontiers of Energy Storage
journal, September 2019


Improved Performance in FeF 2 Conversion Cathodes through Use of a Conductive 3D Scaffold and Al 2 O 3 ALD Coating
journal, July 2017

  • Kim, Sanghyeon; Liu, Jinyun; Sun, Ke
  • Advanced Functional Materials, Vol. 27, Issue 35
  • DOI: 10.1002/adfm.201702783

Electrodeposited high strength, thermally stable spectrally selective rhenium nickel inverse opals
journal, January 2017

  • Zhang, Runyu; Cohen, Joseph; Fan, Shanhui
  • Nanoscale, Vol. 9, Issue 31
  • DOI: 10.1039/c7nr03567e

Free-standing transition metal oxide electrode architectures for electrochemical energy storage
journal, July 2019


Exploiting High-Performance Anode through Tuning the Character of Chemical Bonds for Li-Ion Batteries and Capacitors
journal, September 2016

  • Liu, Chaofeng; Zhang, Changkun; Fu, Haoyu
  • Advanced Energy Materials, Vol. 7, Issue 1
  • DOI: 10.1002/aenm.201601127