DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nuclear forward scattering of synchrotron radiation by 99Ru

Abstract

In this study, we measured nuclear forward scattering spectra utilizing the 99Ru transition, 89.571(3) keV, with a notably mixed E2/M1 multipolarity. The extension of the standard evaluation routines to include mixed multipolarity allows us to extract electric and magnetic hyperfine interactions from 99Ru-containing compounds. This paves the way for several other high-energy Mössbauer transitions, E~90 keV. Lastly, the high energy of such transitions allows for operando nuclear forward scattering studies in real devices.

Authors:
 [1];  [1];  [1];  [1];  [2];  [3];  [4];  [4];  [5];  [6];  [6]
  1. European Synchrotron Radiation Facility (ESRF), Grenoble (France)
  2. Julich Research Centre (Germany). Julich Centre for Neutron Science (JCNS); Univ. of Liege, (Belgium). Faculty of Sciences
  3. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  4. Julich Research Centre (Germany). Julich Centre for Neutron Science (JCNS)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  6. Univ. Montpellier II, Montpellier (France); Network Electrochemical Energy Storage (France)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1265272
Alternate Identifier(s):
OSTI ID: 1180345
Grant/Contract Number:  
AC05-00OR22725; VH NG-407
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 113; Journal Issue: 14; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY

Citation Formats

Bessas, D., Merkel, D. G., Chumakov, A. I., Ruffer, R., Hermann, Raphael P., Sergueev, I., Mahmoud, A., Klobes, B., McGuire, Michael A., Sougrati, M. T., and Stievano, L. Nuclear forward scattering of synchrotron radiation by 99Ru. United States: N. p., 2014. Web. doi:10.1103/PhysRevLett.113.147601.
Bessas, D., Merkel, D. G., Chumakov, A. I., Ruffer, R., Hermann, Raphael P., Sergueev, I., Mahmoud, A., Klobes, B., McGuire, Michael A., Sougrati, M. T., & Stievano, L. Nuclear forward scattering of synchrotron radiation by 99Ru. United States. https://doi.org/10.1103/PhysRevLett.113.147601
Bessas, D., Merkel, D. G., Chumakov, A. I., Ruffer, R., Hermann, Raphael P., Sergueev, I., Mahmoud, A., Klobes, B., McGuire, Michael A., Sougrati, M. T., and Stievano, L. Fri . "Nuclear forward scattering of synchrotron radiation by 99Ru". United States. https://doi.org/10.1103/PhysRevLett.113.147601. https://www.osti.gov/servlets/purl/1265272.
@article{osti_1265272,
title = {Nuclear forward scattering of synchrotron radiation by 99Ru},
author = {Bessas, D. and Merkel, D. G. and Chumakov, A. I. and Ruffer, R. and Hermann, Raphael P. and Sergueev, I. and Mahmoud, A. and Klobes, B. and McGuire, Michael A. and Sougrati, M. T. and Stievano, L.},
abstractNote = {In this study, we measured nuclear forward scattering spectra utilizing the 99Ru transition, 89.571(3) keV, with a notably mixed E2/M1 multipolarity. The extension of the standard evaluation routines to include mixed multipolarity allows us to extract electric and magnetic hyperfine interactions from 99Ru-containing compounds. This paves the way for several other high-energy Mössbauer transitions, E~90 keV. Lastly, the high energy of such transitions allows for operando nuclear forward scattering studies in real devices.},
doi = {10.1103/PhysRevLett.113.147601},
journal = {Physical Review Letters},
number = 14,
volume = 113,
place = {United States},
year = {Fri Oct 03 00:00:00 EDT 2014},
month = {Fri Oct 03 00:00:00 EDT 2014}
}

Journal Article:

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

Recoilless resonance absorption in Ru99
journal, August 1963


Magnetic Properties of SrRuO 3 and CaRuO 3
journal, February 1968

  • Longo, J. M.; Raccah, P. M.; Goodenough, J. B.
  • Journal of Applied Physics, Vol. 39, Issue 2
  • DOI: 10.1063/1.1656282

Nuclear Resonance Beamline at ESRF
journal, December 1996

  • Rüffer, Rudolf; Chumakov, Aleksandr I.
  • Hyperfine Interactions, Vol. 97-98, Issue 1
  • DOI: 10.1007/BF02150199

Noniron isotopes
journal, March 1999

  • Leupold, O.; Chumakov, A. I.; Alp, E. E.
  • Hyperfine Interactions, Vol. 123/124, Issue 1/4, p. 611-631
  • DOI: 10.1023/A:1017000713255

99Ru Mössbauer effect study of ruthenium nitrosyls
journal, December 2001

  • Goodman, M. Scott; DeMarco, Michael J.; Haka, Michael S.
  • Journal of the Chemical Society, Dalton Transactions, Issue 1
  • DOI: 10.1039/b102912f

A compound refractive lens for focusing high-energy X-rays
journal, November 1996

  • Snigirev, A.; Kohn, V.; Snigireva, I.
  • Nature, Vol. 384, Issue 6604
  • DOI: 10.1038/384049a0

Anomalous pressure-induced phase transformation in nano-crystalline erbium sesquioxide (Er 2 O 3 ): partial amorphization under compression
journal, January 2014


X-ray Debye temperature for hexagonal crystals
journal, November 1982


Nuclear forward and inelastic spectroscopy on 125 Te and Sb 2 125 Te 3
journal, September 2010


Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer
journal, June 2013


129 Xe nuclear resonance scattering on solid Xe and 129 Xe clathrate hydrate
journal, August 2013


Quantum Theory of Angular Momentum
book, October 1988

  • Varshalovich, D. A.; Moskalev, A. N.; Khersonskii, V. K.
  • DOI: 10.1142/0270

Magnetic anisotropy in nanostructured gadolinium
journal, March 2012

  • Prikhodko, Sergey V.; Wang, Chiu-Yen; Chen, Lih-Juann
  • Journal of Applied Physics, Vol. 111, Issue 5
  • DOI: 10.1063/1.3691220

On excitation of isomeric nuclear states in a crystal by synchrotron radiation
journal, February 1979

  • Kagan, Yu; Afanas'ev, A. M.; Kohn, V. G.
  • Journal of Physics C: Solid State Physics, Vol. 12, Issue 3
  • DOI: 10.1088/0022-3719/12/3/027

Coherent Resonant X-Ray Scattering from a Rotating Medium
journal, January 2000


X-ray determination of Debye–Waller factors and Debye temperatures of h.c.p. elements Ti, Zr, Ru, Tm, Hf
journal, March 2001

  • Shankar Narayana, M.; Gopi Krishna, N.; Sirdeshmukh, D. B.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 57, Issue 2
  • DOI: 10.1107/S0108767300018560

Transverse X-Ray Coherence in Nuclear Scattering of Synchrotron Radiation
journal, December 1996


Nuclear Data Sheets for A = 99
journal, February 2011


Nuclear forward scattering by the 68.7 keV state of 73 Ge in CaGeO 3 and GeO 2
journal, October 2013


Lifetimes of the First Excited States in Ru 99 and Xe 129
journal, January 1965


Recoil-Free Absorption Hyperfine Spectra of the 90-keV Mixed Transition in Ru 99
journal, April 1966


Measurement of the 89-keV-state-to-ground-state quadrupole-moment ratio in Ru 99
journal, March 1976


Heat Capacity of RuO 2 and IrO 2 between 0.54° and 10°K
journal, July 1969

  • Passenheim, B. C.; McCollum, D. C.
  • The Journal of Chemical Physics, Vol. 51, Issue 1
  • DOI: 10.1063/1.1671725

Nuclear forward scattering of synchrotron radiation
journal, September 1992


Nuclear Forward Scattering for High Energy Mössbauer Transitions
journal, August 2007


Isomer shifts of the 90 keV γ-rays of99Ru in ruthenium compounds
journal, April 1969

  • Kaindl, G.; Potzel, W.; Wagner, F.
  • Zeitschrift für Physik A Hadrons and nuclei, Vol. 226, Issue 2
  • DOI: 10.1007/BF01392015

Nuclear resonant forward scattering of synchrotron radiation from 121 Sb at 37.13 keV
journal, April 2006


99 Ru and 61 Ni Mössbauer spectroscopic studies using the accelerator at RIKEN
journal, March 2010


Mössbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications
book, January 2011


Hybrid beat in nuclear forward scattering of synchrotron radiation
journal, February 1998


Temperature dependence of the hyperfine magnetic field in SrRuO 3 measured by the 99 Ru Mössbauer effect
journal, December 2000


Evaluation of theoretical conversion coefficients using BrIcc
journal, May 2008

  • Kibédi, T.; Burrows, T. W.; Trzhaskovskaya, M. B.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 589, Issue 2
  • DOI: 10.1016/j.nima.2008.02.051

Monochromatization of synchrotron radiation for nuclear resonant scattering experiments
journal, January 2000


Mössbauer spectroscopy using synchrotron radiation
journal, February 1991


Synchrotron-Radiation-Based Mössbauer Spectroscopy
journal, May 2009


Silicon avalanche photodiodes for direct detection of X-rays
journal, February 2006

  • Baron, Alfred Q. R.; Kishimoto, Shunji; Morse, John
  • Journal of Synchrotron Radiation, Vol. 13, Issue 2
  • DOI: 10.1107/S090904950503431X

CONUSS and PHOENIX: Evaluation of nuclear resonant scattering data
journal, March 2000


Two-Dimensional Transition Metal Honeycomb Realized: Hf on Ir(111)
journal, September 2013

  • Li, Linfei; Wang, Yeliang; Xie, Shengyi
  • Nano Letters, Vol. 13, Issue 10
  • DOI: 10.1021/nl4019287

Photocontrolled DNA Binding of a Receptor-Targeted Organometallic Ruthenium(II) Complex
journal, September 2011

  • Barragán, Flavia; López-Senín, Paula; Salassa, Luca
  • Journal of the American Chemical Society, Vol. 133, Issue 35
  • DOI: 10.1021/ja205235m

Resonant Absorption in the Presence of Faraday Rotation
journal, July 1968


Magnetic hyperfine splitting of the 99 Ru Mössbauer resonance in SrRuO 3
journal, January 1971

  • Gibb, T. C.; Greatrex, R.; Greenwood, N. N.
  • J. Chem. Soc. D, Vol. 0, Issue 7
  • DOI: 10.1039/C29710000319

Developments in time domain Mössbauer spectroscopy
journal, December 1994


Prediction of stable hafnium carbides: Stoichiometries, mechanical properties, and electronic structure
journal, December 2013


Mössbauer data reduction: The M1-E2 transition of 99Ru
journal, September 1975

  • Foyt, David C.; Good, M. L.; Cosgrove, J. G.
  • Journal of Inorganic and Nuclear Chemistry, Vol. 37, Issue 9
  • DOI: 10.1016/0022-1902(75)80914-6

High resolution x‐ray absorption spectroscopy with absolute energy calibration for the determination of absorption edge energies
journal, March 1996

  • Kraft, S.; Stümpel, J.; Becker, P.
  • Review of Scientific Instruments, Vol. 67, Issue 3
  • DOI: 10.1063/1.1146657

Transitions in Sr 2 Ru x Ir 1 x O 4 compounds studied by the 99 Ru Mössbauer effect
journal, September 1999


Isomer shifts and changes of the nuclear charge radii in99Ru and101Ru
journal, April 1971

  • Potzel, W.; Wagner, F. E.; Mössbauer, R. L.
  • Zeitschrift für Physik A Hadrons and nuclei, Vol. 241, Issue 2
  • DOI: 10.1007/BF01397906

Environmentally friendly application of hydrides to nuclear reactor cores
journal, February 2012


Magnetic Interactions in Ternary Ruthenium Oxides
journal, September 1966

  • Callaghan, Alan; Moeller, Carl W.; Ward, Roland
  • Inorganic Chemistry, Vol. 5, Issue 9
  • DOI: 10.1021/ic50043a023

A study of the magnetic superexchange interactions in the solid-solution series CaxSr1−xRuO3 by ruthenium-99 Mo¨ssbauer spectroscopy
journal, September 1974

  • Gibb, Terence C.; Greatrex, Robert; Greenwood, Norman N.
  • Journal of Solid State Chemistry, Vol. 11, Issue 1
  • DOI: 10.1016/0022-4596(74)90141-8

Works referencing / citing this record:

Synchrotron-radiation-based Mössbauer absorption spectroscopy with high resonant energy nuclides
journal, November 2019


Nuclear resonant scattering from 193Ir as a probe of the electronic and magnetic properties of iridates
journal, March 2019


Nuclear resonant scattering from $^{193}Ir$ as a probe of the electronic and magnetic properties of iridates
text, January 2019

  • Alexeev, Pavel; Leupold, Olaf; Sergueev, Ilya
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-01320