DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular-Level Insight into the Differential Oxidase and Oxygenase Reactivities of de Novo Due Ferri Proteins

Abstract

Using the single-chain due ferri (DFsc) peptide scaffold, the differential oxidase and oxygenase reactivities of two 4A → 4G variants, one with two histidines at the diiron center (G4DFsc) and the other with three histidines (3His-G4DFsc(Mut3)), are explored. By controlling the reaction conditions, the active form responsible for 4-aminophenol (4-AP) oxidase activity in both G4DFsc and 3His-G4DFsc(Mut3) is determined to be the substrate-bound biferrous site. Using circular dichroism (CD), magnetic CD (MCD), and variable-temperature, variable-field (VTVH) MCD spectroscopies, 4-AP is found to bind directly to the biferrous sites of the DF proteins. In G4DFsc, 4-AP increases the coordination of the biferrous site, while in 3His-G4DFsc(Mut3), the coordination number remains the same and the substrate likely replaces the additional bound histidine. This substrate binding enables a two-electron process where 4-AP is oxidized to benzoquinone imine and O2 is reduced to H2O2. In contrast, only the biferrous 3His variant is found to be active in the oxygenation of p-anisidine to 4-nitroso-methoxybenzene. From CD, MCD, and VTVH MCD, p-anisidine addition is found to minimally perturb the biferrous centers of both G4DFsc and 3His-G4DFsc(Mut3), indicating that this substrate binds near the biferrous site. Lastly, in 3His-G4DFsc(Mut3), the coordinative saturation of one iron leads tomore » the two-electron reduction of O2 at the second iron to generate an end-on hydroperoxo-Fe(III) active oxygenating species.« less

Authors:
 [1];  [2];  [2];  [3];  [4]
  1. Stanford Univ., CA (United States). Dept. of Chemistry
  2. Ursinus College, Collegeville, PA (United States). Dept. of Chemistry
  3. Univ. of California, San Francisco, CA (United States). Dept. of Pharmaceutical Chemistry
  4. Stanford Univ., CA (United States). Dept. of Chemistry; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE
OSTI Identifier:
1260959
Grant/Contract Number:  
MCB-0919027; R15-GM110657; CHE-1413295; AC02-76SF0051; GM71628
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 137; Journal Issue: 29; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Snyder, Rae Ana, Butch, Susan E., Reig, Amanda J., DeGrado, William F., and Solomon, Edward I. Molecular-Level Insight into the Differential Oxidase and Oxygenase Reactivities of de Novo Due Ferri Proteins. United States: N. p., 2015. Web. doi:10.1021/jacs.5b03524.
Snyder, Rae Ana, Butch, Susan E., Reig, Amanda J., DeGrado, William F., & Solomon, Edward I. Molecular-Level Insight into the Differential Oxidase and Oxygenase Reactivities of de Novo Due Ferri Proteins. United States. https://doi.org/10.1021/jacs.5b03524
Snyder, Rae Ana, Butch, Susan E., Reig, Amanda J., DeGrado, William F., and Solomon, Edward I. Fri . "Molecular-Level Insight into the Differential Oxidase and Oxygenase Reactivities of de Novo Due Ferri Proteins". United States. https://doi.org/10.1021/jacs.5b03524. https://www.osti.gov/servlets/purl/1260959.
@article{osti_1260959,
title = {Molecular-Level Insight into the Differential Oxidase and Oxygenase Reactivities of de Novo Due Ferri Proteins},
author = {Snyder, Rae Ana and Butch, Susan E. and Reig, Amanda J. and DeGrado, William F. and Solomon, Edward I.},
abstractNote = {Using the single-chain due ferri (DFsc) peptide scaffold, the differential oxidase and oxygenase reactivities of two 4A → 4G variants, one with two histidines at the diiron center (G4DFsc) and the other with three histidines (3His-G4DFsc(Mut3)), are explored. By controlling the reaction conditions, the active form responsible for 4-aminophenol (4-AP) oxidase activity in both G4DFsc and 3His-G4DFsc(Mut3) is determined to be the substrate-bound biferrous site. Using circular dichroism (CD), magnetic CD (MCD), and variable-temperature, variable-field (VTVH) MCD spectroscopies, 4-AP is found to bind directly to the biferrous sites of the DF proteins. In G4DFsc, 4-AP increases the coordination of the biferrous site, while in 3His-G4DFsc(Mut3), the coordination number remains the same and the substrate likely replaces the additional bound histidine. This substrate binding enables a two-electron process where 4-AP is oxidized to benzoquinone imine and O2 is reduced to H2O2. In contrast, only the biferrous 3His variant is found to be active in the oxygenation of p-anisidine to 4-nitroso-methoxybenzene. From CD, MCD, and VTVH MCD, p-anisidine addition is found to minimally perturb the biferrous centers of both G4DFsc and 3His-G4DFsc(Mut3), indicating that this substrate binds near the biferrous site. Lastly, in 3His-G4DFsc(Mut3), the coordinative saturation of one iron leads to the two-electron reduction of O2 at the second iron to generate an end-on hydroperoxo-Fe(III) active oxygenating species.},
doi = {10.1021/jacs.5b03524},
journal = {Journal of the American Chemical Society},
number = 29,
volume = 137,
place = {United States},
year = {Fri Jun 19 00:00:00 EDT 2015},
month = {Fri Jun 19 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Protein engineering of toluene 4-monooxygenase ofPseudomonas mendocina KR1 for synthesizing 4-nitrocatechol from nitrobenzene
journal, January 2004

  • Fishman, Ayelet; Tao, Ying; Bentley, William E.
  • Biotechnology and Bioengineering, Vol. 87, Issue 6
  • DOI: 10.1002/bit.20185

Microbial Biosynthesis of Alkanes
journal, July 2010


Mixed Pollutant Degradation by Methylosinus trichosporium OB3b Expressing either Soluble or Particulate Methane Monooxygenase: Can the Tortoise Beat the Hare?
journal, September 2006

  • Lee, S. -W.; Keeney, D. R.; Lim, D. -H.
  • Applied and Environmental Microbiology, Vol. 72, Issue 12
  • DOI: 10.1128/AEM.01604-06

Ribonucleotide Reductase Inhibitors and Future Drug Design
journal, August 2006


Geometric and Electronic Structure/Function Correlations in Non-Heme Iron Enzymes
journal, January 2000

  • Solomon, Edward I.; Brunold, Thomas C.; Davis, Mindy I.
  • Chemical Reviews, Vol. 100, Issue 1
  • DOI: 10.1021/cr9900275

The Ferritin-like superfamily: Evolution of the biological iron storeman from a rubrerythrin-like ancestor
journal, August 2010


Ferritin: At the Crossroads of Iron and Oxygen Metabolism
journal, May 2003


Histidine ligand variants of a flavo-diiron protein: effects on structure and activities
journal, September 2012

  • Fang, Han; Caranto, Jonathan D.; Mendoza, Rosalinda
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 17, Issue 8
  • DOI: 10.1007/s00775-012-0938-4

Flavo-diiron enzymes: nitric oxide or dioxygen reductases?
journal, January 2007


Insights into the Nitric Oxide Reductase Mechanism of Flavodiiron Proteins from a Flavin-Free Enzyme
journal, August 2010

  • Hayashi, Takahiro; Caranto, Jonathan D.; Wampler, David A.
  • Biochemistry, Vol. 49, Issue 33
  • DOI: 10.1021/bi100788y

X-ray Crystal Structures of Moorella thermoacetica FprA. Novel Diiron Site Structure and Mechanistic Insights into a Scavenging Nitric Oxide Reductase ,
journal, May 2005

  • Silaghi-Dumitrescu, Radu; Kurtz,, Donald M.; Ljungdahl, Lars G.
  • Biochemistry, Vol. 44, Issue 17
  • DOI: 10.1021/bi0473049

Structure of the trypanosome cyanide-insensitive alternative oxidase
journal, March 2013

  • Shiba, T.; Kido, Y.; Sakamoto, K.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 12
  • DOI: 10.1073/pnas.1218386110

Crystal Structures of the Soluble Methane Monooxygenase Hydroxylase from Methylococcus capsulatus (Bath) Demonstrating Geometrical Variability at the Dinuclear Iron Active Site
journal, February 2001

  • Whittington, Douglas A.; Lippard, Stephen J.
  • Journal of the American Chemical Society, Vol. 123, Issue 5
  • DOI: 10.1021/ja003240n

CD and MCD Studies of the Effects of Component B Variant Binding on the Biferrous Active Site of Methane Monooxygenase
journal, August 2008

  • Mitić, Nataša; Schwartz, Jennifer K.; Brazeau, Brian J.
  • Biochemistry, Vol. 47, Issue 32
  • DOI: 10.1021/bi800818w

Biochemistry of the Soluble Methane Monooxygenase
journal, October 1994


Mechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase
journal, June 2003

  • Baik, Mu-Hyun; Newcomb, Martin; Friesner, Richard A.
  • Chemical Reviews, Vol. 103, Issue 6
  • DOI: 10.1021/cr950244f

Reaction mechanisms of non-heme diiron hydroxylases characterized in whole cells
journal, October 2005


In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis
journal, May 2008

  • Choi, Y. S.; Zhang, H.; Brunzelle, J. S.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 19
  • DOI: 10.1073/pnas.0712073105

Sequential Enzymatic Oxidation of Aminoarenes to Nitroarenes via Hydroxylamines
journal, June 2005

  • Winkler, Robert; Hertweck, Christian
  • Angewandte Chemie International Edition, Vol. 44, Issue 26
  • DOI: 10.1002/anie.200500365

Circular Dichroism and Magnetic Circular Dichroism Studies of the Reduced Binuclear Non-Heme Iron Site of Stearoyl-ACP Δ 9 -Desaturase:  Substrate Binding and Comparison to Ribonucleotide Reductase
journal, March 1999

  • Yang, Yi-Shan; Broadwater, John A.; Pulver, Sabine Coates
  • Journal of the American Chemical Society, Vol. 121, Issue 12
  • DOI: 10.1021/ja9822714

Di-iron-tyrosyl radical ribonucleotide reductases
journal, April 2003


A Coupled Dinuclear Iron Cluster that Is Perturbed by Substrate Binding in myo -Inositol Oxygenase
journal, May 2006

  • Xing, Gang; Hoffart, Lee M.; Diao, Yinghui
  • Biochemistry, Vol. 45, Issue 17
  • DOI: 10.1021/bi0519607

AurF from Streptomyces thioluteus and a Possible New Family of Manganese/Iron Oxygenases
journal, August 2007

  • Krebs, Carsten; Matthews, Megan L.; Jiang, Wei
  • Biochemistry, Vol. 46, Issue 37
  • DOI: 10.1021/bi701060g

Four-electron oxidation of p-hydroxylaminobenzoate to p-nitrobenzoate by a peroxodiferric complex in AurF from Streptomyces thioluteus
journal, August 2010

  • Li, N.; Korboukh, V. K.; Krebs, C.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 36
  • DOI: 10.1073/pnas.1002785107

Crystal structure of a substrate complex of myo-inositol oxygenase, a di-iron oxygenase with a key role in inositol metabolism
journal, September 2006

  • Brown, P. M.; Caradoc-Davies, T. T.; Dickson, J. M. J.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 41
  • DOI: 10.1073/pnas.0605143103

Structural and Biophysical Characterization of Human myo -Inositol Oxygenase
journal, March 2008

  • Thorsell, Ann-Gerd; Persson, Camilla; Voevodskaya, Nina
  • Journal of Biological Chemistry, Vol. 283, Issue 22
  • DOI: 10.1074/jbc.M800348200

Spectroscopic detection of intermediates in the reaction of dioxygen with the reduced methane monooxygenase/hydroxylase from Methylococcus capsulatus (Bath)
journal, August 1994

  • Liu, Katherine E.; Wang, Danli; Huynh, Boi Hanh
  • Journal of the American Chemical Society, Vol. 116, Issue 16
  • DOI: 10.1021/ja00095a083

Mechanism of Assembly of the Diferric Cluster−Tyrosyl Radical Cofactor of Escherichia coli Ribonucleotide Reductase from the Diferrous Form of the R2 Subunit
journal, January 1996

  • Tong, W. H.; Chen, S.; Lloyd, S. G.
  • Journal of the American Chemical Society, Vol. 118, Issue 8
  • DOI: 10.1021/ja952764y

A Long-Lived, Substrate-Hydroxylating Peroxodiiron(III/III) Intermediate in the Amine Oxygenase, AurF, from Streptomyces thioluteus
journal, September 2009

  • Korboukh, Victoria Korneeva; Li, Ning; Barr, Eric W.
  • Journal of the American Chemical Society, Vol. 131, Issue 38
  • DOI: 10.1021/ja9064969

Dioxygen Activation at Non-Heme Diiron Centers:  Characterization of Intermediates in a Mutant Form of Toluene/ o -Xylene Monooxygenase Hydroxylase
journal, June 2006

  • Murray, Leslie J.; García-Serres, Ricardo; Naik, Sunil
  • Journal of the American Chemical Society, Vol. 128, Issue 23
  • DOI: 10.1021/ja062762l

Dioxygen Activation in Soluble Methane Monooxygenase
journal, April 2011

  • Tinberg, Christine E.; Lippard, Stephen J.
  • Accounts of Chemical Research, Vol. 44, Issue 4
  • DOI: 10.1021/ar1001473

Reactions of Methane Monooxygenase Intermediate Q with Derivatized Methanes
journal, July 2002

  • Ambundo, Edna A.; Friesner, Richard A.; Lippard, Stephen J.
  • Journal of the American Chemical Society, Vol. 124, Issue 30
  • DOI: 10.1021/ja0265759

Reactions of the diiron(IV) intermediate Q in soluble methane monooxygenase with fluoromethanes
journal, December 2005

  • Beauvais, Laurance G.; Lippard, Stephen J.
  • Biochemical and Biophysical Research Communications, Vol. 338, Issue 1
  • DOI: 10.1016/j.bbrc.2005.08.220

Structure and Function of the Escherichia coli Ribonucleotide Reductase Protein R2
journal, July 1993


Solution NMR Structure of a Designed Metalloprotein and Complementary Molecular Dynamics Refinement
journal, February 2008


De Novo Design and Structural Characterization of Proteins and Metalloproteins
journal, June 1999


Protein Design: A Hierarchic Approach
journal, November 1995


Protein design, a minimalist approach
journal, February 1989


Computational Design and Characterization of a Monomeric Helical Dinuclear Metalloprotein
journal, December 2003

  • Calhoun, Jennifer R.; Kono, Hidetoshi; Lahr, Steven
  • Journal of Molecular Biology, Vol. 334, Issue 5
  • DOI: 10.1016/j.jmb.2003.10.004

Oxygen Reactivity of the Biferrous Site in the de novo Designed Four Helix Bundle Peptide DFsc: Nature of the “Intermediate” and Reaction Mechanism
journal, July 2008

  • Calhoun, Jennifer R.; Bell, Caleb B.; Smith, Thomas J.
  • Journal of the American Chemical Society, Vol. 130, Issue 29
  • DOI: 10.1021/ja801657y

Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins
journal, September 2012

  • Reig, Amanda J.; Pires, Marcos M.; Snyder, Rae Ana
  • Nature Chemistry, Vol. 4, Issue 11
  • DOI: 10.1038/nchem.1454

Systematic Perturbations of Binuclear Non-heme Iron Sites: Structure and Dioxygen Reactivity of de Novo Due Ferri Proteins
journal, July 2015


De novo design of catalytic proteins
journal, August 2004

  • Kaplan, J.; DeGrado, W. F.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 32
  • DOI: 10.1073/pnas.0404387101

p-aminophenyl phosphate: an improved substrate for electrochemical enzyme immnoassay
journal, January 1988


Works referencing / citing this record:

Spectroscopic and metal binding properties of a de novo metalloprotein binding a tetrazinc cluster: Chino et al.
journal, September 2018

  • Chino, Marco; Zhang, Shao-Qing; Pirro, Fabio
  • Biopolymers, Vol. 109, Issue 10
  • DOI: 10.1002/bip.23229

Antimicrobial activity of a porphyrin binding peptide
journal, July 2018

  • Shirley, David J.; Chrom, Christina L.; Richards, Elizabeth A.
  • Peptide Science, Vol. 110, Issue 4
  • DOI: 10.1002/pep2.24074

A de novo peroxidase is also a promiscuous yet stereoselective carbene transferase
journal, January 2020

  • Stenner, Richard; Steventon, Jack W.; Seddon, Annela
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 3
  • DOI: 10.1073/pnas.1915054117

Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions
journal, December 2017


Designed for life: biocompatible de novo designed proteins and components
journal, August 2018

  • Grayson, Katie J.; Anderson, J. L. Ross
  • Journal of The Royal Society Interface, Vol. 15, Issue 145
  • DOI: 10.1098/rsif.2018.0472

Rational design of heme enzymes for biodegradation of pollutants toward a green future
journal, June 2019

  • Lin, Ying‐Wu
  • Biotechnology and Applied Biochemistry, Vol. 67, Issue 4
  • DOI: 10.1002/bab.1788

A de novo peroxidase is also a promiscuous yet stereoselective carbene transferase
journal, July 2019

  • Stenner, Richard; Steventon, Jack W.; Seddon, Annela
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1101/328484

The ascent of man(made oxidoreductases)
journal, August 2018


A de novo peroxidase is also a promiscuous yet stereoselective carbene transferase
journal, January 2020

  • Stenner, Richard; Steventon, Jack W.; Seddon, Annela
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 3
  • DOI: 10.1073/pnas.1915054117

Designed for life: biocompatible de novo designed proteins and components
journal, August 2018

  • Grayson, Katie J.; Anderson, J. L. Ross
  • Journal of The Royal Society Interface, Vol. 15, Issue 145
  • DOI: 10.1098/rsif.2018.0472