

1
2
3
4
5

Blake W. Lance
Advanced Nuclear Concepts,
Sandia National Laboratories,
Albuquerque, NM 87185
e-mail: blance@sandia.gov

Jeff R. Harris
Applied Research Laboratory,
The Pennsylvania State University,
State College, PA 16802
e-mail: jeff.harris@psu.edu

Barton L. Smith
Professor
Fellow ASME
Mechanical and Aerospace Engineering,
Utah State University,
Logan, UT 84322
e-mail: barton.smith@usu.edu

Experimental Validation Data for Computational Fluid Dynamics of Mixed Convection on a Vertical Flat Plate

Model validation for computational fluid dynamics (CFD), where experimental data and model outputs are compared, is a key tool for assessing model uncertainty. In this work, mixed convection was studied experimentally for the purpose of providing validation data for CFD models with a high level of completeness. Experiments were performed in a facility built specifically for validation with a vertical, flat, heated wall. Data were acquired for both buoyancy-aided and buoyancy-opposed turbulent flows. Measured boundary conditions (BCs) include as-built geometry, inflow mean and fluctuating velocity profiles, and inflow and wall temperatures. Additionally, room air temperature, pressure, and relative humidity were measured to provide fluid properties. Measured system responses inside the flow domain include mean and fluctuating velocity profiles, temperature profiles, wall heat flux, and wall shear stress. All of these data are described in detail and provided in tabulated format. [DOI: 10.1115/1.4032499]

20 1 Introduction

21 The purpose of this work is to provide validation data for three-
22 dimensional CFDs models. Model validation will be discussed as
23 well as the physical phenomenon of steady mixed convection.
24 This work describes the experimental facility, the associated
25 instrumentation, the BCs, the fluid and material properties, the
26 test conditions, and the system response quantities (SRQs). This
27 content follows the validation experiment completeness table of
28 Oberkampf and Smith [1] to guide description of validation
29 experiments. This guidance ensures that important details are
30 included with a high level of completeness. The work contained
31 herein is a continuation of that by Harris et al. [2] which covered
32 forced convection using similar methods and facilities.

33 This work presents the data in table format for direct use in val-
 34 idating models. The provided data include the BCs and SRQs
 35 shown in Table 1. The BCs included in this work should provide
 36 modelers with all required information, remove the need for
 37 assumptions on model inputs, and reduce model form uncertainty
 38 [3]. The SRQ data are provided to modelers for direct comparison
 39 with model outputs. The experimental bias and random uncertain-
 40 ties of all data are also provided and quantified at the 95% confi-
 41 dence level. Validation errors can be calculated with the nominal
 42 data and validation uncertainty from the uncertainty of the nomi-
 43 nal data [4].

These files are accessible in an online database in the Digital Commons of Utah State University's Library.¹ Links to specific files are included in this work with specific file names as to the data type (BC or SRQ), experimental case (buoyancy-aided or buoyancy-opposed), and measured quantity. Generally data are in table format as csv files. In addition to specific file links, all the files may be downloaded in the zipped file Files.zip.

51 **1.1 CFDs Validation.** To understand the need for experiments specifically aimed at providing validation data, one must 52 first understand the different aims of validation and discovery 53 experiments. Discovery experiments are common in research, 54 where new physical phenomena are measured, presented, and 55

discussed. Validation experiments do not necessarily measure unique phenomena, but the measurement process and description are more complete [5]. In general, older experimental data from discovery experiments are not sufficiently described for use in validation. Unobtrusive measurement techniques are important in validation experiments since probes introduce unknown uncertainties to the data. These uncertainties can only be mitigated by including the probe in the CFD model, which is usually unacceptably expensive.

The purpose of validation experiments is to provide the information required to quantify the uncertainty of a mathematical model. This uncertainty helps decision makers quantify model credibility. The ASME V&V 20 Standard [4] outlines an approach to estimate the validation comparison error and the validation uncertainty. The validation error E is the difference between the simulation result S and the validation experiment result D as

$$E = S - D \quad (1)$$

Calculating the validation uncertainty estimates the confidence interval of the error by considering both numerical and experimental uncertainty. Validation uncertainty is calculated as

$$U_{\text{val}} = \sqrt{U_{\text{num}}^2 + U_{\text{input}}^2 + U_D^2} \quad (2)$$

where U_{num} is the numerical uncertainty, U_{input} is the model input uncertainty, and U_D is the experimental data uncertainty. The

Table 1 The tabulated BCs and SRQs provided in this work

BCs	SRQs
As-built geometry	Mean velocity profiles
Wall and inflow temps.	Fluctuating velocity profile
Inflow mean velocity	Mean temperature profiles ^a
Inflow fluctuating velocity	Wall heat flux
Atmospheric conditions	Wall shear stress

^aThe SRQ time-mean air temperature profiles are provided for the buoyancy-opposed case only.

numerical uncertainty is estimated from solution verification with sources such as iterative and discretization uncertainty. The latter two uncertainties come from the validation data. The uncertainty in the measured BCs that are used for model inputs is U_{input} . The uncertainty of SRQs—experimental data used to compare system outputs—is U_D . If $|E| \gg U_{\text{val}}$, one can conclude model error remains. But if $|E| \leq U_{\text{val}}$ and U_{val} is acceptably small for the intended use of the model, the validation error may be satisfactory. These general equations show validation data and their uncertainties are required to assess model accuracy via model validation.

There are several tiers of detail in validation experiments [6], often four as shown in Fig. 1. This work is considered a benchmark case that is second in simplicity to unit problems. The benchmark case, also called separate effects testing, requires that all model inputs and most model outputs are measured and that experimental uncertainty is included. In this tier, there is generally some level of multiphysics interaction, such as coupled fluid momentum and heat transfer, which prevents the study from being considered a unit problem. On the other hand, the nonprototypical geometry used in this work prevents consideration as a subsystem case.

In considering the design of validation experiments SRQs should be measured from a wide range and high difficulty in the difficulty spectrum as shown in Fig. 2. Comparing simulation results with the experimental data from a wide range on the spectrum increases the validation confidence. For example, integral quantities, such as fluid mass flow rate, generally have low experimental noise and random errors. Derivative quantities like fluid shear are more sensitive to nonideal conditions. If a model and data are in good agreement at a high level, then it is likely that good agreement will be observed in lower levels. But agreement at lower levels does not imply agreement at higher levels [3].

1.2 Mixed Convection. Mixed convection is a coupled fluid momentum and heat transfer phenomenon where both forced and natural convection contribute to behavior. With forced convection, buoyant forces are negligible and flow is driven by a pressure gradient. Conversely, buoyant forces drive natural convection in the direction opposite to gravity as low density fluid rises over higher density fluid [7].

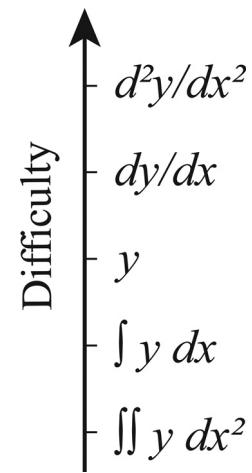


Fig. 2 SRQ difficulty spectrum, after Ref. [3]. The variables y and x here are arbitrary.

There are generally three types of mixed convection that depend on the relative direction of buoyant and pressure forces. The first is *buoyancy-aided*, where buoyant forces and forced flow have the same direction. The second is *buoyancy-opposed*, where these forces have opposite directions. Finally, the third is *transverse*, where these forces are perpendicular [8].

The mixed convection regime is defined by the local Richardson number as

$$Ri_x = Gr_x/Re_x^2 \quad (3)$$

where

$$Re_x = \bar{u}_{\text{bulk}}x/\nu \quad (4)$$

and

$$Gr_x = g\beta(T_s - T_\infty)x^3/\nu^2 \quad (5)$$

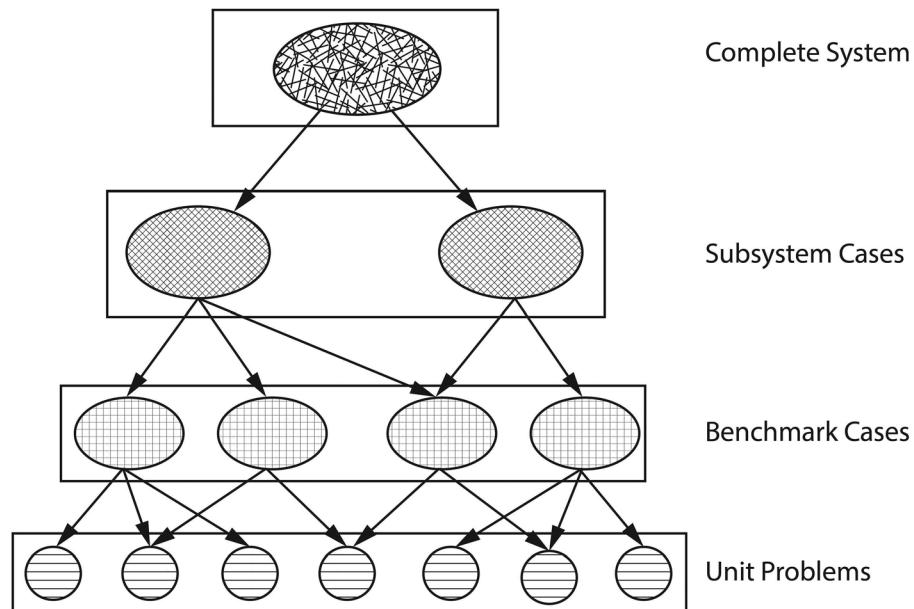


Fig. 1 The Validation Hierarchy, after Ref. [6]

130 In these equations, g is the acceleration due to gravity, β is the 189
 132 fluid thermal coefficient of expansion, T_s and T_∞ are the surface 190
 133 and fluid temperatures, respectively, x is the local streamwise 191
 134 location, ν is the fluid kinematic viscosity, and \bar{u}_{bulk} is the bulk 192
 135 time-mean velocity. Mixed convection is commonly thought to 193
 136 occur for buoyancy-aided flow when $0.3 < \text{Ri}_x < 16$ and for 194
 137 buoyancy-opposed flow when $0.3 < \text{Ri}_x < 7$. 195
 138

139 Some flow parameters in this study are given in Table 2. Note 196
 140 that external coordinates are used because the flow was not fully 197
 141 developed in the test section as it would be for pipe flow. The 198
 142 flow at x_1 was not in the mixed convection regime; but, as will be 199
 143 shown, buoyancy effects are still observable. The temperature of 200
 144 the heated wall was near the safety limit of the materials, and the 201
 145 air velocity was near the low side of the turbulent regime (large 202
 146 turbulent trips were installed upstream of the test section to enforce 203
 147 boundary layer turbulence at these lower Reynolds numbers). 204
 148

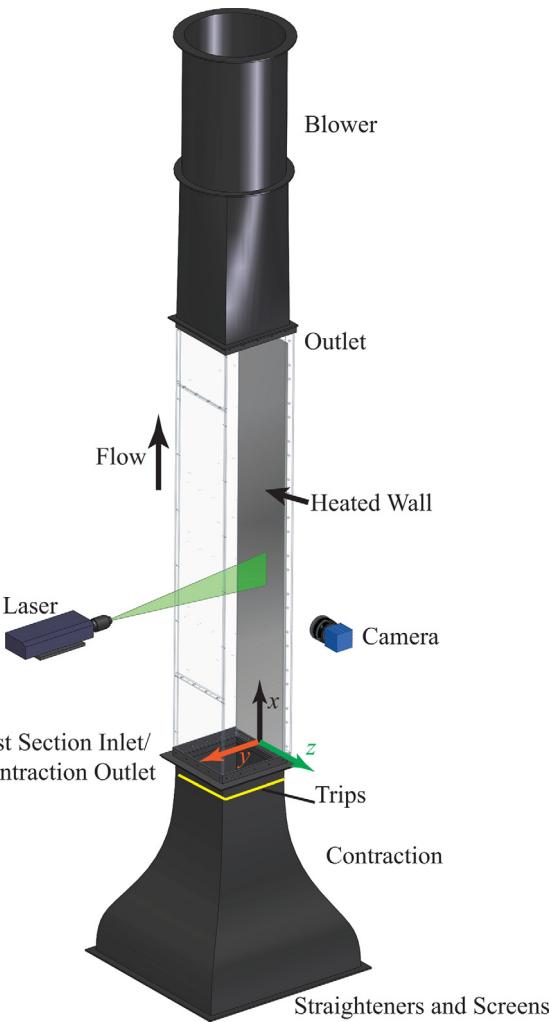
149 There have been many mixed convection studies on vertical 205
 150 plates and in vertical tubes. Several mixed convection experiments 206
 151 for vertical tubes are cited in a review article by Jackson 207
 152 et al. [9]. They surveyed literature and presented results for both 208
 153 laminar and turbulent flows, both theoretical and experimental 209
 154 studies. Results were compared and heat transfer correlations 210
 155 presented. They noted that heat transfer in the buoyancy-aided turbulent 211
 156 flow is suppressed for moderate buoyancy levels while, on the 212
 157 other hand, it is augmented in buoyancy-opposed flows. This work 213
 158 provides heat transfer correlations for pipe flow that could be useful 214
 159 for comparison with the current work. They further recommend the 215
 160 use of Low Re models for mixed convection simulations. 216
 161

162 Chen et al. [10] presented correlations for laminar mixed convection 217
 163 on vertical, inclined, and horizontal plates and compare 218
 164 them with the experiments performed by Ramachandran et al. 219
 165 [11]. Experiments of the latter provided point velocity and 220
 166 temperature measurements via a hot-wire anemometer. The data 221
 167 agreed very well with predictions and were sufficient for comparison 222
 168 to correlations but are not reported in sufficient detail for use 223
 169 as validation benchmarks. 224
 170

171 Kim et al. [12] summarized simulations that predict mixed 225
 172 convection in a vertical tube and compared the models to experimental 226
 173 data. Their in-house code used published two-equation models 227
 174 and was written to model developing mixed convection flow with 228
 175 variable properties. Consistent with previous works, 229
 176 laminarization of the turbulent flow was reported in the 230
 177 buoyancy-aided case and increased turbulent levels in the opposed 231
 178 case. None of the investigated models showed good agreement 232
 179 over the entire range of flow, suggesting further model development, 233
 180 or perhaps model calibration, could increase prediction capability 234
 181 for these flows. 235
 182

183 Wang et al. [13] discussed both an experimental and a numerical 236
 184 study of a vertical plate under turbulent mixed convection. 237
 185 Two-component laser Doppler anemometry was used to measure 238
 186 the boundary layer velocity. Some temperature measurements 239
 187 were also made of the flow using a thermocouple (TC) rake. They 240
 188 reported moderate agreement between experimental data and simulation 241
 189 results, but noted that predictions for the buoyancy-opposed case 242
 190 were less accurate. Although this study provides valuable 243
 191 insight into this flow with plate geometry, the reported 244
 192 information lacks BCs and inflow parameters necessary for validation 245
 193 benchmarks. 246
 194

Table 2 Re_x , Gr_x , and Ri_x at the three locations in x at the spanwise center where SRQ data were acquired. The bulk velocity \bar{u}_{bulk} was 2.44 m/s. These apply for both cases presented.


x (m)	Re_x	Gr_x	Ri_x
x_1	0.16	$13,000$	1.55×10^7
x_2	0.78	$63,000$	1.73×10^9
x_3	1.39	$110,000$	9.93×10^9

195 Mixed convection literature is abundant. However, all the 196
 197 papers found were performed as discovery experiments rather 198
 198 than for the purpose of providing validation data. Most are for 199
 199 pipe flow, boundary and initial conditions are lacking, uncertainties 200
 200 are rarely presented, flow geometry description is simplified, 201
 201 and fluid properties are seldom given. Further, the techniques 202
 202 used were often intrusive, leading to the unknown uncertainties. 203
 203 Modern measurement systems can provide higher fidelity data 204
 204 while disrupting the flow less. 205

2 Experimental Facility

198 All experiments were performed in the Rotatable Buoyancy 199
 200 Tunnel (RoBuT), which will be described in detail. Benchmark- 201
 201 level validation data were acquired with simple geometry and 202
 202 some multiphysics interaction. The square test section allowed 203
 203 easy characterization using optical velocity measurements. The 204
 204 simple geometry is easy to represent numerically and helps isolate 205
 205 model errors.

206 **2.1 Rotatable Buoyancy Tunnel.** The RoBuT was an open- 207
 207 circuit air tunnel with a large 4.81 m diameter “Ferris wheel” 208
 208 design that allowed rotation, thus changing the relative direction 209
 209 of forced flow and buoyant forces without changing the facility. 210
 210 Many important tunnel components are shown in Fig. 3, which is 211
 211 in the buoyancy-aided orientation. Note the coordinate system 212

Fig. 3 RoBuT flow components in the buoyancy-aided orientation

212 with the origin on the heated wall at the inlet and the spanwise
 213 center. The streamwise distance is x , wall-normal distance is y ,
 214 and spanwise distance is z with zero along the centerline. The
 215 laser and camera were part of a particle image velocimetry (PIV)
 216 system that will be described in Sec. 3.2.

217 The test section had a 0.305×0.305 m square cross section and
 218 was 2 m long. It had three clear walls for optical access and a
 219 heated wall for a thermal BC. More details of the test section are
 220 provided in Sec. 2.2. The contraction and outlet were made of
 221 fiberglass-reinforced plastic with a glass-smooth, black gel-coat.

222 The contraction had an area ratio of 6.25:1 and was 0.914 m
 223 long. The contraction bell at the leading edge had a 102 mm radius.
 224 Between the contraction and bell were four modular sections
 225 that contained—in order of flow direction—a single row, alumini-
 226 um fin/copper tube, chilled water heat exchanger (Super Radiator
 227 Coils Model 30x30-01 R-0.625/048); a settling length section; a
 228 precision aluminum honeycomb flow straightener; and two high
 229 porosity screens. Square turbulence trips 3.175 mm wide were in-
 230 stalled along all four walls and located 0.12 m upstream of the test
 231 section inlet.

232 The outlet expanded the flow downstream of the test section,
 233 had a total included angle of 8.2 deg, and was 0.686 m long. The
 234 blower drew air through the test section and rejected it
 235 into the room. It included an inline centrifugal fan assembly,
 236 TCF/Aerovent model 14-CBD-3767-5. It was belt driven by a 5
 237 HP, TEFC, 230-460 VAC induction motor, Toshiba model
 238 B0052FLF2AMH03. The motor was powered by a Toshiba variable
 239 frequency drive, model VFS11-2037PM-WN.

240 Two Laskin Nozzles [14] were used to atomize olive oil tracer
 241 particles. These were measured to have a mean diameter of about
 242 $1 \mu\text{m}$ with a TSI aerodynamic particle size spectrometer at the out-
 243 let. These particles were mixed with air and injected into a PVC
 244 pipe distribution system upstream of the contraction assembly. A
 245 peg board was placed between this system and the beginning of
 246 the contraction to help mix particles throughout the flow. It had
 247 holes 6.35 mm in diameter that were spaced 25.4 mm apart in a
 248 square pattern.

249 **2.2 Test Section.** The test section had four walls, an inlet,
 250 and an outlet. The heated wall was custom designed to provide a
 251 heated surface for convection and featured embedded instrumen-
 252 tation. Its cross section is shown in Fig. 4. This wall was heated to
 253 approximately 138°C for this study. It was made of several layers
 254 of aluminum, had six silicon rubber heaters arranged in the
 255 streamwise direction, and contained thermal insulation to drive
 256 most of the heat inward. A list of materials and thicknesses is
 257 available in Table 3. The surface was nickel plated to reduce ther-
 258 mal radiation which resulted in a predicted and measured emissivity
 259 around 0.03 [2]. Aluminum 2024, though more expensive than
 260 the common alloy 6061, was used because its thermal conductiv-
 261 ity is better known [15]. The heated portion was 279 mm wide and
 262 1.89 m long. The left and right spanwise sides were thermally
 263 insulated by 17.5-mm thick Teflon® that extended into grooves in
 264 the side walls. Two additional 12.7-mm thick Teflon® insulators
 265 were placed upstream and downstream of the heated wall. There
 266 were six heaters, each spanning the width of the heated wall and
 267 one sixth of the length. Three HP 6439B power supplies were
 268 connected to two heaters each and were used to control the tem-
 269 perature of the wall via a closed-loop proportional-integral-deriv-
 270 ative (PID) controller. Three controllers, one for each power
 271 supply, allowed the heated wall to be heated in independent sec-
 272 tions in the streamwise direction to increase temperature
 273 uniformity.

274 The other three walls were clear Lexan® polycarbonate for
 275 optical access and were 12.7 mm thick. From the perspective of
 276 standing on the heated wall at the inlet, they are termed left
 277 ($z = -152$ mm), top ($y = 305$ mm), and right ($z = 152$ mm) walls.
 278 The top wall had a removable center portion for cleaning and

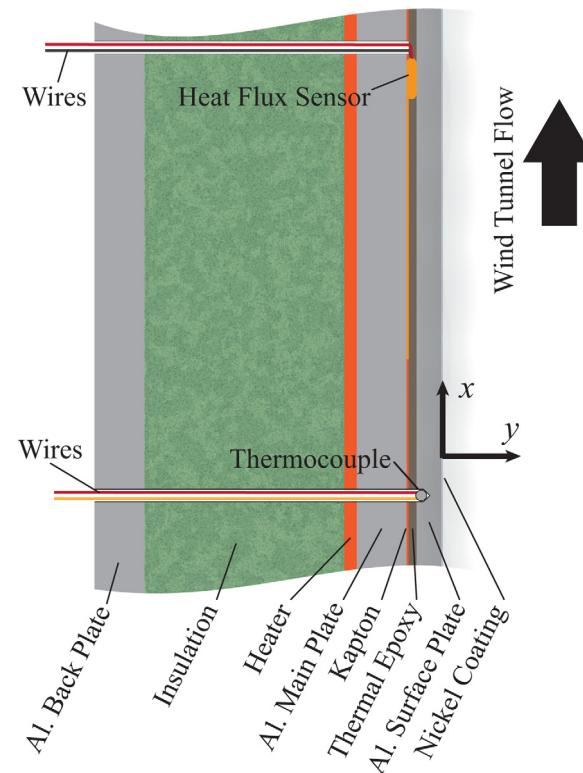


Fig. 4 Heated wall cross section with component names as in Table 3. The relative thicknesses are to scale.

Table 3 Heated wall components and thicknesses with names from Fig. 4

Name	Material	t (mm)
Nickel coating	Bright nickel	~0.05
Al. surface plate	Al. 2024-T3	3.18
Thermal epoxy	Dow corning 3-6751	1.02
Kapton®	Kapton® HN film	0.254
Al. main plate	Al. 6061-T651	6.35
Heater	Tempco silicone rubber	1.59
Insulation	Mineral wool	25.4
Al. back plate	Al. 6061-T651	6.35

279 maintenance. This wall also had three 25.4-mm ports for probe 279
 280 insertion that were used for the TC probe described in Sec. 3.3. 280

281 The as-built geometry was measured to compensate for the dif- 281
 282 ferences between the as-designed and as-built test section geo- 282
 283 metry. The differences were small, but the measurements are 283
 284 presented for completeness. An internal micrometer was used to 284
 285 measure the internal dimensions of the fully assembled test sec- 285
 286 tion. Height measurements were performed at the left, center, and 286
 287 bottom as well as width measurements at the top, middle, and bot- 287
 288 tom. This was done at seven locations in x and performed three 288
 289 times for an estimate of random uncertainty. Modelers may use 289
 290 these dimensions when constructing the simulation domain to 290
 291 ensure greater similarity. A sketch of the measurement locations 291
 292 may be accessed from the online database by the link BC-As-built 292
 293 Sketch in the digital version of this work. The nominal values are 293
 294 in BC-As-built Measurements and uncertainties in BC-As-built 294
 295 Measurement Uncertainties.

296 A warm-up procedure was followed each time the RoBuT was 296
 297 used for experiments. The heated wall was first heated to the set- 297
 298 point temperature. Once this was reached, the blower was set to 298
 299 the desired speed for the experiment and the heater controllers 299
 300 would accordingly increase power. Once the temperature was 300

301 again stable for at least 5 min, the facility was ready for data
 302 acquisition. If the blower setpoint speed was changed, the controller
 303 would stabilize temperature and a waiting period was repeated for
 304 at least 5 min.

305 Between data acquisition for the different cases, such as
 306 between the buoyancy-aided and opposed cases, the entire test
 307 section was cleaned with Ethyl Alcohol to ensure optical quality.
 308 The cover on the top wall was removed for cleaning inside. High-
 309 vacuum grease was used on test section joints to eliminate air
 310 leakage and was removed and reapplied each time a panel of the
 311 test section was adjusted.

3 Analog Instrumentation and Signal Processing

312 Validation experiments require high fidelity instrumentation.
 313 TCs were used to measure boundary temperatures, heat flux sensors
 314 (HFSs) for heat flux through the heated wall, and PIV for
 315 inflow and boundary layer air velocity. Other sensors measured
 316 room air conditions. These systems will now be described in
 317 detail.

318 **3.1 Thermal Instrumentation.** A total of 307 TCs were used
 319 to measure boundary temperatures. All test section TCs were 30
 320 gauge Type K from Omega Engineering with Special Limits of
 321 Error. They were each welded to length with an Argon-shielded
 322 welder. Each TC was calibrated with an Isotherm FASTCAL-M
 323 with an accuracy of 0.3 °C over a range of 25–190 °C with data at
 324 every 5 °C. Because every TC calibration was very similar and
 325 made from the same spool, an average calibration curve was
 326 applied. An array of 3 × 5 TCs, three in y and five in z , was sus-
 327 pended on the downstream side of the honeycomb for inlet air
 328 temperature measurements. Each of the three clear walls had 21
 329 TCs with seven rows spaced in x and three across in y for the left
 330 and right walls or in z for the top wall. The bulk of the heated wall
 331 had 5 × 32 TCs with five in z and 32 in x . The Teflon® edges each
 332 had embedded TCs with five across the leading edge in z and 32
 333 along the sides in x . All TCs were embedded to within 3.18 mm of
 334 the inside surface using thermal epoxy with enhanced thermal
 335 conductivity.

336 Three HFSs were embedded into the heated wall along the
 337 spanwise center at the x -locations found in Table 2. They were
 338 model 20457-3 from RdF Corporation and were a thin-film type
 339 with a thermopile around a Kapton® substrate. The manufacturer
 340 supplied unique calibration coefficients for each sensor. The
 341 manufacturer-specified uncertainty was 5% of reading. An embed-
 342 ded Type T TC was used to measure sensor temperature and cor-
 343 rect readings with the supplied multiplication factor curve to
 344 compensate for changes in thermal conductivity of the substrate.
 345 The HFSs were placed adjacent to the Kapton® layer of similar
 346 thermal resistance to reduce measurement errors. A thermal resist-
 347 ance network analysis showed only a 2.4% difference in heat flux
 348 between HFS and non-HFS conduction paths.

349 The TC and HFS output voltages were small, so special data
 350 acquisition (DAQ) devices were selected. National Instruments (NI)
 351 products were used as they interfaced well with the LABVIEW soft-
 352 ware that was employed for system control and thermal data re-
 353 recording. Twenty-one NI-9213 TC modules were housed in five
 354 NI-cDAQ-9188 chassis. The narrow voltage range of ± 78 mV,
 355 24-bit analogue to digital conversion and open channel detection
 356 made them well suited for these measurements. A built-in cold
 357 junction compensation (CJC) was used for TCs. The total uncer-
 358 tainty of the calibrated TCs with these DAQs was 1 °C, largely at-
 359 tributable to the CJC uncertainty of 0.8 °C. Data from thermal
 360 instrumentation was recorded on-demand. Twelve sets of instant-
 361 neous measurements were recorded, one to accompany every set
 362 of PIV data for each case.

363 **3.2 PIV.** The PIV system allowed for nonintrusive, full-field
 364 velocity measurements at several locations. The system consisted

365 of a laser, camera, and timing unit. The laser was a New Wave
 366 Research Solo PIV III. It was a dual cavity, frequency-doubled
 367 Nd:YAG model with about 22 mJ/pulse and a wavelength of
 368 532 nm. Two LaVision camera designs were used as the equip-
 369 ment was upgraded: an Imager Intense charge-coupled device
 370 (CCD) camera for buoyancy-aided data and an Imager sCMOS
 371 for buoyancy-opposed data. The former had a 12-bit CCD sensor
 372 with 1376×1040 pixels and a pixel size of $6.45 \mu\text{m}$. The latter
 373 had a 16-bit sCMOS sensor with 2560×2160 pixels and a pixel
 374 size of $6.5 \mu\text{m}$. An internal, LaVision standard version PTU 9 tim-
 375 ing unit provided accurate timing of the system and had a resolu-
 376 tion of 10 ns and jitter of <1 ns. Two Nikon lenses were used: one
 377 AF Nikkor 28 mm f/2.8 D for the large field of view inflow and
 378 one AF Micro-Nikkor 105 mm f/2.8 D for high resolution SRQ
 379 data near the heated wall.

380 Images were acquired with LAVISION DAVIS 8.1 software and
 381 processed with DAVIS 8.2. The optical configuration of the system
 382 is shown in Fig. 3 with the laser sheet normal to the heated wall
 383 and camera viewing angle parallel with it. The equipment was
 384 moved manually in the x direction. The inflow was measured in
 385 the same configuration with Velmex BiSLide® traverses to move
 386 the laser and camera consistently in the z direction. In this way,
 387 nine planes were measured to map the inflow.

388 PIV calibration was performed in two ways. The inflow mea-
 389 surement used a conventional two-component “ruler” calibration
 390 over a span of about 280 mm since the laser sheet and camera
 391 were normal to each other. The SRQ data near the heated wall
 392 was calibrated with a single-plane calibration target and the pin-
 393 hole model as the camera was angled into the wall by 3–5 deg.
 394 This angle was required to avoid image diffraction by the large
 395 temperature gradient very near the wall. Because this flow had
 396 very little through-plane motion, errors in v velocity from
 397 through-plane motion appearing as in-plane motion are expected
 398 to be small (they are a function of the sine of the angle). The pin-
 399 hole model was applicable since refraction between the Lexan®
 400 and air was also small.

401 Prior to acquisition, the quality of the particle images was
 402 checked to ensure proper particle density, diameter, and displace-
 403 ment as well as laser beam overlap and image focus quality. Many
 404 of these data parameters and others from the acquired images are
 405 found in Table 4. The diameter, density, and displacement are spa-
 406 tial averages over the entire image. Both particle diameter and
 407

Table 4 PIV data parameters. Aided refers to buoyancy-aided case while opposed refers to buoyancy-opposed case.

Parameter	Aided-inlet	Opposed-inlet
N image pairs	500	1000
Sample frequency (Hz)	4	10
dt (μs)	1000	750
Lens	28 mm	28 mm
Extension (mm)	—	—
Calibration (mm/pixel)	0.223	0.124
$f/\#$	5.6	11
Diameter (pixels)	1.45	1.39
Density (#/32 × 32)	70.8	19.3
Displacement (pixels)	11.4	15.7
Parameter	Aided-SRQ	Opposed-SRQ
N image pairs	1000	1000
Sample frequency (Hz)	4	10
dt (μs)	76	62–65
Lens	105 mm	105 mm
Extension (mm)	39.5	39.5
Calibration (mm/pixel)	0.0116	0.0103
$f/\#$	5.6	11
Diameter (pixels)	3.98–4.89	3.07–3.16
Density (#/32 × 32)	6.36–8.99	4.76–8.47
Displacement (pixels)	13.8	12.2

408 density were determined by the methods found in Ref. [16] with
409 the local maximum method for density estimation.

410 The processing of particle images was performed with the win-
411 dows deformation method in DAVIS. A mask was carefully defined
412 to remove the influence of walls on the correlation. Round inter-
413 rogation windows were used for reduced noise. The first two
414 passes were at 64×64 pixels and 75% overlap and the final four
415 passes were at 32×32 pixels and 75% overlap. Vector postpro-
416 cessing was performed, where vectors were removed if the peak
417 ratio was less than two. Then a two-pass median filter of “strongly
418 remove and iteratively replace” corrected spurious vectors. Vec-
419 tors were removed if their difference from average was more than
420 one standard deviation of neighbors and subsequently replaced if
421 the difference from average was less than two standard deviations
422 of neighbors.

423 Particle images had a sliding background removed where the
424 background is the average of nine images symmetrically taken
425 around the image of interest. The pixel range was sometimes nar-
426 rowed in the flow direction to reduce disk space while keeping at
427 least 512 pixels in this direction. Examples of particle images
428 with background subtracted for both orientations acquired with
429 two cameras are shown in Fig. 5. Note that the heated wall is on
430 opposite sides since the tunnel orientation was changed between
431 cases. Also, the buoyancy-aided case used the Imager Intense
432 camera with fewer pixels than the sCMOS used in the buoyancy-
433 opposed case.

434 **3.3 TC Probe.** In order to provide an additional SRQ, the
435 fluid temperature in the boundary layer was measured. Since the
436 RoBuT is an open-loop air tunnel with a large volume flow rate,
437 optical measurement techniques requiring specialized particles are
438 not practical. Thus, a TC probe was designed similar to that used
439 in Ref. [17] with the care taken to reduce the size and subsequent
440 disruption of the flow. As this probe was intrusive and changed
441 the flow, it was used after acquiring all other types of data so that
442 its influence is only seen on the temperature profiles.

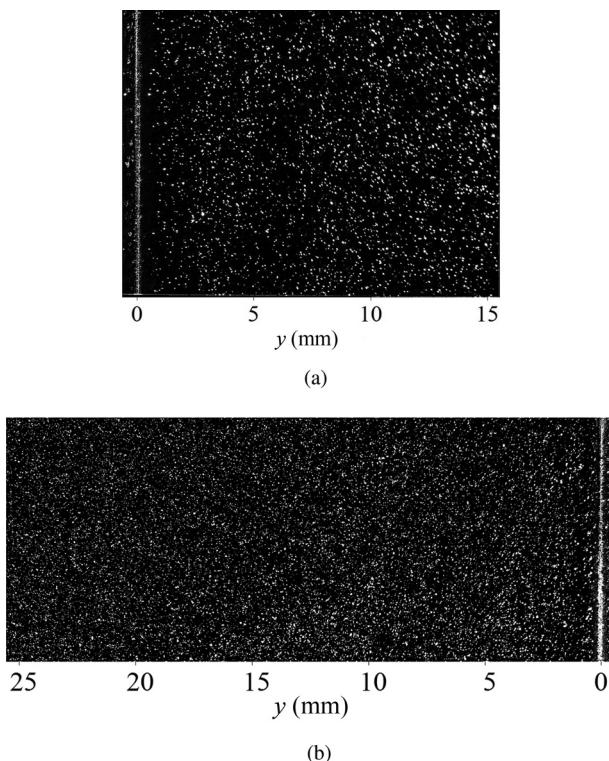


Fig. 5 Particle images at x_2 : (a) buoyancy-aided with heated wall at left and (b) buoyancy-opposed with heated wall at right

443 The junction of the probe was formed by type K wires of diam-
444 eter $D_{TC} = 0.051$ mm from Omega Engineering. The two lead
445 wires are aligned parallel to the wall with a length of 15.3 mm
446 ($\sim 300 D_{TC}$) to reduce conduction losses as shown in Fig. 6. The
447 junction was formed by spot welding the overlapped wires. After
448 welding, the wire was pulled taut and epoxied in place. The fine
449 wire was welded to thicker 0.511-mm wire that spanned the pivot
450 and was connected to the DAQ. The brace shown in Fig. 6 was
451 rigid enough to keep the wire tight. To correct the small misalign-
452 ments that could cause measurement errors, a pivot was designed
453 into the probe so it could be aligned with the wall before each
454 measurement. This was done by moving the probe into the wall
455 until both ends of the brace were pressed firmly and any error cor-
456 rected, then pulling the probe away from the wall. This probe volt-
457 age was measured with the same NI-9213 TC modules described
458 in Sec. 3.1 and was used in the spanwise center of the tunnel.

459 The probe may be subject to conduction losses that could lead
460 to measurement error. This error was estimated using a 1D fin
461 equation. The measured temperature and velocity profiles were
462 used to estimate fluid properties and heat transfer coefficients.
463 Heat conduction was considered from the TC junction to the leads
464 and then convecting to the lower temperature air. The largest error
465 was estimated at 0.03°C at the wall at x_1 .

466 This TC probe assembly was supported by a stainless steel tube
467 with 3.76 mm outside diameter that spanned the test section. This
468 tube contained the TC wires and was connected to a Velmex Inc.
469 UniSlide® traverse model B4015Q2J. This traverse was used for
470 small, incremental movements. The distance from the wall was
471 estimated by fitting a line to the temperature profile very near the
472 wall to the wall temperature measured by embedded TCs. The
473 largest uncertainty in position resulted from the stepper motor
474 resolution. With 200 steps/rev. and an assumed 1/2 step resolu-
475 tion, the uncertainty was $2.5\text{ }\mu\text{m}$. The pitch uncertainty was much
476 smaller at $0.04\text{ mm}/25.4\text{ cm}$ or $0.0315\text{ }\mu\text{m}$ for a $200\text{ }\mu\text{m}$ step.

477 **3.4 Atmospheric Instrumentation.** Air temperature, relative
478 humidity, and atmospheric pressure in the RoBuT room were
479 measured to determine air properties. Both temperature and
480 humidity were measured with an Omega HX93A probe. Pressure
481 was measured with an Apogee Instruments BPS 1006 sensor. The
482 output voltage of these sensors was measured by an NI USB-
483 9215 A 4-channel $\pm 10\text{ V}$ analog input DAQ. The uncertainty of
484 temperature was 0.6°C , humidity was 2.5% for readings 20–80%
485 and 3.1% otherwise, and pressure was 3% of reading. These data
486 were sampled at 1 Hz, then averaged and recorded once per
487 minute.

488 **3.5 Uncertainty Quantification (UQ).** Thermal and atmos-
489 pheric data UQ was determined following the methods of Cole-
490 man and Steele [18]. UQ for PIV was considered by other

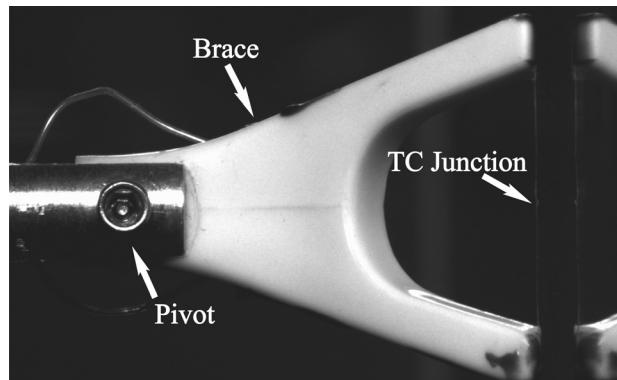


Fig. 6 TC probe with its reflection in the heated wall on the right

PROOF COPY [VVUQ-15-1043]

491 methods and is described later. Bias uncertainties were obtained
 492 from sensor documentation at the 95% confidence level. The
 493 standard random uncertainty of a general mean quantity \bar{x} was cal-
 494 culated by

$$s_{\bar{x}} = \frac{s_x}{\sqrt{N}} \quad (6)$$

495 where s_x is the sample standard deviation. Standard bias and ran-
 496 dom sources are combined to give the expanded total uncertainty
 497 as

$$U_{\bar{x}} = t_{95} \sqrt{b_{\bar{x}}^2 + s_{\bar{x}}^2} \quad (7)$$

498 where t_{95} is the confidence level coefficient (taken as 1.96 for 95%
 499 confidence and number of samples $N > 30$) and $b_{\bar{x}}$ is the standard
 500 bias uncertainty of the mean. The data provided with this paper
 501 generally specifies the expanded (95% confidence) bias ($B_{\bar{x}}$), ran-
 502 dom ($S_{\bar{x}}$), and total uncertainty ($U_{\bar{x}}$) values with the mean results.

503 Uncertainty of the PIV results was calculated from the Uncertainty
 504 Surface Method that estimates instantaneous bias and random uncer-
 505 tainties due to the effects of particle displacement, particle image den-
 506 sity, particle image size, and shear. This method was originally
 507 described in Ref. [19] and improved with the methods from Ref. [16].
 508 The uncertainties of the velocity statistics propagated from the instan-
 509 taneous uncertainties were calculated by the methods of Wilson and
 510 Smith [20]. Total uncertainty was calculated as in Eq. (7). The confi-
 511 dence level on all the UQ results in this work is 95%.

512 4 BCs

513 This section contains a description of all expected requisite
 514 BCs for CFD model inputs. The types of BCs were shown in
 515 Table 1. The as-built geometry is a BC, but was discussed previ-
 516 ously in Sec. 2.2.

517 **4.1 BC Description.** The measured BC temperatures are
 518 mapped onto the test section geometry in Fig. 7. Note the higher
 519 measurement resolution on the heated wall compared to the other
 520 walls and the development of the thermal boundary layer on the
 521 right wall as air travels from the inlet to the right of the figure.

522 As mentioned previously, the inflow was measured in nine
 523 planes spaced in z with the planes concentrated near the side
 524 walls. The time-mean streamwise velocity \bar{u} at the inlet is shown
 525 in Fig. 8 for the buoyancy-opposed case. Gray lines indicate PIV
 526 measurement locations that span across y . Data are highly
 527 resolved in y but not in z . Data may be interpolated from the infor-
 528 mation given. Another approach is to use the high-resolution data
 529 near the unheated top wall ($y = 305$ mm) boundary layer to the left
 530 and right walls which are also unheated. The flow at the inlet has
 531 been confirmed in Ref. [2] to be symmetric at the inlet.

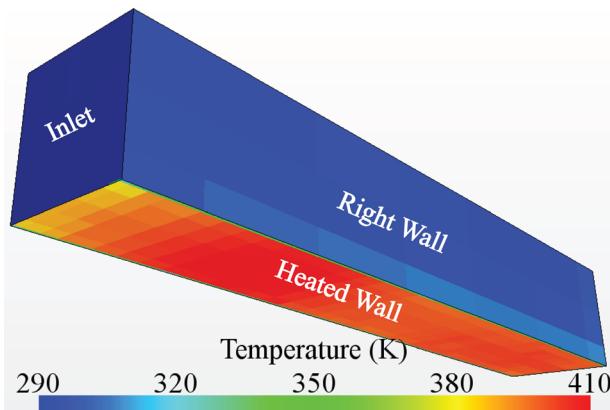


Fig. 7 Measured temperatures on the test section boundaries

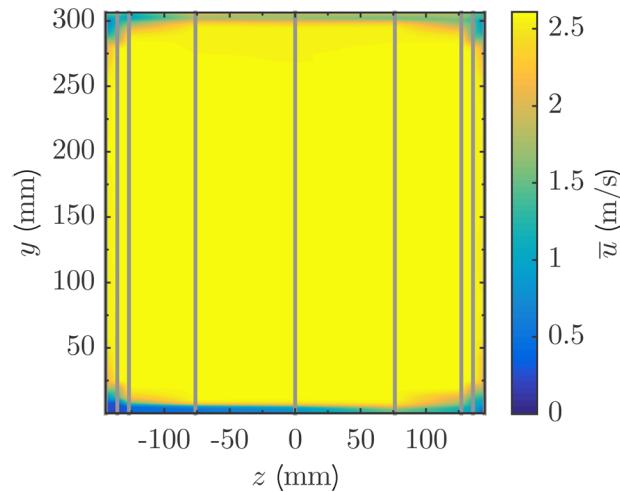


Fig. 8 Measured streamwise velocity \bar{u} at the inlet for the buoyancy-opposed case

The atmospheric conditions include atmospheric pressure, relative
 532 humidity, and room temperature and were recorded at the
 533 time of data acquisition.
 534

Test procedures were followed to control test conditions. The
 535 following list describes the steps followed for acquisition of both
 536 BC and SRQ data:
 537

- (1) Begin heating of the heated wall.
- (2) Upon reaching setpoint temperature, start blower.
- (3) Align traverses, laser, and camera with test section at mea-
 538 surement location.
- (4) Align laser sheets.
- (5) Focus camera on particle images.
- (6) Align calibration plane with laser sheet and calibrate
 539 camera.
- (7) Determine optimal dt for particle displacement, proper
 540 seeding density, and proper laser intensity.
- (8) Record measurement location and other PIV parameters.
- (9) Confirm stability of wall temperature and room
 541 conditions.
- (10) Record PIV data, atmospheric and thermal conditions.

This process was repeated for PIV measurement locations for
 542 the nine inflow and the three SRQ data sets. Inflow data were
 543 acquired in a single day, so only the last three steps were repeated
 544 after the first set. PIV data were recorded at twelve locations (nine at
 545 the inlet and three along the heated wall). Atmospheric conditions and
 546 thermal measurements were recorded with each PIV data set.
 547

Since the velocity at the inlet is partially developed, some
 548 external flow parameters are included. The momentum thickness
 549 was measured from PIV data at the spanwise center ($z = 0$) loca-
 550 tion using the integral
 551

$$\delta_2 = \int_0^\infty \frac{\bar{u}}{\bar{u}_\infty} \left(1 - \frac{\bar{u}}{\bar{u}_\infty} \right) dy \quad (8)$$

where \bar{u}_∞ is the freestream velocity and constant density has been
 552 assumed [7]. The boundary layers on both walls were considered
 553 from $y = 0$ –0.305 m and the result divided by two. Constant den-
 554 sity is a good approximation at the inlet but not for downstream
 555 locations where the near-wall air was heated.
 556

The concept of a virtual origin may also help predict the equivalent
 557 length of a flat plate extending upstream of the test section inlet. This
 558 allows for the impact of the contraction to be assessed. Assuming the
 559 flow was always turbulent, others have derived the relationship [7]
 560

$$\frac{\delta_2}{x} = \frac{0.036\nu^{0.2}}{\bar{u}_\infty^{0.2}x^{0.2}} = 0.036Re_x^{-0.2} \quad (9)$$

561 The left two portions can be arranged to isolate x as in

$$\xi = \frac{\delta_2^{1.25} \bar{u}_\infty^{0.25}}{0.0157 \bar{v}^{0.25}} \quad (10)$$

562 where ξ has been substituted for x and is the distance upstream to
563 a virtual origin given δ_2 defined earlier. The results from these
564 analyses are given in Table 5. It is reasonable to add these virtual
565 origin distances to the x values in Table 2 when comparing with
566 the more canonical flows. Also, Re_x and subsequently Ri_x numbers
567 may also be adjusted. It is reasonable that the buoyancy-
568 opposed case had a larger boundary layer at the inlet in this low
569 speed flow as this case showed larger boundary layers
570 downstream.

571 **4.2 BC Data.** These data are available for both the buoyancy-
572 aided and opposed cases on the inflow and all four walls of the
573 test section. There is one file for the measured temperature of
574 each surface that can be found in Table 6. The files may be opened
575 by the links in the digital version. The format for all BC files
576 works directly with Star-CCM+ and is easily adaptable to other
577 CFD codes. The columns X , Y , and Z are used throughout this
578 work based upon the global coordinates and are presented in
579 meters. The column “T[K]” is the mean temperature in Kelvin,
580 “B_T[K]” is the bias uncertainty, “S_T[K]” is the random un-
581 certainty, and “U_T[K]” is the total uncertainty.

582 The data for the inflow mean and fluctuating velocities are
583 found in the files BC-Aid-Inlet-Vel and BC-Opp-Inlet-Vel. The
584 columns “ u ”, “ v ”, and “ w ” are time-mean velocities in the x , y ,
585 and z directions, respectively. The columns “ $u'u'$ ”, “ $v'v'$ ”, “ $w'w'$ ”,
586 and “ $u'v'$ ” are specific Reynolds stresses. Uncertainties of \bar{u} , \bar{v} ,
587 and \bar{w} compose the remaining columns. Reynolds stresses have
588 unique upper and lower uncertainties with “ $Uuup$ ” being the plus
589 uncertainty of $\bar{u}'\bar{u}'$ and so on. The units of velocity and velocity
590 uncertainty are (m/s) while those of Reynolds stresses and their
591 uncertainty are (m^2/s^2).

592 Note that inflow out-of-plane velocities \bar{w} and $\bar{w}'\bar{w}'$ were
593 assumed to be the same as \bar{v} and $\bar{v}'\bar{v}'$, respectively. This assumption
594 was proved valid in previous forced convection work in this
595 facility by measuring the inflow in both directions with two-
596 component PIV and comparing data where the measurement
597 planes intersect [2]. As the inflow has little dependence on down-
598 stream conditions, this is still valid for mixed convection.
599 Buoyancy-aided inflow data for the plane nearest the right wall
600 was questionable and replaced with data nearest the left wall. As
601 the geometry and thermal conditions are symmetric about $z=0$,
602 this was justified.

603 The atmospheric measurements, together with their uncertainties,
604 are found in the files BC-Aid-AtmCond and BC-Opp-
605 AtmCond.

Table 5 Boundary layer analysis results

Parameter	Aided	Opposed
δ_2 (mm)	1.61	1.81
ξ (mm)	417	485

Table 6 Links to temperature boundary files for both cases

Aided	Opposed
BC-Aid-InletTemp	BC-Opp-InletTemp
BC-Aid-HeatedWallTemp	BC-Opp-HeatedWallTemp
BC-Aid-LeftWallTemp	BC-Opp-LeftWallTemp
BC-Aid-TopWallTemp	BC-Opp-TopWallTemp
BC-Aid-RightWallTemp	BC-Opp-RightWallTemp

5 Fluid and Material Properties

606 As air is the working fluid, measurements of temperature, pres-
607 sure, and relative humidity discussed in Sec. 4.2 are satisfactory
608 to define all fluid properties. It is important to note that the work-
609 ing pressure is different from that at sea level as the experiment
610 was conducted in Logan, Utah, which is 1460 m above sea level. 611

612 Material properties of the test section can easily be obtained
613 from the information provided in Sec. 2.2 about the construction
614 of the test section. It is not necessary to model the heated wall
615 since temperature measurements were made very near the surface,
616 but the information is provided for completeness. 617

6 Test Conditions

618 The RoBuT room was configured with modern heating and air
619 conditioning systems and thermal insulation for stable conditions.
620 Controls were independent of other systems in the building. The
621 refrigerated air conditioning had a $\sim 0.56^\circ\text{C}$ (1°F) deadband. To
622 reduce the rate of temperature change from the on/off behavior of
623 this system, outside air was mixed with refrigerated air before
624 being injected into the room. Heating was performed with a steam
625 heat exchanger with attached fan. The original fan and control
626 system were replaced with a variable speed, tuned, PID-controlled
627 system implemented with the main LABVIEW program, giving the
628 heating system tight control of the room temperature. The maxi-
629 mum measured temperature spread for both cases near the inflow
630 location during DAQ is 0.7°C ($\sim 1.3^\circ\text{F}$).

7 SRQs

631 The SRQs are the experimental results used to compare with
632 simulation outputs and were listed in Table 1. Since they are simi-
633 lar, the mean velocity profiles and fluctuating velocity profiles in
634 the form of Reynolds stresses are presented together. Temperature
635 profiles from the TC probe are presented for the buoyancy-
636 opposed case. Additionally, scalars of wall heat flux and wall
637 shear stress are also provided. 638

639 **7.1 SRQ Description.** Normalized streamwise velocity and
640 Reynolds stress for the buoyancy-aided and buoyancy-opposed
641 cases are shown in Figs. 9 and 10, respectively, for three measure-
642 ment locations in x . The bulk velocity $\bar{u}_{\text{bulk}} = 2.44 \text{ m/s}$ was mea-
643 sured across the inlet and is used for normalization. The profile
644 locations correspond to the vertical center of the camera sensor
645 for reduced perspective error. Uncertainty bands are provided on
646 both profiles that are unique for each data point. In other words,
647

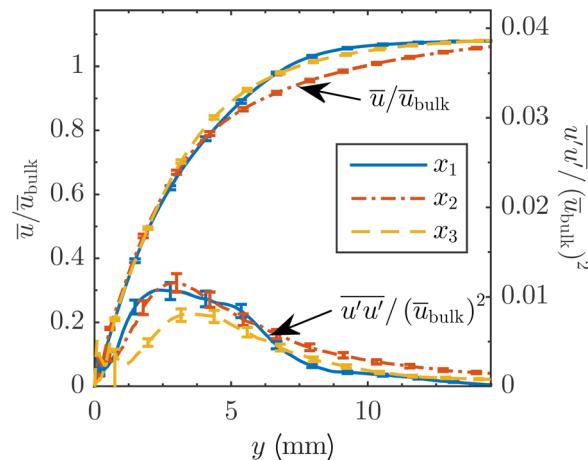


Fig. 9 Normalized streamwise mean velocity \bar{u} and Reynolds normal stress $\bar{u}'\bar{u}'$ at three locations in x for the buoyancy-aided case

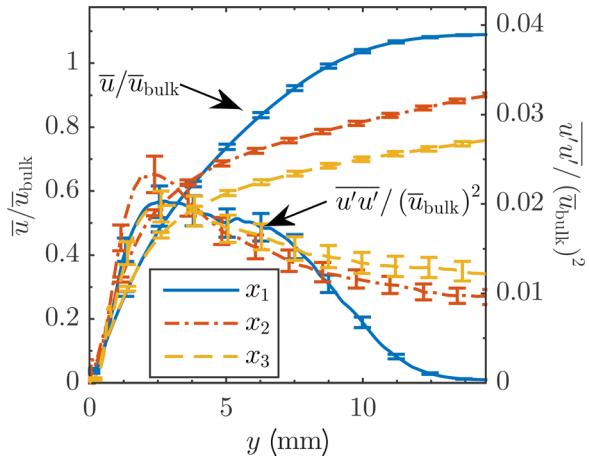


Fig. 10 Normalized streamwise mean velocity \bar{u} and Reynolds normal stress $\bar{u}'\bar{u}'$ at three locations in x for the buoyancy-opposed case

the uncertainty of $\bar{u}/\bar{u}_{\text{bulk}}$ and $\bar{u}'\bar{u}'/(\bar{u}_{\text{bulk}})^2$ varies over y . Uncertainty bands are subsampled for clarity.

The influence of buoyancy is apparent in several regards. The boundary layer velocity and Reynolds stress are nearly constant for all x in the buoyancy-aided case, indicating little growth in the boundary layer thickness. The buoyancy-opposed case, however, shows rapid boundary layer growth. Also apparent is evidence of laminarization in the buoyancy-aided case relative to that in the opposed case as seen in the Reynolds stresses. This is typical of mixed convection flows as described in previous works [9,12]. There are small differences in turbulence levels in the streamwise direction for each case that suggest boundary layer development and buoyancy influence change along the plate. One measure of this is wall shear that will be quantified in the data of Sec. 7.2.

The difference in the two cases reveals the influence of buoyancy on streamwise velocity and streamwise Reynolds normal stress. This is shown in Figs. 11 and 12, respectively. Buoyancy effects accelerate the boundary layer velocity, but this influence is localized near the heated wall. As in the findings of other researchers in mixed convection, turbulence levels as quantified by $\bar{u}'\bar{u}'$ are increased for the opposed case. Here, the difference is about a factor of 2. There is a subtle two-peak nature to $\bar{u}'\bar{u}'$ that is most apparent at x_1 . This may be caused by the 3.175-mm-wide

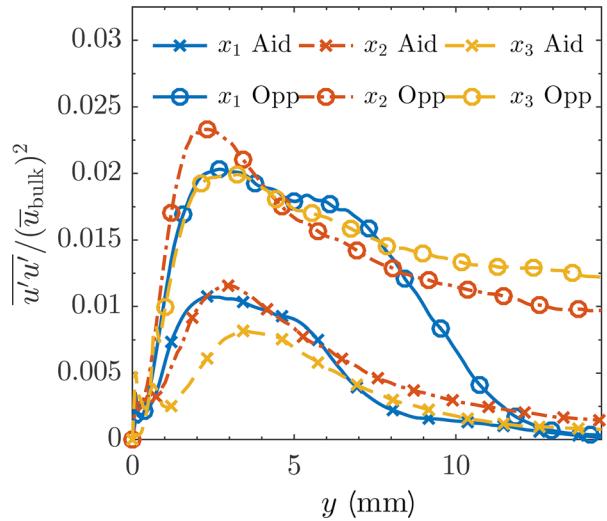


Fig. 12 Measured streamwise Reynolds normal stress $\bar{u}'\bar{u}'$ with buoyancy-aided (Aid) and buoyancy-opposed (Opp) at three locations in x

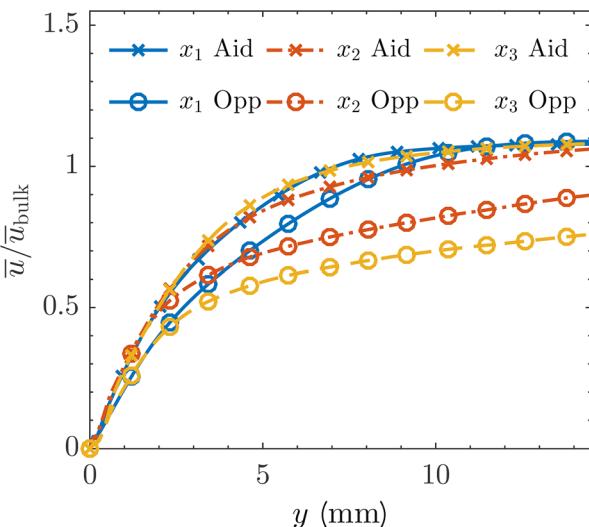


Fig. 11 Measured streamwise mean velocity \bar{u} with buoyancy-aided (Aid) and buoyancy-opposed (Opp) at three locations in x

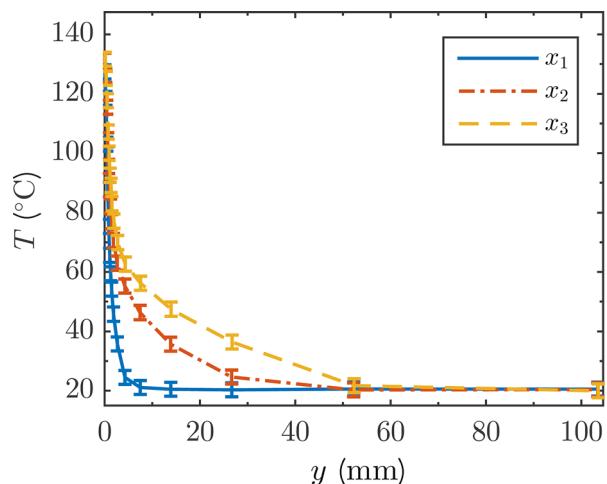
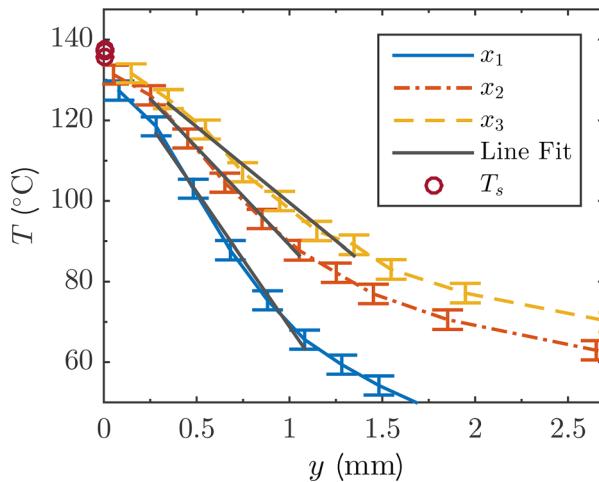



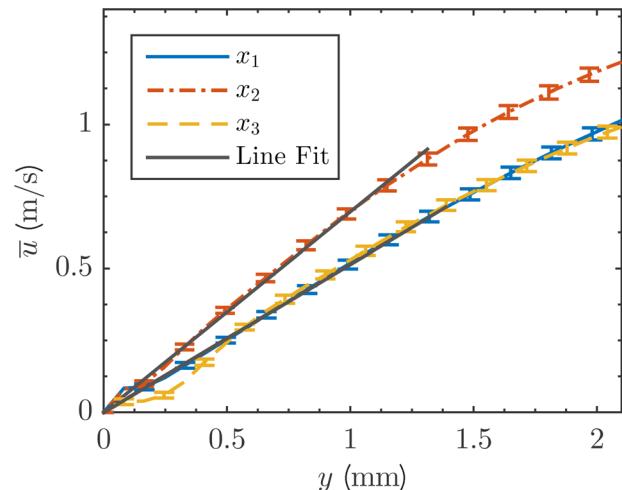
Fig. 13 Measured temperature profiles for all three x locations for the buoyancy-opposed case

Fig. 14 Measured temperature profiles near the heated wall with line fit for all three x locations for the buoyancy-opposed case. Note the unique wall temperature values T_s as the wall is nearly isothermal. T_s at x_1 is about 2 °C cooler than the other two.

probes should be avoided in validation experiments as the effect of their presence is often difficult to quantify. As such, the use of these temperature data is recommended for qualitative analysis but may not be appropriate for quantitative assessment as an SRQ.

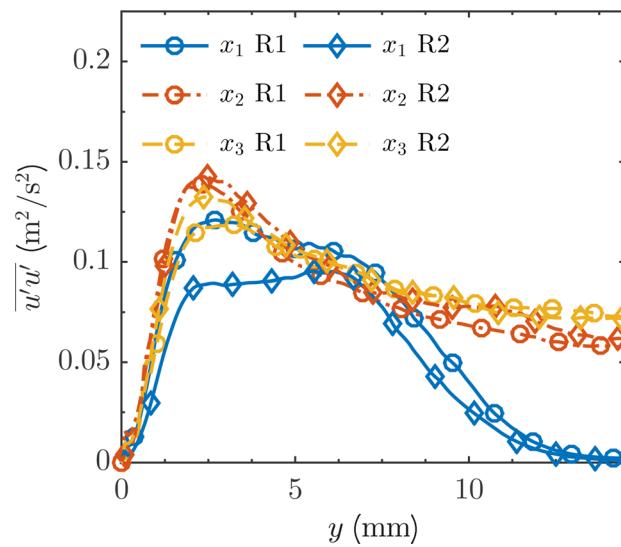
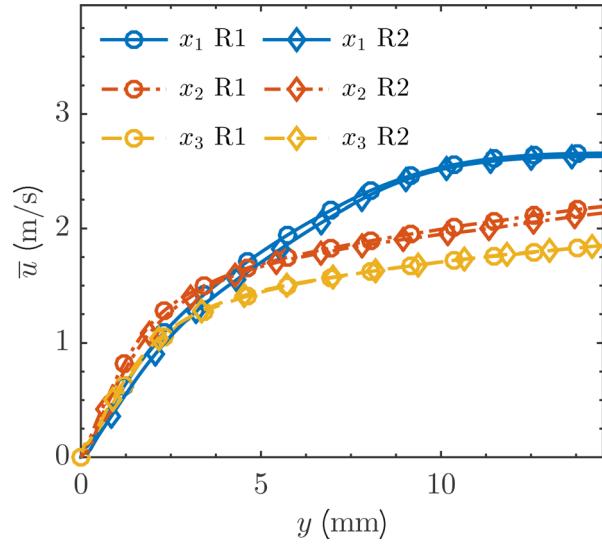
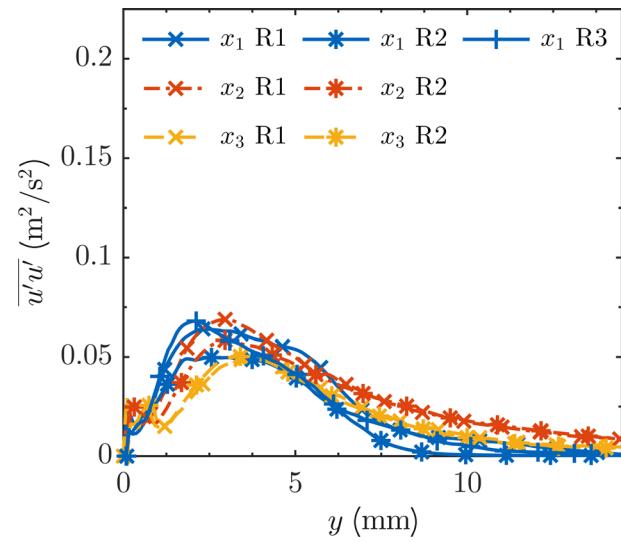
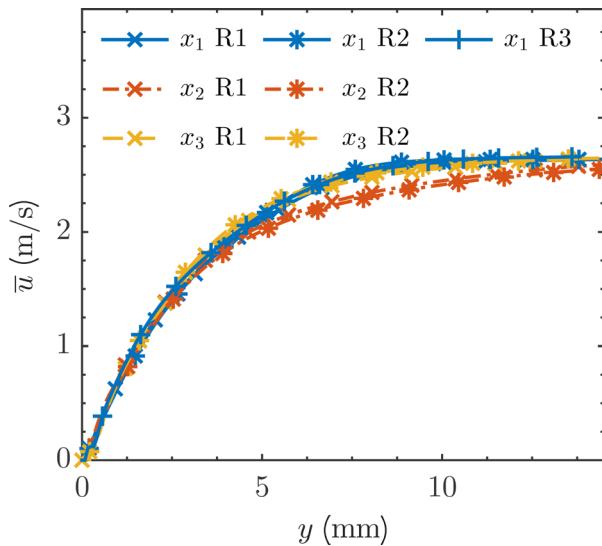
Wall heat flux, as measured by the HFSs, is shown in Fig. 15. In laminar flows, buoyancy-aided mixed convection produces higher heat flux values than for buoyancy-opposed [7]. The current experiments show the opposite, suggesting turbulence levels are a major contributor to the flux. These observations are consistent with turbulent mixed convection. As there are no known heat transfer correlations for mixed convection in developing channel flow, the correlation for fully developed flow in vertical tubes was applied as Eq. (6) in the work of Jackson et al. [9]. These are consistent with the observed heat flux as the buoyancy-opposed case generated higher heat flux. The correlation values have been adjusted to consider an unheated starting length with distances from the virtual origin analysis described earlier. The local Nusselt number was adjusted by

Fig. 15 Measured wall heat flux plotted along streamwise direction x with correlations for mixed convection for the buoyancy-aided (Aid), buoyancy-opposed (Opp), and their difference (Opp-Aid). HFS results are labeled as HFS and correlation results as Corr.


$$\text{Nu}_x = \frac{\text{Nu}_x|_{\xi=0}}{\left[1 - (\xi/x)^{9/10}\right]^{1/9}} \quad (11)$$

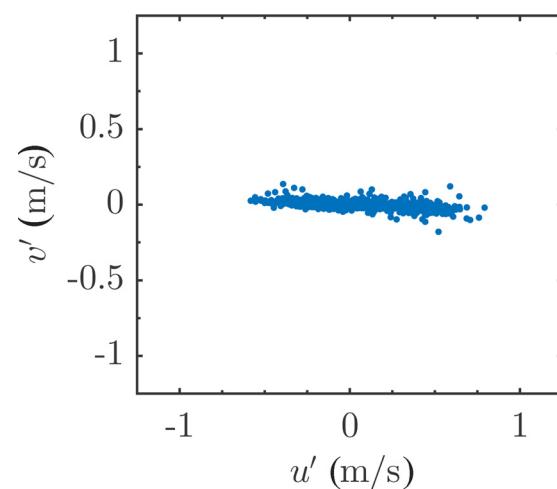
where the local Nusselt number Nu_x and $\text{Nu}_x|_{\xi=0}$ was measured from the leading edge of the unheated starting length [8].

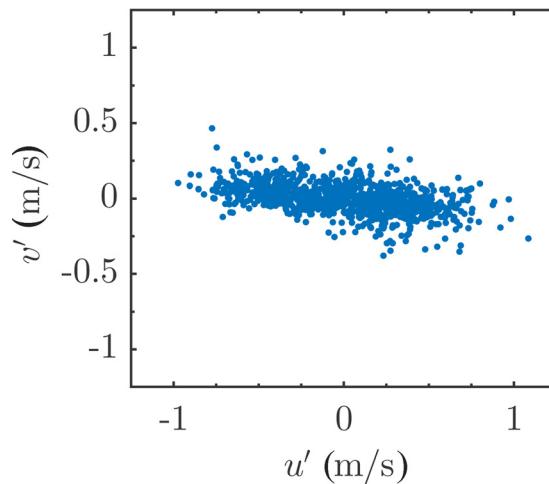
The measured trends in the streamwise direction x are inconsistent with expected results. The HFS at x_2 gives a smaller reading than that at x_3 for both cases. It is possible that this trend is caused by an installation error of the potted sensors in the heated wall. Even though the cause is unknown, the likelihood of this error existing is supported by the monotonic decrease in the temperature gradient near the wall with streamwise distance x as observed in Fig. 14. This decrease suggests a decrease in the wall heat flux with x , consistent with theory.





Previous methods to quantify wall shear have fit experimental turbulent velocity data with the empirical models such as Spalding or Musker profiles with high accuracy [21]. This method works well for fully turbulent boundary layer data where the models are an accurate representation of velocity, but not for the data in this study due to significant buoyancy effects. Therefore, wall shear stress was estimated directly from PIV data as $\tau_s = \mu(\partial u / \partial y)|_{y=0}$ where τ_s is the wall shear stress and μ is the dynamic viscosity. High-resolution PIV data were used to fit a line to velocity data where $y^+ = yu_\tau / \nu \leq 3$ to find $\partial u / \partial y|_{y=0}$, where $u_\tau = \sqrt{\tau_s / \rho}$ and ρ is the fluid density [7]. Initially, ten points were included in the fit and a stable iterative method was used to calculate τ_s and the number of data points that fit within $y^+ \leq 3$. The wall was located by the particle images with a mask carefully defined. The linear fit was performed using linear regression with more weight given to velocity data with lower uncertainty [22]. The high-resolution PIV data and associated linear fit are shown in Fig. 16. The dynamic viscosity was evaluated using Sutherland's Law at the wall temperature. The fit uncertainty was combined with the viscosity uncertainty using the Taylor series method for the total shear stress uncertainty [18].

Data acquisition was repeated several times for each case to determine the level of repeatability. There are generally two repetitions of the same case with the exception of the buoyancy-aided case at x_1 , which has three. Data were acquired between one and ten months apart and, in the buoyancy-opposed case, with a different camera. The acquisitions were also performed by two different users. The test section was disassembled, repaired, and reassembled between the second (R2) and third (R3) series for the buoyancy-aided case. The PIV equipment was removed, replaced, and recalibrated between series. The tabulated data included in

Fig. 16 Streamwise mean velocity \bar{u} near the heated wall with linear fit for shear stress measurement of the buoyancy-opposed case


PROOF COPY [VVUQ-15-1043]



754 this work are from the series R1 in both cases. The results for the
 755 mean streamwise velocity are shown in Figs. 17 and 18 for the
 756 buoyancy-aided and opposed cases, respectively. They show only
 757 small differences that are more apparent in the buoyancy-opposed
 758 case.

759 Repeatability plots for mean streamwise Reynolds stress $\bar{u}'\bar{u}'$
 760 are shown in Figs. 19 and 20 for the two cases. The Reynolds
 761 stresses are less repeatable than the mean velocity, but only by a
 762 moderate amount. The results at x_1 have the largest difference,
 763 which may be due to differences in the inflow that become less
 764 important with streamwise development.

765 As discussed above, there is a large difference in turbulence
 766 levels between the buoyancy-aided and opposed cases. Another
 767 method for representing the differences is the scatter plot of $u'v'$.
 768 There is little scatter in the buoyancy-aided case (Fig. 21) com-
 769 pared to the buoyancy-opposed case (Fig. 22), suggesting that the
 770 laminarization is occurring in the buoyancy-aided case. These
 771 results are consistent with the findings of other works in turbulent

Fig. 22 Scatter of instantaneous u' and v' at the y -location of largest $u'u'$ for the opposed case at x_2 showing larger scatter

Table 7 Links to velocity SRQ files for both cases

Aided	Opposed
SRQ-Aid-Vel_x1	SRQ-Opp-Vel_x1
SRQ-Aid-Vel_x2	SRQ-Opp-Vel_x2
SRQ-Aid-Vel_x3	SRQ-Opp-Vel_x3

772 mixed convection. The results show the typical predominance of
 773 events in quadrants 2 and 4, which are related to turbulent ejections and sweeps, respectively.
 774

775 **7.2 SRQ Data.** These data are generally found in one file for
 776 each x location with unique files for each orientation. For all SRQ
 777 files, the same global coordinate system is used and units are
 778 included in column headers. Links to the velocity results are found
 779 in Table 7. Velocities and Reynolds stresses in both measured
 780 directions are given as well as Reynolds shear stress. Uncertainties
 781 are provided for all provided quantities.

782 Temperature profile data are available for the buoyancy-
 783 opposed case at all three x locations in files SRQ-Opp-T_x1,
 784 SRQ-Opp-T_x2, and SRQ-Opp-T_x3. Tabulated results for the
 785 scalar wall heat flux are compiled into the files SRQ-Aid-
 786 HeatFlux and SRQ-Opp-HeatFlux. Shear results are similarly
 787 compiled into files SRQ-Aid-Shear and SRQ-Opp-Shear.

788 8 Conclusions

789 This work has presented a highly detailed study on turbulent
 790 mixed convection along a vertical, flat plate using high fidelity
 791 instrumentation. The data and description are believed to be suffi-
 792 cient for a CFD validation study of these physics to determine val-
 793 idation error (Eq. (1)) and validation uncertainty (Eq. (2)). The
 794 effects of buoyancy were investigated in two orientations,
 795 buoyancy-aided and buoyancy-opposed. Buoyancy was found to
 796 have a laminarizing effect on the boundary layer flow in the
 797 buoyancy-aided case that suppressed heat transfer. The buoyancy-
 798 opposed case had increased turbulence levels and higher heat flux.
 799 All requisite BCs were measured and provided with their uncer-
 800 tainties. A variety of SRQs were reported for comparison with
 801 simulation outputs. Tabulated data are provided by digital links
 802 for direct use. This method of data description and dissemination
 803 can greatly enhance the ability of modelers to assess simulation
 804 accuracy. Furthermore, the inclusion of this information in pub-
 805 licated works increases their availability.

Acknowledgment

This research was performed using funding received from the
 807 DOE Office of Nuclear Energy's Nuclear Energy University
 808 Programs.
 809

Nomenclature

$b_{\bar{x}}$	standard bias uncertainty of general mean quantity \bar{x}	806
$B_{\bar{x}}$	expanded bias uncertainty of general mean quantity \bar{x}	807
D	experimental data	808
D_{TC}	diameter of TC probe wire	809
dt	time delay of particle image velocimetry image pairs	810
E	model validation error	811
g	acceleration due to gravity	812
Gr_x	local Grashof number	813
N	number of samples	814
Nu_x	local Nusselt number	815
q''_s	wall heat flux	816
Re_x	local Reynolds number	817
Ri_x	local Richardson number	818
S	simulation result	819
s_x	standard deviation of quantity x	820
\bar{s}_x	standard random uncertainty of mean quantity \bar{x}	821
$\bar{S}_{\bar{x}}$	expanded random uncertainty of mean quantity \bar{x}	822
T	temperature	823
T_s	temperature of wall	824
T_{∞}	temperature of freestream	825
t_{95}	confidence level coefficient at 95%	826
\bar{u}	time-mean streamwise (x) velocity	827
$\bar{u}'u'$	time-mean variance of u	828
$\bar{u}'v'$	time-mean covariance of u and v	829
\bar{u}_{bulk}	time-mean streamwise (x) bulk velocity	830
\bar{u}_{∞}	time-mean streamwise freestream velocity	831
U_D	validation data uncertainty	832
U_{input}	model input uncertainty	833
U_{num}	numeric uncertainty	834
U_{val}	validation uncertainty	835
$\bar{U}_{\bar{x}}$	total expanded uncertainty of mean quantity \bar{x}	836
u_{τ}	friction velocity	837
\bar{v}	time-mean heated wall-normal (y) velocity	838
$\bar{v}'v'$	time-mean variance of v	839
\bar{w}	time-mean transverse (z) velocity	840
$\bar{w}'w'$	time-mean variance of w	841
x	streamwise direction	842
\bar{x}	general time-mean variable	843
y	heated wall-normal direction	844
y^+	nondimensional heated wall-normal direction	845
z	transverse direction	846
β	volumetric thermal coefficient of expansion	847
μ	dynamic viscosity	848
ν	kinematic viscosity	849
ξ	virtual origin	850
ρ	density of air	851
τ_s	wall shear stress	852

References

- [1] Oberkampf, W. L., and Smith, B. L., 2014, "Assessment Criteria for Computational Fluid Dynamics Validation Benchmark Experiments," *AIAA Paper No. 2014-0205*.
- [2] Harris, J. R., Lance, B. W., and Smith, B. L., 2015, "Experimental Validation Data for CFD of Forced Convection on a Vertical Flat Plate," *ASME J. Fluids Eng.*, **138**(1), p. 011401.
- [3] Oberkampf, W. L., and Roy, C. J., 2010, *Verification and Validation in Scientific Computing*, Cambridge University Press, New York.
- [4] ASME, 2009, *ASME V&V 20-2009: Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer*, American Society of Mechanical Engineers, New York.
- [5] Roache, P. J., 2009, *Fundamentals of Verification and Validation*, Hermosa Publication, Socorro, NM.
- [6] AIAA, 1998, "Guide for the Verification and Validation of Computational Fluid Dynamics Simulations," *AIAA Paper No. G-077-1998*.

PROOF COPY [VVUQ-15-1043]

[7] Kays, W. M., Crawford, M. E., and Weigand, B., 2012, *Convective Heat and Mass Transfer*, McGraw-Hill, Boston, MA.

[8] Incropera, F. P., DeWitt, D. P., Bergman, T. L., and Lavine, A. S., 2007, *Fundamentals of Heat and Mass Transfer*, 6th ed., Wiley, Hoboken, NJ.

[9] Jackson, J. D., Cotton, M. A., and Axcell, B. P., 1989, "Studies of Mixed Convection in Vertical Tubes," *Int. J. Heat Fluid Flow*, **10**(1), pp. 2-15.

[10] Chen, T. S., Armaly, B. F., and Ramachandran, N., 1986, "Correlations for Laminar Mixed Convection Flows on Vertical, Inclined, and Horizontal Flat Plates," *ASME J. Heat Transfer*, **108**(4), p. 835.

[11] Ramachandran, N., Armaly, B. F., and Chen, T. S., 1985, "Measurements and Predictions of Laminar Mixed Convection Flow Adjacent to a Vertical Surface," *ASME J. Heat Transfer*, **107**(3), p. 636.

[12] Kim, W. S., Jackson, J. D., He, S., and Li, J., 2004, "Performance of a Variety of Low Reynolds Number Turbulence Models Applied to Mixed Convection Heat Transfer to Air Flowing Upwards in a Vertical Tube," *Proc. Inst. Mech. Eng., Part C*, **218**(11), pp. 1361-1372.

[13] Wang, J., Li, J., and Jackson, J., 2004, "A Study of the Influence of Buoyancy on Turbulent Flow in a Vertical Plane Passage," *Int. J. Heat Fluid Flow*, **25**(3), pp. 420-430.

[14] Kähler, C. J., Sammler, B., and Kompenhans, J., 2002, "Generation and Control of Tracer Particles for Optical Flow Investigations in Air," *Experiments in Fluids*, **33**(6), pp. 736-742.

[15] Touloukian, Y. S., and Ho, C. Y., 1977, *Thermophysical Properties of Selected Aerospace Materials Part II: Thermophysical Properties of Seven Materials*, Purdue University, West Lafayette, IN.

[16] Warner, S. O., and Smith, B. L., 2014, "Autocorrelation-Based Estimate of Particle Image Density for Diffraction Limited Particle Images," *Meas. Sci. Technol.*, **25**(6), p. 065201.

[17] Blackwell, B. F., Kays, W. M., and Moffat, R. J., 1972, "The Turbulent Boundary Layer on a Porous Plate: An Experimental Study on the Heat Transfer Behavior With Adverse Pressure Gradients," Stanford University, Stanford, CA, Technical Report No. HMT-16.

[18] Coleman, H. W., and Steele, W. G., 2009, *Experimentation, Validation, and Uncertainty Analysis for Engineers*, Wiley, Hoboken, NJ.

[19] Timmins, B. H., Wilson, B. W., Smith, B. L., and Vlachos, P. P., 2012, "A Method for Automatic Estimation of Instantaneous Local Uncertainty in Particle Image Velocimetry Measurements," *Exp. Fluids*, **53**(4), pp. 1133-1147.

[20] Wilson, B. M., and Smith, B. L., 2013, "Taylor-Series and Monte-Carlo-Method Uncertainty Estimation of the Width of a Probability Distribution Based on Varying Bias and Random Error," *Meas. Sci. Technol.*, **24**(3), p. 035301.

[21] Kendall, A., and Koochesfahani, M., 2007, "A Method for Estimating Wall Friction in Turbulent Wall-Bounded Flows," *Exp. Fluids*, **44**(5), pp. 773-780.

[22] Bevington, P. R., and Robinson, D. K., 2003, *Data Reduction and Error Analysis*, McGraw-Hill, New York.