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Abstract

A new second-order accurate, hybrid, incremental projection method for
time-dependent incompressible viscous flow is introduced in this paper. The
hybrid finite-element/finite-volume discretization circumvents the well-known
Ladyzhenskaya-Babuška-Brezzi conditions for stability, and does not require
special treatment to filter pressure modes by either Rhie-Chow interpolation
or by using a Petrov-Galerkin finite element formulation. The use of a co-
velocity with a high-resolution advection method and a linearly consistent
edge-based treatment of viscous/diffusive terms yields a robust algorithm
for a broad spectrum of incompressible flows. The high-resolution advec-
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tion method is shown to deliver second-order spatial convergence on mixed
element topology meshes, and the implicit advective treatment significantly
increases the stable time-step size. The algorithm is robust and extensible,
permitting the incorporation of features such as porous media flow, RANS
and LES turbulence models, and semi-/fully-implicit time stepping. A series
of verification and validation problems are used to illustrate the convergence
properties of the algorithm. The temporal stability properties are demon-
strated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver
is built using the Hydra multiphysics toolkit. The Hydra toolkit is written
in C++ and provides a rich suite of extensible and fully-parallel components
that permit rapid application development, supports multiple discretization
techniques, provides I/O interfaces, dynamic run-time load balancing and
data migration, and interfaces to scalable popular linear solvers, e.g., in open-
source packages such as HYPRE, PETSc, and Trilinos.

Keywords: FVM, FEM, incompressible flow, monotonicity-preserving
advection, projection method, mixed-topology meshes, thermal-hydraulics

1. Introduction

The solution of the time-dependent incompressible Navier-Stokes equa-
tions poses multiple algorithmic challenges due to the divergence-free veloc-
ity constraint and the associated restrictions on the velocity and pressure
discretization, as well as, the concomitant spatial and temporal resolution
required to perform high Reynolds number flow simulations in complex ge-
ometries. Although fully-coupled solution strategies are available, the cost of
such methods is prohibitive for time-dependent simulations where complex
geometries and high-resolution grids are involved.

Projection methods methods have grown in popularity over the past 20
years due to their simplicity, ease of implementation, and computational
performance. This is reflected by the volume of work published on the devel-
opment of second-order accurate projection methods, see, for example, van
Kan [1], Bell, et al. [2], Gresho, et al. [3–6], Almgren, et al. [7–9], Rider,
et al. [10–13], Minion [14], Guermond and Quartapelle [15], Puckett, et al.
[16], Sussman, et al. [17], and Knio, et al. [18], and Christon, et al. [19, 20].
The numerical performance of projection methods has been considered by
Brown and Minion [21, 22], Wetton [23], Guermond [24, 25], Guermond and
Quartapelle [26, 27], and Almgren et al. [9].
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In the hybrid projection algorithm, we select a cell-centered finite-volume
discretization for all transported variables, and a node-centered finite-element
method for the pressure. This choice is important because it circumvents
the well-known Ladyzhenskaya-Babuška-Brezzi stability conditions – see [28–
31]. That is, the spatial discretization avoids special treatment of pressure
modes, and does not require Rhie-Chow interpolation or the use of a Petrov-
Galerkin finite element formulation with “tune-able” parameters. A high-
resolution advection algorithm that is monotonicity preserving and exhibits
excellent dispersive characteristics was developed for the hybrid projection al-
gorithm. The advection and viscous/diffusive terms in the conservation equa-
tions are treated with an edge-based implementation. In addition, the vis-
cous/diffusive terms are discretized using an edge-based least-squares method
that is linearly consistent on arbitrary unstructured mixed topology meshes.
The hybrid projection algorithm is flexible and extensible and can can be ex-
tended to handle conjugate heat transfer, fluid-structure interaction (FSI),
volume-tracking for immiscible fluids, and multiphase flow problems.

The rest of the paper is organized as follows. §2 presents the formula-
tion of the hybrid second-order accurate approximate incremental projection
solver and the associated numerics. Details on the monotonicity preserving
advection method are presented in §3. A series of prototypical verification
and validation problems are discussed in §4, followed by summary and con-
clusions in §5.

2. Hybrid Incremental Projection Method

The Navier-Stokes equations for an incompressible fluid are

∇ · v = 0 (1)

∂ρv

∂t
+∇ · (ρvv) = ∇ · (−pI+ τ ) + ρf (2)

defined in the domain Ω with boundary Γ in the time interval [0, T ]. Here, ρ
is the mass density, v = (vx, vy, vz)

T is the velocity, p is the fluid pressure, τ
is the deviatoric stress, and f is the body force per unit mass. A constitutive
equation relates the deviatoric stress and the strain rate, τ = 2µS, where
S = 1

2
[∇v + (∇v)T ].

The momentum equations, Eq. (2), are subject to boundary conditions
that consist of prescribed velocity v(x, t) = v̂(x, t) on Γ1, or prescribed trac-
tion {−pI + 2µS}·n = f̂(x, t) on Γ2 where Γ = Γ1∪Γ2 is the domain boundary
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with outward normal n. A detailed discussion of boundary conditions for the
incompressible Navier-Stokes equations may be found in [32].

Velocity initial conditions are prescribed as v(x, 0) = v0(x). For a math-
ematically well-posed incompressible flow problem, the prescribed initial and
boundary conditions on the velocity field must satisfy

∇ · v0 = 0 (3)

n · v(x, 0) = n · vo(x) (4)

If Γ2 = 0, i.e., enclosure flows with n · v prescribed on all surfaces, then
∫

Γ

n · v0dΓ = 0 (5)

must also be satisfied.
The design of the hybrid projection algorithm is constructed using edge-

based algorithms for both advective and viscous/diffusive terms. The use of
edge-based algorithms for advection (whether cell-centered or node-centered)
rely on topological constructs for primal and dual grids. Each element of the
primal grid consists of an ordered set of vertices connected by cell edges
or faces. Figure 1 illustrates a primal grid and the associated dual grids.
Each vertex of the dual grid is associated with a primal mesh cell. Edges
generically connect a pair of vertices in either the primal or the dual grid.
Typical finite element mesh descriptions rely on identification of elements
or cells where vertices and their coordinates are associated with a unique
cell. For the hybrid projection algorithm, we equip a standard finite element
mesh description with a dual-edge data structure. This permits treating
edges as a primary mesh entity and the implementation of algorithms that
are essentially independent of the element topology and dimensionality.

Turning to the hybrid algorithm, the premise of projection algorithms is
to attempt to provide a legitimate way to decouple the pressure and velocity
fields to provide an efficient computational method for transient incompress-
ible flow simulations. The projection step can be derived by decomposing the
velocity field into divergence-, and curl-free components using a Helmholtz
decomposition,

v∗ = v +
1

ρ
∇λ, (6)

where v∗ is an arbitrary velocity field, v is the divergence-free, while ∇λ is
curl-free, since ∇ × ∇λ = 0. The projection removes the dilatational part
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Primal Grid

Dual Grid

Figure 1: Primal, median dual, and centroidal dual grids.

of the velocity field v∗. We note in passing that the projection makes use
of physical boundary conditions, and that both the continuous and discrete
projection operators are norm-reducing, see [3, 4].

As a starting point for the hybrid projection method, we adopted Gresho’s
second-order “P2” method [3, 4]. The desire for local-conservation initially
drove the decision to use the finite volume method (FVM) with all vari-
ables cell-centered, i.e., collocated velocity and pressure. However, to avoid
deleterious and troublesome pressure modes, a Galerkin formulation with
node-centered pressure was adopted. Thus, a hybrid FVM – Galerkin FEM
discretization forms the basis for the incompressible solver.

The use of a hybrid discretization for the implementation of a projection
solver is not entirely new. The first use of a predominantly finite volume
scheme with a continuous Galerkin pressure-Poisson operator appeared in
the work of Bell, et al. [2], albeit using structured meshes with explicit
advection, and a time-step strictly constrained by CFL < 1. More recently,
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Aliabadi and co-workers have developed a method [33–35] that is similar to
that presented here, although they use a more complex pressure update.

In our formulation, we begin with a discontinuous Galerkin formulation
that proceeds by discretizing in space, e.g., with quadrilaterals, triangles, or
some combination. At each time t ∈ [0, T ], an approximate solution vh is
sought in the finite element space of discontinuous functions Wh. We defer,
for the moment, the discussion of the pressure space. Multiplying Eq. (2)
by a test function and integrating by parts yields

∫

Ωe

{
wh ·

(
∂ρvh

∂t

)
+∇ · {wh · (ρvhvh)} − ∇wh · (ρvhvh)−

∇ · (wh · τ ) +∇wh · τ +wh · ∇ph +wh · (ρf)
}
dΩ = 0

∀wh ∈ Wh

(7)

where Ωe is the element volume. Selecting piecewise-constant weight func-
tions, and using the divergence theorem yields a system of ordinary differen-
tial equations (ODEs) for the momentum transport equations

ρΩe dv

dt
+

∮

Γe

ρv(v ·n) dΓe−
∮

Γe

τ ·n dΓe+

∫

Ωe

∇p dΩe−
∫

Ωe

ρf dΩe = 0 (8)

with a cell-averaged velocity defined as

v =
1

Ωe

∫

Ωe

vhdΩe (9)

Here, the superscript h has been dropped for simplicity. Note that the dis-
crete momentum equations in conjunction with the discrete divergence con-
straint form a system of differential algebraic equations (DAEs) rather than
ODEs.

The discrete projection algorithm can be derived in a number of ways.
We first develop the time-integrator, and identify the terms associated with
the projection via a Helmholtz decomposition of the velocity. We define the
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element-level mass, advective, viscous, gradient, and body-force operators as

Me = ρΩe (10)

Ae(ρ,v)v =

∮

Γe

ρv(v · n) dΓe (11)

Kev =

∮

Γe

τ · n dΓe (12)

Bep Ωe =

∫

Ωe

∇p dΩe (13)

Fe =

∫

Ωe

ρf dΩe (14)

Discretizing Eq. (8) in time, we first apply forward-, then backward–Euler
time discretization, and take the θ-weighted sum of the fully-discrete systems,
yielding

M
vn+1 − vn

∆t
− θKvn+1 = (1− θ)Fn + θFn+1

− A(ρ,v)vn + (1− θ)Kvn −Bpn − θB(pn+1 − pn) (15)

where 0 ≤ θ ≤ 1. For simplicity, explicit advection has been used here
for the sake of demonstrating the derivation of the method. Setting θ = 0
corresponds to a forward-Euler treatment of viscous and body-force terms,
while θ = 1/2 is the trapezoidal rule, and θ = 1 provides a backward-Euler
treatment.

Turning to the velocity decomposition, an approximate velocity for the
time-step, v∗, may be decomposed using Eq. (6) into div-free and curl-free
components v∗ = vn+1 + 1

ρ
∇λ. Taking the divergence of the velocity field

yields

∇ · 1
ρ
∇λ = ∇ · v∗ (16)

where ∇ · v∗ 6= 0 and ∇ · vn+1 = 0. For steady Dirichlet pressure boundary

conditions, λ = 0 on Γp and
∂λ

∂n
= 0 on Γ ∩ Γp. With this choice for the

velocity decomposition,
λ = θ∆t(pn+1 − pn) (17)

7



When combined with Eq. (15), this yields the fully-discrete momentum equa-
tion to be solved for the approximate velocity v∗

[M − θ∆tK]v∗ = [M + (1− θ)∆tK]vn

−∆tA(ρ,v)vn −∆tBpn +∆t{(1− θ)Fn + θFn} (18)

For the, the pressure increment, or Lagrange multiplier, we seek a solu-
tion for λh in the finite element space of continuous functions where Sh =
V h = {qh|qh ∈ H1h(Ω)} and H1h(Ω) is the finite dimensional space of square
integrable functions. Multiplying Eq. (16) by the test-function, qh, and
integrating by parts produces the discrete pressure-Poisson (PPE) problem.
∫

Ω

∇qh ·
(
1

ρ
∇λh

)
dΩ =

∫

Γ

qh
{
1

ρ

∂λh

∂n

}
dΓ−

∫

Γ

qhv∗ · n dΓ+

∫

Ω

v∗ · ∇qh dΩ

(19)
The discrete PPE, written in terms of operators is Kpλ = D(v∗), where

Kp =

∫

Ω

∇qh ·
(
1

ρ
∇qh

)
dΩ (20)

and D(v∗) is

D(v∗) =

∫

Γ

qh
{
1

ρ

∂λh

∂n

}
dΓ−

∫

Γ

qhv∗ · n dΓ +

∫

Ω

v∗ · ∇qh dΩ (21)

An alternative form of the PPE problem simply uses the element-centered
divergence of the intermediate velocity for the right-hand-side of the PPE,
e.g.,

∫
Ω
qh∇ · v∗dΩ. Operational experience with the hybrid formulation has

shown that this form of the PPE leads to smoother pressures in general, but
also to less accurate initial velocities and pressures.

Given a velocity and pressure at time n, the hybrid algorithm proceeds
as follows for a single time step.

1. Solve for v∗

[M − θ∆tK]v∗ = [M + (1− θ)∆tK]vn

−∆tA(ρ,v)vn −∆tBpn +∆t{(1− θ)Fn + θFn} (22)

2. Form the right-hand-side of the PPE, solve for λ,

Kpλ = D(v∗) (23)
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3. Update the pressure

pn+1 = pn +
1

θ∆t
λ (24)

4. Project the cell-centered velocities

vn+1 = v∗ − 1

ρ
Bλ (25)

5. Compute face gradients and project the face-centered velocities

vf = v∗f −
1

ρ
(Bλ)f · n (26)

The pressure and Lagrange-multiplier gradients are computed using the
uniform-strain finite element gradient, B defined in Eq. (13), see also [36].
The pressure gradient force contribution to the momentum equations is com-
puted using the B-matrix as

(Bp) =

Nnpe∑

I

Be
Ip

e
IΩ

e (27)

where 1 ≤ I ≤ Nnpe, and Nnpe is the number of nodes per element.
Given the element-level gradient, face-centered gradients are computed

using the elements attached to dual-edges as neighbors. The elements in the
neighbor list include those attached by dual-edges to the vertices of a given
dual-edge where the gradient is desired,

(Bλ)f =

∑Nnbr

i (BeλΩe)i Ωi∑Nnbr

i Ωi

, (28)

where Nnbr is the number of neighbor elements.
The calculation of dual-edge quantities, i.e., centered at unique element

faces, occurs at a number of places in the hybrid projection algorithm. This
calculation is formulated as an inverse-distance-weighted L2 projection onto
a Galerkin basis, and illustrated for a 2D mesh in Figure 2(a). The data at
a face is computed as

φf = ξaφa + (1− ξa)φb (29)

where φ is a cell-centered field variable, and ξa = hb/(ha + hb).

9



The implementation of the hybrid projection algorithm relies on the so-
called “co-velocity” approach where dual-edge velocities are made divergence-
free and used for advection. This enables the incompressible flow solver to be
easily extended to perform volume-tracking for multi-fluid simulations. To
calculate the dual-edge velocities, first a symmetric mirror of the velocities
across the domain boundaries is performed as shown in Figure 2(b) where
g identifies the ghost data, and d is the normal distance from the element
centroid to the element boundary. Alternatively, this can be thought of as
extrapolation to the boundary edges as vf = v as shown in Figure 2(c).
Where Dirichlet velocity boundary conditions are imposed, the ghost data is
specified by the prescribed velocity boundary conditions.

(a) (b)

(c) (d)

Figure 2: (a) dual-edge data for edge projection, (b) symmetric mirror for ghost data
at a boundary, (c) edge velocity extrapolation to a physical boundary, (d) edge velocity
projection for overlapping “ghost” elements for parallel calculations.

The edge velocity at the boundaries is then computed as vf = 1
2
(v1 + vg).

The factor of 1/2 is consistent with Eq. (29) since the boundary ghosts receive
data from the symmetric mirror at a location that is twice the distance from
the element centroid to the boundary. For distributed-memory domain-based
parallelism, it is necessary to communicate overlapping elements or ghost
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elements across the decomposed computational domain as indicated in Figure
2(d). Edges with a vertex containing ghost data are populated in buffers and
communicated with neighboring processors before the dual-edge velocities
external to a processor domain are computed. Once all the data attached to
external edges has been constructed, the dual-edge velocities are computed
as vf = vf · n for all external edges.

After the external dual-edge velocities have been computed, taking bound-
ary conditions into consideration, the dual-edge velocities associated with
edges, internal to a processor domain, are computed using

vf =
[
ξv1 + (1− ξ)v2

]
· n (30)

where n is the unit normal of the face where the dual-edge velocity is centered
as shown in Figure 3a.

(a) Dual-Edge Normal (b) Dual-Edge Assembly

Figure 3: (a) normal velocity on internal dual-edges, and (b) dual-edge assembly from
elements 1 and 2.

The dual-edge velocities are used to compute the the divergence as

div(v)e =
1

Ωe

Nedge∑

i

vfiΓi (31)

where Nedge is the number of dual-edges connected to element e. The com-
putation of the divergence of the velocity proceeds edge-by-edge with an
assembly to vertices of the dual, that is, to elements as indicated in Figure
3b.

2.1. Startup Procedure

This section describes the startup procedure for a well-posed incompress-
ible Navier-Stokes problem. By constructing a well-posed problem, this also
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insures that the solution to index-1 DAEs via the projection method produce
solutions identical to the those for the index-2 DAEs, i.e., the fully-coupled
velocity-pressure system. In addition to the calculation of a suitable initial
velocity field that satisfies the boundary conditions and is divergence-free,
an initial pressure is required that is consistent with the initial velocity field
and the prescribed boundary conditions.

Given a set of prescribed boundary and initial conditions, v̂ on Γv, p̂ on
Γp, and v0(x) in Ω, the startup procedure is as follows. First, we define the
initial edge-normal velocities v0f , setup ghost data, and calculate the edge-
normal velocities. This typically yields dual-edge velocities, v∗f , that are in
general not divergence-free. Given the dual-edge velocities and using Eq.
(31), the root-mean-square (RMS) divergence is computed as

‖div(v)‖RMS =
1

Ω

√∑Nel

i=1[div(v)
i]2

Nel
(32)

If the RMS divergence is larger than a prescribed tolerance, the initial velocity
is projected onto a divergence-free subspace. The projection begins with the
usual decomposition of the velocity into div-free and curl-free components
v∗ = v + 1

ρ
∇λ, where v0 = v∗, and ∇ · v∗ 6= 0, ∇ · v0 = 0.

Taking the divergence of the decomposed velocity field yields the same
pressure-Poisson problem in Eq. 16. After solving the PPE problem for λ,
we project both the element and dual-edge velocities. Using the Helmholtz
decomposition, and knowing v∗f and λ, we can compute the div-free edge
velocities

vf = v∗f −
1

ρ
(Bλ)f · nf (33)

where (Bλ)f is computed using Eq. (28). Following the projection of the
dual-edge velocities, the prescribed Dirichlet velocities are injected in the
dual-edge velocity to ensure that the final div-free dual-edge velocities exactly
match the prescribed velocities. Finally, the element-velocity is projected
onto the div-free subspace as

v = v∗ − 1

ρ
(Bλ)e (34)

Once the divergence-free velocities have been obtained, an initial pressure,
consistent with the initial and boundary conditions, is computed. We begin
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with the momentum written in terms of the acceleration using the divergence-
free velocity, v0,

a0 =
1

ρ

{
ρf +∇ · [µ(∇v0 + (∇v0)T )]−∇ · (ρv0v0)−∇p0

}
(35)

Since ∇ · v0 = 0, ∇ · a0 = 0, thus we form the pressure-Poisson equation for
p0

∇ · 1
ρ
∇p0 = ∇ · 1

ρ

{
ρf +∇ · [µ(∇v0 + (∇v0)T )]−∇ · (ρv0v0)

}
(36)

Using the “partial acceleration”,

ã =
1

ρ

{
ρf +∇ · [µ(∇v0 + (∇v0)T )]−∇ · (ρv0v0)

}
(37)

the continuous PPE is written as

∇ · 1
ρ
∇p0 = ∇ · ã, (38)

where p0 = p̂0 on Γp. The partial acceleration is computed as

∫

Ωe

ρãdΩe =

∫

Ωe

ρfdΩe+

∫

Ωe

∇· [µ(∇v0+(∇v0)T )]dΩe−
∫

Ωe

∇· (ρv0v0)dΩe

(39)
Dual-edge accelerations are computed following the same procedure outlined
for the dual-edge velocities. For boundaries where a time-dependent velocity
is prescribed, e.g., FSI, we impose ãf = ∂v/∂t, otherwise ãf = 0.

Using the same finite element formulation, the weak form of Eq. (38)
leads to a linear system of equations, Kpp

0 = D(ã). Solving for p0, we have
the initial pressure and velocities, v0, v0

f , that satisfy boundary and initial
conditions, and the well-posedness requirements, and are ready to start time-
marching.

2.2. Time-Step Estimation

There are three options for advection in the hybrid projection algorithm:
(1) explicit, (2) the so-called “semi-implicit” method with the primary vari-
ables treated implicitly and the reconstructed terms handled explicitly, and
(3) fully-implicit treatment with non-linear iteration. The details of these
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methods are beyond the scope of this paper, but here, we describe the im-
plications on the time-step.

The time-step estimation uses multiple characteristic element dimensions
and a centroid velocity that is projected onto the relevant element dimension.
The element dimensions, hξ, hη, and hζ are shown in Figure 4 for an arbitrary
hexahedral element. The velocity is projected onto each of the characteristic
length scales for the element, and for a given CFL condition, a minimum
over all possible length and velocity scale choices determines the acceptable
time-step size.

∆t = min

(‖hξ‖CFLmax

v · hξ
,
‖hη‖CFLmax

v · hη
,
‖hζ‖CFLmax

v · hζ

)
(40)

Here, CFLmax is prescribed based on the advection algorithm. Since we use
hybrid meshes, the element dimensions used in the time-step estimation are
specific to hexahedra, tetrahedra, wedge and pyramid elements.

Figure 4: Hexahedral element showing local length scales and directions for time-step
estimation.

For the explicit advection, a strict CFLmax ≤ 1 condition is required.
For the implicit advection, the algorithm is unconditionally stable for scalar
linear advection. For the Navier-Stokes equations, a sharp stability estimate
is not available, however, in our experience computing a wide variety of flows
indicates numerical stability with 5 ≤ CFLmax <∼ 10−20 for time-accurate
problems. The fully-implicit algorithm is unconditionally stable, but requires
non-linear iteration at each time-step.
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3. Monotonicity-Preserving Advection

One of the most important aspects of any CFD solution algorithm for
high Reynolds number flows is the numerical discretization of the advection
terms. This section outlines the principal aspects of the advection method
using a prototypical scalar conservation law

∂u

∂t
+∇ · f(u, c) = 0 in Ω× (0, T ) (41)

where f(u, c) = cu is the physical flux, c is the advective velocity, and u is
the dependent variable. Eq. (41) is subject to initial conditions

u(x, 0) = u0(x) ∀ x ∈ Ω (42)

and boundary conditions
u = û on ΓD (43)

and
(f · n) = (f̂ · n) on ΓN (44)

where Γ = ΓD ∪ ΓN . Here, û and f̂ are prescribed values of the conserved
variable and the corresponding flux on the boundary, respectively.

The discontinuous Galerkin formulation proceeds by discretizing in space,
e.g., with quadrilaterals, triangles, or some combination. At each time t ∈
[0, T ], an approximate solution uh is sought in the finite element space of
discontinuous functions W h. In order to determine the approximate solution,
the weak formulation is required, i.e., on each element

∫

Ωe

wh

{
∂uh

∂t
+∇ · f(uh, c)

}
dΩe = 0 ∀wh ∈ W h (45)

where Ωe is the element volume. Applying the divergence theorem yields

d

dt

∫

Ωe

whuhdΩe+

∮

Γe

whf(uh, c)·ndΓe−
∫

Ωe

∇wh·f(uh, c)·ndΩe = 0, ∀wh ∈ W h

(46)
If the test function, wh, is chosen to be piecewise-constant over each element,
a finite volume formulation is recovered. We chose wh, such that

d

dt

∫

Ωe

1 uhdΩe +

∮

Γe

1 f(uh, c) · ndΩe = 0 (47)
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Remark 1. In order to provide compatibility with modern piecewise lin-
ear interface construction (PLIC) based volume-tracking algorithms that are
based on a finite volume formalism, we choose piecewise-constant test func-
tions for the hybrid projection algorithm in the Hydra toolkit. However, it
should be noted that this choice does not restrict the current methods or soft-
ware from extension to include higher-order (higher than linear) reconstruc-
tion techniques or the incorporation of higher-order test functions.

Integrating Eq. (47) over a time-step,

∫ t′=t+∆t

t′=t

du

dt
dt′ +

1

Ωe

∫ t′=t+∆t

t′=t

∮

Γe

f(uh, c) · ndΓedt′ = 0 (48)

which permits the definition of a time-averaged (or numerical) flux,

F · n ≈ 1

∆t

∫ t′=t+∆t

t′=t

f(uh, c) · ndt′ (49)

yielding ∫ t′=t+∆t

t′=t

du

dt
dt′ +

1

Ωe

∮

Γe

F(uh, c) · ndΓe = 0 (50)

There are many ways to formulate the numerical approximation to the
physical flux. We use the local Lax-Friedrichs flux which is an approximate,
two-point, monotone, Lipschitz flux. At a given dual-edge, i, the numerical
flux is defined as

F i · ni =
1

2

{
(f i(u

−
i ) + f i(u

+
i )) · ni − a(u+

i − u−
i )
}

(51)

where a is the maximal eigenvalue of the flux Jacobian and the (normal) flux
Jacobian is (

∂f i
∂u

)
· ni = ci · ni (52)

Thus, for the scalar advection problem, a is the normal velocity at a cell face.
Figure 5(a) shows the +/− states used in the numerical flux. By conven-

tion, the − state is always located on the inside of the cell, and the + state
is based on the adjacent cell and is on the positive normal side of the cell.
We associate the two elements as vertices of the edge in the dual grid and
assign ownership of the outward facing normal and face area in a dual-edge
data structure.
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The evaluation of the numerical flux relies on multi-dimensional recon-
struction of the field variables at the ± locations of each cell as shown in
Figure 5. The reconstruction of the field at face i in a given cell i is com-
puted using the limited gradient as

u−
i = u+ φ∇cu · ~δri, (53)

with the + values reconstructed from the adjacent cell and its limited gradient
and cell-averaged data. Figure 5(b) shows the reconstruction at a typical cell
face. Here, ∇c indicates a centered gradient with φ ∈ [0, 1] the slope limiter,
discussed in the following section. A detailed study of gradient estimation
techniques for unstructured grids may be found in Chapters 7 – 8 of [37].

i
n

+

−

−

−

+

+

(a) Cell ± locations

i
n

e

i
= −x x

i
δr

+

+
+

−

−
−

(b) Reconstruction

Figure 5: Cell face locations for reconstructed +/− values used in the numerical flux
evaluation.

3.1. Phase-speed and Artificial Diffusivity

The performance of the numerical flux and the associated advection scheme
may be understood in terms of the phase error and artificial diffusivity intro-
duced by the discretization. A detailed discussion of the analysis techniques
used to assess numerical performance may be found in [38–40].

We consider the performance of the semi-discrete method described above.
In this context, the numerical phase speed is the ratio of the apparent discrete
advective speed and the true speed, c̃/c. The diffusive behavior is captured in
terms of an inverse Péclet number which, for a purely non-diffusive method,
1/Peart = 0.

Figure 6 shows the non-dimensional phase speed and artificial diffusivity
as functions of the non-dimensional wave number up to the grid Nyquist
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limit, 2∆x/λ = 1.0. The values that the associated limiters may achieve
based on the input data are shown in the inset. There are four cases that
correspond to various forms of data that may be present on the grid.

1. φm−1 = φm = 0: This corresponds to 2∆x signals on the grid where the
slope limiters are fully activated. In this case, the phase speed corre-
sponds to that associated with a central-differences (CD) discretization
with first-order upwinding (FOU) at the Nyquist grid limit. In other
words, the method attempts to completely damp these signals to avoid
oscillatory solutions.

2. φm−1 = 0, φm = 1: In this case a change in slope occurs with smooth
data to the right. The artificial diffusivity is reduced to 50% of the
first-order upwind case, and the phase-speed is increased at long wave-
lengths. This has the effect of controlling oscillations and avoiding
signal separation due to dispersive effects.

3. φm−1 = 1, φm = 0: In this case as well a change in slope occurs with
smooth-data to the left. The artificial diffusivity is reduced to 50% of
the first-order upwind case, and the phase-speed is decreased at long
wavelengths. Similar to the previous case, this case controls oscillations
and avoids signal separation due to dispersive effects.

4. φm−1 = 1, φm = 1: In this case smooth data is present and there is
no limiting. The artificial diffusivity is zero and corresponds to the
limit of pure advection, and the phase-speed is that associated with
a second-order central-difference approximation of the gradient. This
corresponds to the case when all signals are adequately resolved on the
grid.

The advection methods used here are nonlinear, monotonicity-preserving,
and follow the behavior described above. For smooth data the methods are
non-dissipative and deliver second-order spatial convergence. For the limit of
oscillatory data at the 2∆x grid Nyquist limit, the methods attempt to damp
only the short wavelength data while preserving the resolved long wavelength
data on the grid.

Various metrics are available that may be used to assess the accuracy of
a solution method or, alternatively, to verify its correctness. We are inter-
ested in extracting the leading order terms in the discretization error. The
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Figure 6: Phase speed and artificial diffusivity as a function of the non-dimensional wave
number. The bounding phase and diffusivity behavior for first-order upwind (FOU) and
central-differences (CD) bound the behavhior of the nonlinear advection method.

discretization error is comprised of both spatial and temporal errors and is
defined as the difference between the computed and exact solutions,

ei = ue
i − ui, (54)

where the exact grid function, ue
i , is defined in terms of the exact solution,

ue
i , as

ue
i =

1

Ωi

∫

Ωi

ue
idΩ. (55)

It can be shown that the discretization error is proportional to the truncation
error which permits the discretization error to be written as

ej = αhp + β∆tq +H.O.T., (56)

where p corresponds to the order of the spatial discretization, q to the order
of the temporal discretization, and H.O.T. indicates higher-order terms.
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It is typical to use reconstruction methods that are matched with the
time integrator, i.e., p = q. In addition, the time step and mesh size are
related by the CFL number,

∆t =
CFL h

λ
(57)

where λ is the magnitude of the largest eigenvalue of the flux Jacobian. This
permits the discretization error to be written as

ej =

(
α + β

CFL

λ

)
hp +H.O.T. (58)

or, in a simplified form as, ‖e‖ = αhp +H.O.T. For all of the computations
presented in this paper, errors are measured in terms of a discrete L1 norm,

‖e‖ =

∑
i |ue

i − ui|∑
i |ue

i |
. (59)

Using a sequence of two grids, the global error metric may be used to extract
the order of accuracy p, e.g.,

‖e1‖
‖e2‖

=

(
h1

h2

)p

, (60)

where the subscript refers to the grid level. For all calculations presented
here, h1/h2 = 2.

For smooth solutions we expect to recover an order of accuracy that is
consistent with the formal accuracy of the method, e.g., O(h2) for a formally
second-order spatial discretization (p = 2). For solutions with non-smooth
data, e.g., shocks, we expect first-order or O(h) convergence rates measured
in the L1 norm. In addition to the order of accuracy, the magnitude of the
measured error is also useful in a comparison between different methods.

The ensuing discussion presents a series of convergence studies that il-
lustrate the behavior of the advection algorithm. An emphasis is placed
on testing the behavior on meshes with mixed element topology. To test the
convergence behavior of the advection method, we first consider a translating
Gaussian. Using Eq. 41 with initial conditions

u(x, 0) = exp

{
−(x− x)2

2σ2
0

}
, (61)
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where x = x0 +
∫ t

0
c(τ)dτ , and σ2 = σ2

0 + 2κt, the exact solution is

û(x, t) =
σ0

σ
exp

{
−(x− x)2

2σ2

}
. (62)

For the numerical solution a computational domain with 0 ≤ x ≤ 15
is used. The initial conditions are specified as c = (1.0, 0) and σ0 = 0.25
with the Gaussian centered at x0 = 2.05. To compute convergence rates,
the solution error is computed as a function of time at t = 2.5, 5.0, 10.0 time
units for a variety of grids discretized with triangular, quadrilateral elements
and mixed-topology (triangles and quadrilaterals).

Three mixed-topology cases are presented here: a) a longitudinally split
domain with quadrilaterals on the top, b) a mixed domain starting with a
patch of quadrilaterals, and c) a mixed domain starting with a patch of tri-
angles. Additional results may be found for all-triangle and all-quadrilateral
meshes in [37]. Figure 7 shows the mesh topology and L1 error for the three
mixed-topology cases. The L1 error exhibits a convergence rate of h2 on all
cases as the meshes are refined.

We next consider pure quadrilateral and mixed quadrilateral-triangular
discretizations. The rotating cone problem has been documented in [41]. In
Eq. (41), we use c = (−ω y, ω x), and ω = π/100. The domain is defined on
−100 ≤ x ≤ 100, and −100 ≤ y ≤ 100. The exact solution is

û(x, y, t) = exp

{
−(x− x)2

2σ2
0

− (y − y)2

2σ2
0

}
, (63)

where x = x0 +
∫ t

0
cx(τ)dτ , and y = y0 +

∫ t

0
cy(τ)dτ .

Figure 8(a) shows the pure quadrilateral mesh, and Figure 8(b) shows
the L1 error at three times. Similarly, Figure 8(c) – (d) shows a hybrid tri-
quad mesh and the associated L1 error. In both cases, an overall h2 rate is
observed.

4. Results

This section presents several verification problems to illustrate the con-
vergence characteristics of the hybrid projection algorithm. A more detailed
validation study using implicit large-eddy simulation maybe found in [42, 43],
along with several verification and validation studies using multiple RANS
models in [42].
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(a) Mixed Mesh – Longitudinal Split
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Figure 7: Mesh configuration for the case-a tri-quad meshes, and L1 errors at t = 2.5, 5.0,
and 10.0 for the case-a tri-quad meshes.
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(a) All Quadrilaterial Mesh
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Figure 8: Mesh configuration for the quadrilateral meshes, and L1 error as a function of
time for the quadrilateral meshes.
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4.1. Skewed Lid-Driven Cavity

The domain geometry for the skewed lid-driven cavity problem [44], is
shown in Figure 9. On the bottom and side walls, no-slip and no-penetration
boundary conditions are prescribed. Along the top “lid”, a no-penetration
boundary condition with unit velocity is prescribed. A single nodal pres-
sure was prescribed in the bottom right-hand corner to set the hydrostatic
pressure level, and make the pressure-Poisson equation non-singular.

Figure 9: Skewed lid driven cavity geometry (reproduced from [44] without permission).

We computed five configurations in which the domain is skewed with
degrees: α = 15◦, 30◦, 45◦, 60◦, and 90◦. Each configuration is computed
using three grid resolutions with 32× 32, 128× 128 and 256× 256 elements.
The meshes use uniform mesh spacing, albeit with severely skewed elements
for the 15◦ and 30◦ cases. Since only the final steady-state solution is of
interest, all computations employ backward-Euler time integration with time-
step control that bounds the CFL number at CFLmax = 10. Time history
plots in Figure 10a of the global kinetic energy, KE = 1

2

∫
Ω
ρ v·v dΩ, indicate

that a steady-state solution is reached by t ≈ 10 time units. All problems
for this verification problem are run for t = 40 time units.

Fig 10b shows the time-asymptotic behavior of the kinetic energy as a
function of the mesh size in x direction, h. Here, for each cavity angle, a
direct polynomial fit of the asymptotic kinetic energy data was performed.
For each cavity angle, the results indicate O(h2) convergence in all velocity
components. Velocity data is extracted along the red center lines shown in
Figure 9 for direct comparison with the reference data provided in [44]. Two
components of the velocity are plotted in Figure 11 along their respective
center-lines.
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(b) Convergence
Figure 10: (a) kinetic energy vs. time for the 128× 128 grids for α = 15, 30, 45, 60, 90o in
terms of mesh size h, and (b) convergence behavior of the global kinetic energy vs. h for
the lid-driven skewed cavities.

4.2. De Vahl Davis Differentially-Heated Cavity

To verify the numerical solution of buoyancy-driven flow, we computed
the differentially-heated cavity case of De Vahl Davis [45, 46]. Figure 12a
shows the computational domain and mesh used. The four meshes used here
are in shown Figure 12b.

The non-dimensional governing equations for time-dependent thermal
convection in this case are

∂v

∂t
+ v · ∇v = −∇P + Pr∇2v +RaPrk̂Θ (64)

∇ · v = 0 (65)

∂Θ

∂t
+ v · ∇Θ = ∇2Θ (66)

where v, P and Θ are the velocity, the deviation from hydrostatic pressure,
and temperature respectively, and k̂ is the unit vector in the z-direction.
These non-dimensional equations were obtained using the characteristic length,
L, velocity, V = α/L, time scale, τ = L2/α, and pressure, P̃ = ρV 2 as de-
scribed in De Vahl Davis [46]. Here, ρ is the mass density, g the gravitational
acceleration, α = k/ρCp is the thermal diffusivity, and ν is the kinematic
viscosity. The Prandtl number is Pr = ν/α and fixed at Pr = 0.71. The
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Figure 11: Velocity profiles for lid-driven cavity flow: (a) – (b) α = 15◦, (c) – (d) α = 30◦,
(e) – (f) α = 45◦, (g) – (h) α = 60◦, (i) – (j) α = 90◦.
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(a)

Mesh Mesh Size h
A 40× 40 2.500E-2
B 80× 80 1.250E-2
C 160× 160 6.250E-3
D 320× 320 3.125E-3

(b)
Figure 12: De Vahl Davis problem setup with (a) the mesh configuration, and (b) the
meshes and associated sizes.

Rayleigh number is

Ra =
gβ(Th − Tc)L

3

να
, (67)

where Th − Tc is the temperature difference between the hot and cold walls,
and β the coefficient of thermal expansion. The non-dimensional temperature
is defined in terms of the wall temperature difference

Θ =
T − Tc

Th − Tc

, (68)

where Th and Tc are the prescribed temperatures of the hot and cold walls,
respectively.

The boundary conditions are no-slip and no-penetration walls with the
top and bottom insulated. The left wall is held at a hot temperature, and
the right wall is at the cold temperature corresponding to Θ = 1 along x = 0
and Θ = 0 along x = 1. The initial conditions are given by v = 0 and
T = (Th + Tc)/2 which corresponds to Θ(x, 0) = 1/2.

Four calculations are documented below for 103 ≤ Ra ≤ 106 using meshes
labeled by A to D. In order to minimize the volume of data presented for
this verification study, one mesh resolution at each Ra was selected. The
mesh resolution was selected using the temperature error data in Figure 8 of
[46], and extrapolating the error level to a nearly constant level of 1% for all
Ra. The total time scale of each calculation is 2.0 time units which corre-
sponds to twice the diffusional time-scale for the differentially-heated cavity.
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This is sufficient for the flow to establish steady-state conditions. Time-
step control that limits the maximum CFL to CFLmax = 40 is used with
the backward-Euler time integrator. Time-integration is carried out until a
steady-state condition results, monitored in terms of the time-history of the
integrated wall heat transfer rate, velocity, temperature, and global kinetic
energy. Based on the kinetic energy, all simulations reach an approximate
steady state by 1 time unit. Surface-based time-history output is used to
monitor the velocity and temperature at the elements at the mid-side of the
vertical walls and to output the integrated heat transfer rate on the heated
wall.

Figure 13(a) – (d) shows the temperature distribution for the four Rayleigh
numbers considered. Figure 13(e) shows the variation in the Nusselt number
along the vertical heated wall for different Rayleigh numbers. Figure 13(b)
shows the time-history of the kinetic energy. Figure 13(c) and (d) show
the x-, and y-velocity profiles along the vertical and horizontal centerlines,
respectively.

A comparison of the computed results is given in Table 1 to data obtained
using Richardson extrapolation by De Vahl Davis [46]. The minimum and
maximum velocities are computed along the horizontal and vertical center-
lines of the cavity. The mean Nusselt number is computed as

Nu =
1

A

∫

Γ

∇Θ · n dΓ (69)

where A is the surface area of the domain. For all computations, a z-
dimension of ∆z = 0.0125 was used with L = 1 resulting in an area A =
0.0125. In order to compute the mean Nusselt number, the surface heat
transfer is scaled by 1/A. The minimum and maximum Nusselt numbers
were extracted from the non-dimensional heat flux distribution along the
heated wall.

4.3. Porous Medium

This verification problem computes fluid flow at the interface of a fluid
layer and a porous medium, first considered in [47]. The interface is setup by
confining the porous medium to the top half of a channel shown in Figure 14.
We use both a uniform and graded meshes in the convergence studies and
also verify the fully-implicit time stepping algorithm in the problem. For
details on porous drag and fully-implicit time stepping see [37].
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Figure 13: Temperature distribution at t = 2 for (a) Ra = 103 using mesh A, (b) Ra = 104

using mesh B, (c) Ra = 105 using mesh C, and (d) Ra = 106 using mesh D, and (e) Nusselt
number profile along the vertical heated wall, (f) global kinetic energy time history, (g) x
velocity along the vertical centerline, and (h) z-velocity along the horizontal centerline for
Ra = 103, 104, 105, 106.
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Rayleigh Number (Ra)
103 104

Ref. [46] 80× 80 % Error Ref. [46] 160× 160 % Error
vxmax

3.659 3.648 0.300 16.178 16.179 0.006
vzmax

3.697 3.692 0.135 19.617 19.574 0.219

Nu 1.118 1.118 0.000 2.243 2.246 0.134
Numin 0.692 0.691 0.144 0.586 0.585 0.171
Numax 1.505 1.507 0.133 3.528 3.536 0.227

105 106

Ref. [46] 320× 320 % Error Ref. [46] 320× 320 % Error
vxmax

34.73 34.79 0.173 64.63 64.91 0.433
vzmax

68.59 68.62 0.044 219.36 220.33 0.442
Nu 4.519 4.523 0.089 8.800 8.841 0.466

Numin 0.729 0.727 0.274 0.989 0.978 1.112
Numax 7.717 7.727 0.130 17.925 17.643 1.573

Table 1: Maximum velocities, mean, minimum and maximum Nusselt numbers compared
to those reported De Vahl Davis [46] using Richardson extrapolation.

Using a volume-averaging approach, the averaged form of the mass and
momentum conservation equations for a fluid-saturated “constant” porosity
medium that takes into account the presence of solid boundaries (Brinkman
correction [48]) and inertial effects (Forchheimer correction) is [49, 50].

∇ · 〈v〉 = 0. (70)

ρ

ǫ

(
∂〈v〉
∂t

+
1

ǫ
〈v〉 · ∇〈v〉

)
= −∇〈p〉β+∇·µβ∇〈v〉−µK−1〈v〉−ρCFK

− 1

2 |〈v〉|〈v〉,
(71)

where, 〈p〉β is the intrinsic phase-averaged pressure, 〈v〉 is the superficial
phase-averaged velocity in the porous medium, µβ is the Brinkman effective
viscosity, CF is the Forchheimer coefficient, and K is the permeability tensor.
The Forchheimer coefficient CF is expressed as

CF =
1.75√
150ǫ3

. (72)
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Figure 14: Schematic of the Beavers-Joseph problem.

The flow is driven by specifying inlet and outlet pressures as

p = 〈p〉β = pin at x = 0 (73)

p = 〈p〉β = 0 at x = L, (74)

and, wall boundary conditions that consist of

v = 〈v〉 = 0 at y = ±H. (75)

At the interface, both the tangential velocity and the vertical shear of the
tangential velocity must match:

〈vx〉|0+ = vx|0− (76)

d〈vx〉
dy

∣∣∣∣
0+

=
dvx
dy

∣∣∣∣
0−

. (77)

A series of five meshes with uniform spacing is considered for the initial
convergence study. As a first measure, we consider the asymptotic value of
the global kinetic energy. Richardson extrapolation was used to accelerate
the convergence of the series of values of steady-state kinetic energy at the
five resolutions to estimate the value at infinite resolution. Subsequently, the
kinetic energy error measures are computed with respect to this extrapolated
value. An analytical solution is developed in Appendix §6 and used to directly
assess errors in the computed velocity field.

Error on the five meshes is shown using filled blue circles in Fig. 15a.
Also shown is the least-squares linear fit of the error on the five successively
refined meshes; with the slope indicated in the legend. Since the resolution
is successively doubled, a base-2 logarithmic scaling is used for the axes to
facilitate visual evaluation of the scaling of error. A close to quadratic reduc-
tion of the error is clear in this figure for each level of mesh refinement. In
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Fig. 15b, the velocity profile computed on the series of five meshes is plotted.
Also plotted is the above exact solution in red. To facilitate comparison, the
velocity profiles on the different meshes are offset by a constant value. Re-
duction in error with increasing resolution is visually evident in going from
h = 1/20 to h = 1/40 to h = 1/80.

(a) Global Kinetic Energy (b) Velocity Profiles

Figure 15: (a) Error in the global kinetic energy converges approximately quadratically,
a series of uniform and a series of graded meshes, and (b) velocity profile in the Beavers-
Joseph problem at five different resolutions of an uniform mesh.

To better quantify errors in the velocity profile, Fig. 16a shows profiles
of error in velocity as a function of the cross-channel dimension. In this
figure, a base-2 logarithmic scaling is used again to facilitate visual evaluation
of reduction in error with increasing resolution. The peak fractional error
occurs in the porous medium close to the interface with the pure fluid region.
Further, this peak error can be seen to scale quadratically with resolution:
a two-fold increase in resolution is seen to reduce error approximately by a
factor of four.

To examine the scaling of the global error in velocity profile, the L2 norm
of the profile of errors is computed and plotted using filled blue circles in
Fig. 16b. The corresponding linear-least-squares fit is shown as a green line.
Its slope of two, indicated in the legend, verifies quadratic convergence.

We next consider a series of five graded meshes. In this case, the mesh
spacing in the flow direction is held constant and the same as before. Only
the cross-channel mesh spacing is graded to allow increased resolution in
the region of boundary and interface layers. This was achieved by using
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(a) Fractional Errors (b) L2 Error on Graded Meshes

Figure 16: (a) fractional errors—errors normalized by exact solution are considered. Errors
are largest in the porous region close to the fluid interface, (b) convergence of L2 norm
error in velocity profile using uniform and graded meshes is seen to be quadratic or close
to quadratic.

geometric stretching factors that enforced the ratio of the largest to the
smallest mesh size in the cross-channel direction to be ten at each of the
resolutions. Figure 17a shows the velocity profile using the same format
as before. A reduction in error with respect to the exact solution, and as
compared to error on the uniform mesh, is visually evident at low resolutions,
attesting to the utility of the graded mesh.

The reduction in error is quantified in Fig. 16b. Here the L2 error in
the velocity profile with the graded mesh is seen to be consistently lower
than that with uniform mesh spacing (by a factor of between two to three).
Further, a close to quadratic scaling of this error is seen on the graded mesh
as well. The slightly lower convergence rate in this measure is not clearly
understood. Indeed, this lower rate may not be significant, because the global
kinetic energy error on the graded mesh converges slightly faster than on the
uniform mesh.

Using the same set of five uniform meshes and five graded meshes con-
sidered above, time stepping is changed from the default semi-implicit pro-
jection method to the fully-implicit (Picard) method. While the time step in
the semi-implicit projection method was limited to not exceed CFLmax = 10,
this limit was chosen to be CFLmax = 100 in the fully-implicit calculation.
The same set of diagnostics considered previously are shown for this set of
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(a) Semi-Implicit Projection (b) Fully-Implicit Projection

Figure 17: Velocity profile using a graded mesh at five different resolutions using (a)
semi-implicit projection, and (b) fully-implicit projection.

computations in Figures 17b, 18a, and 18b. Close correspondence in these
diagnostics between the semi-implicit and fully-implicit computations verifies
the accuracy of the fully-implicit discretization of the advection term. Ul-
timately, the choice between the semi-implicit and fully-implicit is problem
dependent with a trade-off between overall computational time and time-step
size. In general, when the number of non-linear iterations is smaller than the
ratio of the fully- and semi-implicit time-step sizes, the fully-implicit method
delivers shorter overall computational times.

5. Summary & Future Work

A new second-order, incremental projection algorithm for transient, in-
compressible viscous flows has been introduced. The hybrid finite-elem-
ent/finite-volume discretization is locally-conservative, circumvents stabil-
ity problems due to the divergence operator without requiring a stabilized
Petrov-Galerkin formulation or Rhie-Chow interpolation. Second-order ac-
curate discretization of advection has been demonstrated on mixed element
topology meshes. The algorithm is extensible, permitting the incorporation
of features such as porous media flow, RANS and LES turbulence models,
and semi-, and fully-implicit time stepping. A series of verification problems
have been used to illustrate the convergence properties of the algorithm.
The temporal stability properties have been demonstrated on a range of
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(a) L2 Velocity Errors (b) Global Kinetic Energy

Figure 18: (a) convergence of L2 norm error in velocity profile using fully-implicit time
stepping on uniform and graded meshes is quadratic or close to quadratic and is seen to
be approximately the same as with semi-implicit time stepping, (b) convergence of error
in global kinetic energy when using fully-implicit time stepping on a series of five uniform
and graded meshes is quadratic or close to quadratic, closely resembling convergence with
semi-implicit time stepping.

problems with 2 ≤ CFL ≤ 100. Future work will report on the develop-
ment of a fully-implicit hybrid projection algorithm, extensions to arbitrary
Lagrangian-Eulerian computations, conjugate heat transfer, and Eulerian
multiphase flows.
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6. Appendix

In order to develop an exact solution for the Beavers-Joseph verification
problem, discussed in §4.3, it is assumed that the thickness of the momentum
boundary layer in the porous medium is smaller than H/2. This assumption
is equivalent to an assumption of flatness and symmetry of the velocity profile
at H/2:

d2〈vx〉
dy2

= 0 at y =
H

2
(78)

d〈vx〉
dy

= 0 at y =
H

2
(79)

We follow an approach analogous to that used by Vafai and Kim, 1990 [51].
The momentum equation in the porous medium is

0 = −d〈p〉β
dx

+
µ

ǫ

d2〈vx〉
dy2

− µK−1〈vx〉 − ρCFK
− 1

2 〈vx〉2. (80)

In the (pure) fluid region, the momentum equation reduces to

0 = −dp

dx
+

d2vx
dy2

(81)

The problem therefore reduces to solving the above pair of equations for
vx(y), 〈vx〉(y) subject to the boundary and matching conditions in Eq. (75)
– (79).

The exact solution is then a combination of three piecewise solutions that
satisfy the appropriate matching conditions:

• In the porous region H
2
≤ y ≤ H , the solution from the previous section

can be used.

• In the porous region 0 ≤ y ≤ H
2
, a solution has to be found that satisfies

Eq. (79) – (77).

• In the fluid region −H ≤ y ≤ 0 a solution has to be found that satisfies
Eq. (77) and the boundary condition Eq. (75) at y = −H .

In the porous region 0 ≤ y ≤ H
2
, we again assume that the half-width of

the porous layer is greater than interface layer. Then considering Eq. (80)
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independently within the interface layer and the central porous layer, the
pressure gradient can be eliminated to yield

d2〈vx〉
dy2

= B (〈vx〉 − 1) + A
(
〈vx〉2 − 1

)
. (82)

Again, the above equation is valid in the region 0 ≤ y ≤ H
2
. Here, y has

been non-dimensionalized by H and 〈vx〉 has been non-dimensionalized by
〈vx〉|H/2. In the above equation,

A =
ǫH2CF 〈vx〉|H/2

ν
√
K

, (83)

B =
ǫH2

K
. (84)

Similarly, in the fluid region −H ≤ y ≤ 0, the pressure gradient can be
eliminated to reduce Eq. (81) to

d2vx
dy2

= −(A +B). (85)

The above equation is readily integrated to yield

vx = −A +B

2
(y + 1)2 +

(
vx|i +

A+B

2

)
(y + 1) (86)

Using d〈vx〉
dy

as the integrating factor in Eq. (82) yields

d〈vx〉
dy

= − (〈vx〉 − 1)

√
2A

3
(〈vx〉 − u1) (87)

where

u1 = −
(
2 +

3B

2A

)
.

The interface matching condition reduces to an algebraic equation that
can then be solved for the interface velocity using Newton’s method:

vx|i −
A+B

2
= − (vx|i − 1)

√
2A

3
(vx|i − u1). (88)
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With this, Eq. (86) is fully determined and provides the exact parabolic
profile in the fluid region.

Finally, following Vafai and Kim, 1990, Eq. (82) can be integrated to
yield

〈vx〉 = u1 + (1− u1)

(
1 + z

1− z

)2

(89)

where

z =

√
vx|i − u1 −

√
1− u1√

vx|i − u1 +
√
1− u1

exp

[
−y

√
2A

3
(1− u1)

]
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