DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 1.92 Angstrom Zinc-Free APOBEC3F Catalytic Domain Crystal Structure

Abstract

The APOBEC3 family of DNA cytosine deaminases is capable of restricting the replication of HIV-1 and other pathogens. Here, we report a 1.92 Å resolution crystal structure of the Vif-binding and catalytic domain of APOBEC3F (A3F). This structure is distinct from the previously published APOBEC and phylogenetically related deaminase structures, as it is the first without zinc in the active site. We determined an additional structure containing zinc in the same crystal form that allows direct comparison with the zinc-free structure. In the absence of zinc, the conserved active site residues that normally participate in zinc coordination show unique conformations, including a 90 degree rotation of His249 and disulfide bond formation between Cys280 and Cys283. We found that zinc coordination is influenced by pH, and treating the protein at low pH in crystallization buffer is sufficient to remove zinc. Zinc coordination and catalytic activity are reconstituted with the addition of zinc only in a reduced environment likely due to the two active site cysteines readily forming a disulfide bond when not coordinating zinc. We show that the enzyme is active in the presence of zinc and cobalt but not with other divalent metals. Furthermore, these results unexpectedly demonstrate that zincmore » is not required for the structural integrity of A3F and suggest that metal coordination may be a strategy for regulating the activity of A3F and related deaminases.« less

Authors:
 [1];  [1];  [1];  [1];  [1]
  1. Univ. of Minnesota, Minneapolis, MN (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE; NIH NIGMS; NIH-ORIP HEI
OSTI Identifier:
1255304
Alternate Identifier(s):
OSTI ID: 1425518
Grant/Contract Number:  
AC02-06CH11357; GM095558; GM109770; P41 GM103403; S10 RR029205
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Molecular Biology
Additional Journal Information:
Journal Volume: 428; Journal Issue: 11; Journal ID: ISSN 0022-2836
Publisher:
Elsevier
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; cytosine deaminase; zinc-free and zinc-bound APOBEC3 structures; HIV-1 restriction factor; APOBEC3 regulation; X-ray crystallography

Citation Formats

Shaban, Nadine M., Shi, Ke, Li, Ming, Aihara, Hideki, and Harris, Reuben S. 1.92 Angstrom Zinc-Free APOBEC3F Catalytic Domain Crystal Structure. United States: N. p., 2016. Web. doi:10.1016/j.jmb.2016.04.026.
Shaban, Nadine M., Shi, Ke, Li, Ming, Aihara, Hideki, & Harris, Reuben S. 1.92 Angstrom Zinc-Free APOBEC3F Catalytic Domain Crystal Structure. United States. https://doi.org/10.1016/j.jmb.2016.04.026
Shaban, Nadine M., Shi, Ke, Li, Ming, Aihara, Hideki, and Harris, Reuben S. Sat . "1.92 Angstrom Zinc-Free APOBEC3F Catalytic Domain Crystal Structure". United States. https://doi.org/10.1016/j.jmb.2016.04.026. https://www.osti.gov/servlets/purl/1255304.
@article{osti_1255304,
title = {1.92 Angstrom Zinc-Free APOBEC3F Catalytic Domain Crystal Structure},
author = {Shaban, Nadine M. and Shi, Ke and Li, Ming and Aihara, Hideki and Harris, Reuben S.},
abstractNote = {The APOBEC3 family of DNA cytosine deaminases is capable of restricting the replication of HIV-1 and other pathogens. Here, we report a 1.92 Å resolution crystal structure of the Vif-binding and catalytic domain of APOBEC3F (A3F). This structure is distinct from the previously published APOBEC and phylogenetically related deaminase structures, as it is the first without zinc in the active site. We determined an additional structure containing zinc in the same crystal form that allows direct comparison with the zinc-free structure. In the absence of zinc, the conserved active site residues that normally participate in zinc coordination show unique conformations, including a 90 degree rotation of His249 and disulfide bond formation between Cys280 and Cys283. We found that zinc coordination is influenced by pH, and treating the protein at low pH in crystallization buffer is sufficient to remove zinc. Zinc coordination and catalytic activity are reconstituted with the addition of zinc only in a reduced environment likely due to the two active site cysteines readily forming a disulfide bond when not coordinating zinc. We show that the enzyme is active in the presence of zinc and cobalt but not with other divalent metals. Furthermore, these results unexpectedly demonstrate that zinc is not required for the structural integrity of A3F and suggest that metal coordination may be a strategy for regulating the activity of A3F and related deaminases.},
doi = {10.1016/j.jmb.2016.04.026},
journal = {Journal of Molecular Biology},
number = 11,
volume = 428,
place = {United States},
year = {Sat Apr 30 00:00:00 EDT 2016},
month = {Sat Apr 30 00:00:00 EDT 2016}
}

Journal Article:

Citation Metrics:
Cited by: 27 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The AID/APOBEC family of nucleic acid mutators
journal, January 2008


Catalytic activity of APOBEC3F is required for efficient restriction of Vif-deficient human immunodeficiency virus
journal, February 2014


APOBEC3F Can Inhibit the Accumulation of HIV-1 Reverse Transcription Products in the Absence of Hypermutation
journal, January 2007

  • Holmes, Rebecca K.; Koning, Fransje A.; Bishop, Kate N.
  • Journal of Biological Chemistry, Vol. 282, Issue 4
  • DOI: 10.1074/jbc.M607298200

Stably Expressed APOBEC3F Has Negligible Antiviral Activity
journal, August 2010

  • Miyagi, Eri; Brown, Charles R.; Opi, Sandrine
  • Journal of Virology, Vol. 84, Issue 21
  • DOI: 10.1128/JVI.01249-10

APOBECs and virus restriction
journal, May 2015


A computational analysis of the structural determinants of APOBEC3’s catalytic activity and vulnerability to HIV-1 Vif
journal, December 2014


The ssDNA Mutator APOBEC3A Is Regulated by Cooperative Dimerization
journal, May 2015

  • Bohn, Markus-Frederik; Shandilya, Shivender M. D.; Silvas, Tania V.
  • Structure, Vol. 23, Issue 5
  • DOI: 10.1016/j.str.2015.03.016

Structural determinants of human APOBEC3A enzymatic and nucleic acid binding properties
journal, October 2013

  • Mitra, M.; Hercik, K.; Byeon, I. -J. L.
  • Nucleic Acids Research, Vol. 42, Issue 2
  • DOI: 10.1093/nar/gkt945

Crystal Structure of the DNA Deaminase APOBEC3B Catalytic Domain
journal, September 2015

  • Shi, Ke; Carpenter, Michael A.; Kurahashi, Kayo
  • Journal of Biological Chemistry, Vol. 290, Issue 47
  • DOI: 10.1074/jbc.M115.679951

The APOBEC3C crystal structure and the interface for HIV-1 Vif binding
journal, September 2012

  • Kitamura, Shingo; Ode, Hirotaka; Nakashima, Masaaki
  • Nature Structural & Molecular Biology, Vol. 19, Issue 10
  • DOI: 10.1038/nsmb.2378

Crystal Structure of the DNA Cytosine Deaminase APOBEC3F: The Catalytically Active and HIV-1 Vif-Binding Domain
journal, June 2013

  • Bohn, Markus-Frederik; Shandilya, Shivender M. D.; Albin, John S.
  • Structure, Vol. 21, Issue 6
  • DOI: 10.1016/j.str.2013.04.010

Structural determinants of HIV-1 Vif susceptibility and DNA binding in APOBEC3F
journal, November 2013

  • Siu, Karen K.; Sultana, Azmiri; Azimi, Farshad C.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3593

Structural Insights into HIV-1 Vif-APOBEC3F Interaction
journal, November 2015

  • Nakashima, Masaaki; Ode, Hirotaka; Kawamura, Takashi
  • Journal of Virology, Vol. 90, Issue 2
  • DOI: 10.1128/JVI.02369-15

Structure of the Vif-binding domain of the antiviral enzyme APOBEC3G
journal, May 2015

  • Kouno, Takahide; Luengas, Elizabeth M.; Shigematsu, Megumi
  • Nature Structural & Molecular Biology, Vol. 22, Issue 6
  • DOI: 10.1038/nsmb.3033

Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G
journal, February 2008

  • Chen, Kuan-Ming; Harjes, Elena; Gross, Phillip J.
  • Nature, Vol. 452, Issue 7183
  • DOI: 10.1038/nature06638

Crystal Structure of the APOBEC3G Catalytic Domain Reveals Potential Oligomerization Interfaces
journal, January 2010

  • Shandilya, Shivender M. D.; Nalam, Madhavi N. L.; Nalivaika, Ellen A.
  • Structure, Vol. 18, Issue 1
  • DOI: 10.1016/j.str.2009.10.016

Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications
journal, October 2008

  • Holden, Lauren G.; Prochnow, Courtney; Chang, Y. Paul
  • Nature, Vol. 456, Issue 7218
  • DOI: 10.1038/nature07357

Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G
journal, January 2009

  • Furukawa, Ayako; Nagata, Takashi; Matsugami, Akimasa
  • The EMBO Journal, Vol. 28, Issue 4
  • DOI: 10.1038/emboj.2008.290

First-In-Class Small Molecule Inhibitors of the Single-Strand DNA Cytosine Deaminase APOBEC3G
journal, January 2012

  • Li, Ming; Shandilya, Shivender M. D.; Carpenter, Michael A.
  • ACS Chemical Biology, Vol. 7, Issue 3
  • DOI: 10.1021/cb200440y

Crystal Structure of DNA Cytidine Deaminase ABOBEC3G Catalytic Deamination Domain Suggests a Binding Mode of Full-length Enzyme to Single-stranded DNA
journal, December 2014

  • Lu, Xiuxiu; Zhang, Tianlong; Xu, Zeng
  • Journal of Biological Chemistry, Vol. 290, Issue 7
  • DOI: 10.1074/jbc.M114.624262

APOBEC3F Determinants of HIV-1 Vif Sensitivity
journal, August 2014

  • Land, A. M.; Shaban, N. M.; Evans, L.
  • Journal of Virology, Vol. 88, Issue 21
  • DOI: 10.1128/JVI.02362-14

A Single Amino Acid in Human APOBEC3F Alters Susceptibility to HIV-1 Vif*
journal, December 2010

  • Albin, John S.; LaRue, Rebecca S.; Weaver, Jessalyn A.
  • Journal of Biological Chemistry, Vol. 285, Issue 52
  • DOI: 10.1074/jbc.M110.173161

The Local Dinucleotide Preference of APOBEC3G Can Be Altered from 5′-CC to 5′-TC by a Single Amino Acid Substitution
journal, November 2013

  • Rathore, Anurag; Carpenter, Michael A.; Demir, Özlem
  • Journal of Molecular Biology, Vol. 425, Issue 22
  • DOI: 10.1016/j.jmb.2013.07.040

Determinants of sequence-specificity within human AID and APOBEC3G
journal, May 2010


A Portable Hot Spot Recognition Loop Transfers Sequence Preferences from APOBEC Family Members to Activation-induced Cytidine Deaminase
journal, June 2009

  • Kohli, Rahul M.; Abrams, Shaun R.; Gajula, Kiran S.
  • Journal of Biological Chemistry, Vol. 284, Issue 34
  • DOI: 10.1074/jbc.M109.025536

Molecular basis of the attenuated phenotype of human APOBEC3B DNA mutator enzyme
journal, September 2015

  • Caval, Vincent; Bouzidi, Mohamed S.; Suspène, Rodolphe
  • Nucleic Acids Research, Vol. 43, Issue 19
  • DOI: 10.1093/nar/gkv935

Structure-Function Analyses Point to a Polynucleotide-Accommodating Groove Essential for APOBEC3A Restriction Activities
journal, December 2010

  • Bulliard, Y.; Narvaiza, I.; Bertero, A.
  • Journal of Virology, Vol. 85, Issue 4
  • DOI: 10.1128/JVI.01651-10

Impact of H216 on the DNA Binding and Catalytic Activities of the HIV Restriction Factor APOBEC3G
journal, April 2013

  • Harjes, S.; Solomon, W. C.; Li, M.
  • Journal of Virology, Vol. 87, Issue 12
  • DOI: 10.1128/JVI.03173-12

DNA cytosine and methylcytosine deamination by APOBEC3B: enhancing methylcytosine deamination by engineering APOBEC3B
journal, September 2015

  • Fu, Yang; Ito, Fumiaki; Zhang, Gewen
  • Biochemical Journal, Vol. 471, Issue 1
  • DOI: 10.1042/BJ20150382

Effect of zinc binding and precipitation on structures of recombinant human growth hormone and nerve growth factor
journal, November 2000


Selective Precipitation of Proteins
journal, February 2016


NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity
journal, May 2013

  • Byeon, In-Ja L.; Ahn, Jinwoo; Mitra, Mithun
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2883

The APOBEC-2 crystal structure and functional implications for the deaminase AID
journal, December 2006

  • Prochnow, Courtney; Bransteitter, Ronda; Klein, Michael G.
  • Nature, Vol. 445, Issue 7126
  • DOI: 10.1038/nature05492

Cytidine Deaminase. The 2·3 Å Crystal Structure of an Enzyme: Transition-state Analog Complex
journal, January 1994

  • Betts, Laurie; Xiang, Shibin; Short, Steven A.
  • Journal of Molecular Biology, Vol. 235, Issue 2
  • DOI: 10.1006/jmbi.1994.1018

Structure of Human Cytidine Deaminase Bound to a Potent Inhibitor
journal, February 2005

  • Chung, Sang J.; Fromme, J. Christopher; Verdine, Gregory L.
  • Journal of Medicinal Chemistry, Vol. 48, Issue 3
  • DOI: 10.1021/jm0496279

Biochemical and Structural Studies of A-to-I Editing by tRNA:A34 Deaminases at the Wobble Position of Transfer RNA ,
journal, September 2005

  • Elias, Youssef; Huang, Raven H.
  • Biochemistry, Vol. 44, Issue 36
  • DOI: 10.1021/bi050499f

The 1.48 Å Resolution Crystal Structure of the Homotetrameric Cytidine Deaminase from Mouse
journal, June 2006

  • Teh, Aik-Hong; Kimura, Makoto; Yamamoto, Masaki
  • Biochemistry, Vol. 45, Issue 25
  • DOI: 10.1021/bi060345f

The structure of a yeast RNA-editing deaminase provides insight into the fold and function of activation-induced deaminase and APOBEC-1
journal, May 2004

  • Xie, K.; Sowden, M. P.; Dance, G. S. C.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 21
  • DOI: 10.1073/pnas.0400493101

Crystal Structure of the Tetrameric Cytidine Deaminase from Bacillus subtilis at 2.0 Å Resolution ,
journal, February 2002

  • Johansson, Eva; Mejlhede, Nina; Neuhard, Jan
  • Biochemistry, Vol. 41, Issue 8
  • DOI: 10.1021/bi011849a

Crystal Structure of Yeast Cytosine Deaminase: INSIGHTS INTO ENZYME MECHANISM AND EVOLUTION
journal, March 2003

  • Ko, Tzu-Ping; Lin, Jing-Jer; Hu, Chih-Yung
  • Journal of Biological Chemistry, Vol. 278, Issue 21
  • DOI: 10.1074/jbc.M300874200

Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA
journal, January 2006

  • Losey, Heather C.; Ruthenburg, Alexander J.; Verdine, Gregory L.
  • Nature Structural & Molecular Biology, Vol. 13, Issue 2
  • DOI: 10.1038/nsmb1047

Inositol Hexakisphosphate Is Bound in the ADAR2 Core and Required for RNA Editing
journal, September 2005


The Structure of the Cytidine Deaminase−Product Complex Provides Evidence for Efficient Proton Transfer and Ground-State Destabilization ,
journal, April 1997

  • Xiang, Shibin; Short, Steven A.; Wolfenden, Richard
  • Biochemistry, Vol. 36, Issue 16
  • DOI: 10.1021/bi963091e

Crystal Structure of tRNA Adenosine Deaminase (TadA) from Aquifex aeolicus
journal, April 2005

  • Kuratani, Mitsuo; Ishii, Ryohei; Bessho, Yoshitaka
  • Journal of Biological Chemistry, Vol. 280, Issue 16
  • DOI: 10.1074/jbc.M414541200

Transition-state selectivity for a single hydroxyl group during catalysis by cytidine deaminase
journal, April 1995

  • Xiang, Shibin; Short, Steven A.; Wolfenden, Richard
  • Biochemistry, Vol. 34, Issue 14
  • DOI: 10.1021/bi00014a003

Structural, Kinetic, and Mutational Studies of the Zinc Ion Environment in Tetrameric Cytidine Deaminase ,
journal, May 2004

  • Johansson, Eva; Neuhard, Jan; Willemoës, Martin
  • Biochemistry, Vol. 43, Issue 20
  • DOI: 10.1021/bi035893x

The structure of Escherichia coli cytosine deaminase 1 1Edited by I. A. Wilson
journal, January 2002

  • Ireton, Gregory C.; McDermott, Gerry; Black, Margaret E.
  • Journal of Molecular Biology, Vol. 315, Issue 4
  • DOI: 10.1006/jmbi.2001.5277

Structural and Kinetic Characterization of Escherichia coli TadA, the Wobble-Specific tRNA Deaminase
journal, May 2006

  • Kim, Jungwook; Malashkevich, Vladimir; Roday, Setu
  • Biochemistry, Vol. 45, Issue 20
  • DOI: 10.1021/bi0522394

Crystal Structures of Blasticidin S Deaminase (BSD)
journal, December 2007

  • Kumasaka, Takashi; Yamamoto, Masaki; Furuichi, Makio
  • Journal of Biological Chemistry, Vol. 282, Issue 51
  • DOI: 10.1074/jbc.M704476200

Mechanisms underlying mutational signatures in human cancers
journal, July 2014

  • Helleday, Thomas; Eshtad, Saeed; Nik-Zainal, Serena
  • Nature Reviews Genetics, Vol. 15, Issue 9
  • DOI: 10.1038/nrg3729

APOBEC Enzymes: Mutagenic Fuel for Cancer Evolution and Heterogeneity
journal, June 2015


Hypermutation in human cancer genomes: footprints and mechanisms
journal, November 2014

  • Roberts, Steven A.; Gordenin, Dmitry A.
  • Nature Reviews Cancer, Vol. 14, Issue 12
  • DOI: 10.1038/nrc3816

Metal and Redox Modulation of Cysteine Protein Function
journal, August 2003


[20] Processing of X-ray diffraction data collected in oscillation mode
book, January 1997


Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Methylcytosine and Normal Cytosine Deamination by the Foreign DNA Restriction Enzyme APOBEC3A
journal, August 2012

  • Carpenter, Michael A.; Li, Ming; Rathore, Anurag
  • Journal of Biological Chemistry, Vol. 287, Issue 41
  • DOI: 10.1074/jbc.M112.385161

Works referencing / citing this record:

Mechanism of Enhanced HIV Restriction by Virion Coencapsidated Cytidine Deaminases APOBEC3F and APOBEC3G
journal, November 2016

  • Ara, Anjuman; Love, Robin P.; Follack, Tyson B.
  • Journal of Virology, Vol. 91, Issue 3
  • DOI: 10.1128/jvi.02230-16

Structural perspectives on HIV‐1 Vif and APOBEC3 restriction factor interactions
journal, November 2019

  • Azimi, Farshad C.; Lee, Jeffrey E.
  • Protein Science, Vol. 29, Issue 2
  • DOI: 10.1002/pro.3729

Understanding the structural basis of HIV-1 restriction by the full length double-domain APOBEC3G
journal, January 2020


Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B
journal, December 2016

  • Shi, Ke; Carpenter, Michael A.; Banerjee, Surajit
  • Nature Structural & Molecular Biology, Vol. 24, Issue 2
  • DOI: 10.1038/nsmb.3344

Deamination hotspots among APOBEC3 family members are defined by both target site sequence context and ssDNA secondary structure
journal, January 2020

  • McDaniel, Yumeng Z.; Wang, Dake; Love, Robin P.
  • Nucleic Acids Research, Vol. 48, Issue 3
  • DOI: 10.1093/nar/gkz1164

APOBEC3H structure reveals an unusual mechanism of interaction with duplex RNA
journal, October 2017


Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like family genes activation and regulation during tumorigenesis
journal, June 2018

  • Gao, Jianlong; Choudhry, Hani; Cao, Wei
  • Cancer Science, Vol. 109, Issue 8
  • DOI: 10.1111/cas.13658

Structural Analysis of the Active Site and DNA Binding of Human Cytidine Deaminase APOBEC3B
journal, November 2018

  • Hou, Shurong; Silvas, Tania V.; Leidner, Florian
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 1
  • DOI: 10.1021/acs.jctc.8b00545

Computational Model and Dynamics of Monomeric Full-Length APOBEC3G
journal, October 2017


Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B
journal, December 2016

  • Shi, Ke; Carpenter, Michael A.; Banerjee, Surajit
  • Nature Structural & Molecular Biology, Vol. 24, Issue 2
  • DOI: 10.1038/nsmb.3344

APOBEC3H structure reveals an unusual mechanism of interaction with duplex RNA
journal, October 2017


Understanding the structural basis of HIV-1 restriction by the full length double-domain APOBEC3G
journal, January 2020


Deamination hotspots among APOBEC3 family members are defined by both target site sequence context and ssDNA secondary structure
journal, January 2020

  • McDaniel, Yumeng Z.; Wang, Dake; Love, Robin P.
  • Nucleic Acids Research, Vol. 48, Issue 3
  • DOI: 10.1093/nar/gkz1164

Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like family genes activation and regulation during tumorigenesis
journal, June 2018

  • Gao, Jianlong; Choudhry, Hani; Cao, Wei
  • Cancer Science, Vol. 109, Issue 8
  • DOI: 10.1111/cas.13658

APOBEC3B, a molecular driver of mutagenesis in human cancers
journal, May 2017