DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

Abstract

The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smaller than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × dln(Nliq)/dln(BBt)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm–3) and very high aerosol concentrations (2000–3000 cm–3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case,more » competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm–2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that numerous northern-latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [3];  [5];  [6];  [7];  [4];  [8];  [9];  [4]
  1. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Oak Ridge Associated Univ., Oak Ridge, TN (United States)
  2. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  3. Univ. of Colorado, Boulder, CO (United States)
  4. NASA Langley Research Center, Hampton, VA (United States)
  5. National Institute of Polar Research, Tokyo (Japan)
  6. Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
  7. Georgia Inst. of Technology, Atlanta, GA (United States); National Observatory of Athens, Athens (Greece); Foundation for Research and Technology - Hellas, Patras (Greece)
  8. Univ. of Oslo, Oslo (Norway); Univ. of Innsbruck, Innsbruck (Austria)
  9. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1249367
Report Number(s):
PNNL-SA-112359
Journal ID: ISSN 1680-7324
Grant/Contract Number:  
NNX12AC03G; NNX15AH33A; AC0576RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 16; Journal Issue: 2; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 09 BIOMASS FUELS

Citation Formats

Zamora, Lauren M., Kahn, R. A., Cubison, M. J., Diskin, G. S., Jimenez, J. L., Kondo, Y., McFarquhar, G. M., Nenes, A., Thornhill, K. L., Wisthaler, A., Zelenyuk, A., and Ziemba, L. D. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic. United States: N. p., 2016. Web. doi:10.5194/acp-16-715-2016.
Zamora, Lauren M., Kahn, R. A., Cubison, M. J., Diskin, G. S., Jimenez, J. L., Kondo, Y., McFarquhar, G. M., Nenes, A., Thornhill, K. L., Wisthaler, A., Zelenyuk, A., & Ziemba, L. D. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic. United States. https://doi.org/10.5194/acp-16-715-2016
Zamora, Lauren M., Kahn, R. A., Cubison, M. J., Diskin, G. S., Jimenez, J. L., Kondo, Y., McFarquhar, G. M., Nenes, A., Thornhill, K. L., Wisthaler, A., Zelenyuk, A., and Ziemba, L. D. Thu . "Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic". United States. https://doi.org/10.5194/acp-16-715-2016. https://www.osti.gov/servlets/purl/1249367.
@article{osti_1249367,
title = {Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic},
author = {Zamora, Lauren M. and Kahn, R. A. and Cubison, M. J. and Diskin, G. S. and Jimenez, J. L. and Kondo, Y. and McFarquhar, G. M. and Nenes, A. and Thornhill, K. L. and Wisthaler, A. and Zelenyuk, A. and Ziemba, L. D.},
abstractNote = {The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smaller than in background clouds. Based on the relationship between cloud droplet number (Nliq) and various biomass burning tracers (BBt) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × dln(Nliq)/dln(BBt)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm–3) and very high aerosol concentrations (2000–3000 cm–3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm–2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that numerous northern-latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei.},
doi = {10.5194/acp-16-715-2016},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 2,
volume = 16,
place = {United States},
year = {Thu Jan 21 00:00:00 EST 2016},
month = {Thu Jan 21 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 25 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Reduction of Tropical Cloudiness by Soot
journal, May 2000


The impact of humidity above stratiform clouds on indirect aerosol climate forcing
journal, December 2004

  • Ackerman, Andrew S.; Kirkpatrick, Michael P.; Stevens, David E.
  • Nature, Vol. 432, Issue 7020
  • DOI: 10.1038/nature03174

Aerosols, Cloud Microphysics, and Fractional Cloudiness
journal, September 1989


Iodine observed in new particle formation events in the Arctic atmosphere during ACCACIA
journal, January 2015

  • Allan, J. D.; Williams, P. I.; Najera, J.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 10
  • DOI: 10.5194/acp-15-5599-2015

Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations
journal, January 2010

  • Alvarado, M. J.; Logan, J. A.; Mao, J.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 20
  • DOI: 10.5194/acp-10-9739-2010

Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century
journal, June 2009


MODIS Cloud-Top Property Refinements for Collection 6
journal, June 2012

  • Baum, Bryan A.; Menzel, W. Paul; Frey, Richard A.
  • Journal of Applied Meteorology and Climatology, Vol. 51, Issue 6
  • DOI: 10.1175/JAMC-D-11-0203.1

The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations
journal, October 2001


Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding
journal, January 2013


Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign
journal, January 2013


Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo
journal, January 2007

  • Bretherton, C. S.; Blossey, P. N.; Uchida, J.
  • Geophysical Research Letters, Vol. 34, Issue 3
  • DOI: 10.1029/2006GL027648

Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800nm: Laboratory and field studies
journal, September 2008


Occurrence of lower cloud albedo in ship tracks
journal, January 2012

  • Chen, Y. -C.; Christensen, M. W.; Xue, L.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 17
  • DOI: 10.5194/acp-12-8223-2012

Description of the Analysis of a Wide Range of Volatile Organic Compounds in Whole Air Samples Collected during PEM-Tropics A and B
journal, August 2001

  • Colman, Jonah J.; Swanson, Aaron L.; Meinardi, Simone
  • Analytical Chemistry, Vol. 73, Issue 15
  • DOI: 10.1021/ac010027g

Analysis of aerosol-cloud interaction from multi-sensor satellite observations: AEROSOL-CLOUD INTERACTION FROM SPACE
journal, June 2010

  • Costantino, Lorenzo; Bréon, François-Marie
  • Geophysical Research Letters, Vol. 37, Issue 11
  • DOI: 10.1029/2009GL041828

Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies
journal, January 2011

  • Cubison, M. J.; Ortega, A. M.; Hayes, P. L.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12049-2011

Spatiotemporal variations in land surface albedo across Canada from MODIS observations
journal, October 2005

  • Davidson, Andrew; Wang, Shusen
  • Canadian Journal of Remote Sensing, Vol. 31, Issue 5
  • DOI: 10.5589/m05-021

Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign
journal, January 2008

  • DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 14
  • DOI: 10.5194/acp-8-4027-2008

Emission sources and ocean uptake of acetonitrile (CH 3 CN) in the atmosphere
journal, January 2003


Investigating potential biases in observed and modeled metrics of aerosol-cloud-precipitation interactions
journal, January 2011

  • Duong, H. T.; Sorooshian, A.; Feingold, G.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 9
  • DOI: 10.5194/acp-11-4027-2011

Factors influencing the microphysics and radiative properties of liquid-dominated Arctic clouds: Insight from observations of aerosol and clouds during ISDAC
journal, January 2011

  • Earle, Michael E.; Liu, Peter S. K.; Strapp, J. Walter
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2011JD015887

Changes in aerosol properties during spring-summer period in the Arctic troposphere
journal, January 2008

  • Engvall, A. -C.; Krejci, R.; Ström, J.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 3
  • DOI: 10.5194/acp-8-445-2008

Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey's approach
journal, October 2001

  • Feingold, Graham; Remer, Lorraine A.; Ramaprasad, Jaya
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D19
  • DOI: 10.1029/2001JD000732

First measurements of the Twomey indirect effect using ground-based remote sensors: SURFACE REMOTE SENSING OF THE INDIRECT EFFECT
journal, March 2003

  • Feingold, Graham; Eberhard, Wynn L.; Veron, Dana E.
  • Geophysical Research Letters, Vol. 30, Issue 6
  • DOI: 10.1029/2002GL016633

Sources, distribution, and acidity of sulfate–ammonium aerosol in the Arctic in winter–spring
journal, December 2011


Implications of changing climate for global wildland fire
journal, January 2009

  • Flannigan, Mike D.; Krawchuk, Meg A.; de Groot, William J.
  • International Journal of Wildland Fire, Vol. 18, Issue 5
  • DOI: 10.1071/WF08187

A meteorological overview of the ARCTAS 2008 mission
journal, January 2010

  • Fuelberg, H. E.; Harrigan, D. L.; Sessions, W.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 2
  • DOI: 10.5194/acp-10-817-2010

Effects of varying aerosol regimes on low-level Arctic stratus: AEROSOL EFFECTS ON ARCTIC STRATUS
journal, September 2004

  • Garrett, T. J.; Zhao, C.; Dong, X.
  • Geophysical Research Letters, Vol. 31, Issue 17
  • DOI: 10.1029/2004GL019928

New microphysics sensor for aircraft use
journal, April 1994


Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors: GLOBAL FIRE DISTRIBUTION AND SEASONALITY
journal, June 2006

  • Giglio, Louis; Csiszar, Ivan; Justice, Christopher O.
  • Journal of Geophysical Research: Biogeosciences, Vol. 111, Issue G2
  • DOI: 10.1029/2005JG000142

Light scattering in planetary atmospheres
journal, October 1974

  • Hansen, James E.; Travis, Larry D.
  • Space Science Reviews, Vol. 16, Issue 4
  • DOI: 10.1007/BF00168069

Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign
journal, January 2011


Factors influencing the mesoscale variations in marine stratocumulus albedo
journal, February 2007


Source Attribution of Black Carbon in Arctic Snow
journal, June 2009

  • Hegg, Dean A.; Warren, Stephen G.; Grenfell, Thomas C.
  • Environmental Science & Technology, Vol. 43, Issue 11
  • DOI: 10.1021/es803623f

Sources of light-absorbing aerosol in arctic snow and their seasonal variation
journal, January 2010

  • Hegg, Dean A.; Warren, Stephen G.; Grenfell, Thomas C.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 22
  • DOI: 10.5194/acp-10-10923-2010

Aerosol number–size distributions during clear and fog periods in the summer high Arctic: 1991, 1996 and 2001
journal, January 2006


An airborne assessment of atmospheric particulate emissions from the processing of Athabasca oil sands
journal, January 2014

  • Howell, S. G.; Clarke, A. D.; Freitag, S.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 10
  • DOI: 10.5194/acp-14-5073-2014

Design, Modeling, Optimization, and Experimental Tests of a Particle Beam Width Probe for the Aerodyne Aerosol Mass Spectrometer
journal, December 2005

  • Huffman, J. Alex; Jayne, John T.; Drewnick, Frank
  • Aerosol Science and Technology, Vol. 39, Issue 12
  • DOI: 10.1080/02786820500423782

An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA
journal, January 2002


Summertime pollution events in the Arctic and potential implications
journal, January 2006

  • Iziomon, M. G.; Lohmann, U.; Quinn, P. K.
  • Journal of Geophysical Research, Vol. 111, Issue D12
  • DOI: 10.1029/2005JD006223

The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE: AEROSOL EFFECTS ON ARCTIC STRATUS
journal, August 2012

  • Jackson, Robert C.; McFarquhar, Greg M.; Korolev, Alexei V.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D15
  • DOI: 10.1029/2012JD017668

The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results
journal, January 2010

  • Jacob, D. J.; Crawford, J. H.; Maring, H.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 11
  • DOI: 10.5194/acp-10-5191-2010

Characterization of Arctic ice cloud properties observed during ISDAC: ISDAC ARCTIC ICE CLOUDS
journal, December 2012

  • Jouan, Caroline; Girard, Eric; Pelon, Jacques
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D23
  • DOI: 10.1029/2012JD017889

A study of new particle formation in the marine boundary layer over the central Arctic Ocean using a flexible multicomponent aerosol dynamic model
journal, January 2012

  • Karl, Matthias; Leck, Caroline; Gross, Allan
  • Tellus B: Chemical and Physical Meteorology, Vol. 64, Issue 1
  • DOI: 10.3402/tellusb.v64i0.17158

Marine nanogels as a source of atmospheric nanoparticles in the high Arctic: NANOGELS IN THE HIGH ARCTIC
journal, July 2013

  • Karl, Matthias; Leck, Caroline; Coz, Esther
  • Geophysical Research Letters, Vol. 40, Issue 14
  • DOI: 10.1002/grl.50661

Cloud influence on and response to seasonal Arctic sea ice loss
journal, January 2009

  • Kay, Jennifer E.; Gettelman, Andrew
  • Journal of Geophysical Research, Vol. 114, Issue D18
  • DOI: 10.1029/2009JD011773

The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum
journal, January 2008

  • Kay, Jennifer E.; L'Ecuyer, Tristan; Gettelman, Andrew
  • Geophysical Research Letters, Vol. 35, Issue 8
  • DOI: 10.1029/2008GL033451

Evaluating MODIS cloud retrievals with in situ observations from VOCALS-REx
journal, January 2013

  • King, N. J.; Bower, K. N.; Crosier, J.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 1
  • DOI: 10.5194/acp-13-191-2013

Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008
journal, January 2011

  • Kondo, Y.; Matsui, H.; Moteki, N.
  • Journal of Geophysical Research, Vol. 116, Issue D8
  • DOI: 10.1029/2010JD015152

Microphysical characterization of mixed-phase clouds
journal, January 2003

  • Korolev, Alexei V.; Isaac, George A.; Cober, Stewart G.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 129, Issue 587
  • DOI: 10.1256/qj.01.204

Small Ice Particles in Tropospheric Clouds: Fact or Artifact? Airborne Icing Instrumentation Evaluation Experiment
journal, August 2011

  • Korolev, A. V.; Emery, E. F.; Strapp, J. W.
  • Bulletin of the American Meteorological Society, Vol. 92, Issue 8
  • DOI: 10.1175/2010BAMS3141.1

Vertical profiling of aerosol particles and trace gases over the central Arctic Ocean during summer
journal, January 2013

  • Kupiszewski, P.; Leck, C.; Tjernström, M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 24
  • DOI: 10.5194/acp-13-12405-2013

Cloud condensation nuclei as a modulator of ice processes in Arctic mixed-phase clouds
journal, January 2011

  • Lance, S.; Shupe, M. D.; Feingold, G.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 15
  • DOI: 10.5194/acp-11-8003-2011

Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008
journal, January 2013

  • Lathem, T. L.; Beyersdorf, A. J.; Thornhill, K. L.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 5
  • DOI: 10.5194/acp-13-2735-2013

Composition of 15–85 nm particles in marine air
journal, January 2014

  • Lawler, M. J.; Whitehead, J.; O'Dowd, C.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 21
  • DOI: 10.5194/acp-14-11557-2014

An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE
journal, July 2001

  • Lawson, R. Paul; Baker, Brad A.; Schmitt, Carl G.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D14
  • DOI: 10.1029/2000JD900789

Dimethyl sulfide control of the clean summertime Arctic aerosol and cloud
journal, December 2013


Multisensor satellite observations of aerosol effects on warm clouds
journal, January 2008

  • Lebsock, Matthew D.; Stephens, Graeme L.; Kummerow, Christian
  • Journal of Geophysical Research, Vol. 113, Issue D15
  • DOI: 10.1029/2008JD009876

Aerosol production over remote marine areas-A new route
journal, December 1999

  • Leck, Caroline; Bigg, E. Keith
  • Geophysical Research Letters, Vol. 26, Issue 23
  • DOI: 10.1029/1999GL010807

Aerosol-cloud interaction determined by both in situ and satellite data over a northern high-latitude site
journal, January 2010

  • Lihavainen, H.; Kerminen, V. -M.; Remer, L. A.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 22
  • DOI: 10.5194/acp-10-10987-2010

Evidence of the cloud lifetime effect from wildfire-induced thunderstorms
journal, January 2008

  • Lindsey, Daniel T.; Fromm, Michael
  • Geophysical Research Letters, Vol. 35, Issue 22
  • DOI: 10.1029/2008GL035680

Importance of submicron surface-active organic aerosols for pristine Arctic clouds
journal, January 2005


A climatologically significant aerosol longwave indirect effect in the Arctic
journal, January 2006


Seasonal variation of the transport of black carbon aerosol from the Asian continent to the Arctic during the ARCTAS aircraft campaign
journal, January 2011

  • Matsui, H.; Kondo, Y.; Moteki, N.
  • Journal of Geophysical Research, Vol. 116, Issue D5
  • DOI: 10.1029/2010JD015067

Quantifying error in the radiative forcing of the first aerosol indirect effect
journal, January 2008

  • McComiskey, Allison; Feingold, Graham
  • Geophysical Research Letters, Vol. 35, Issue 2
  • DOI: 10.1029/2007GL032667

The scale problem in quantifying aerosol indirect effects
journal, January 2012


An assessment of aerosol‐cloud interactions in marine stratus clouds based on surface remote sensing
journal, January 2009

  • McComiskey, Allison; Feingold, Graham; Frisch, A. Shelby
  • Journal of Geophysical Research, Vol. 114, Issue D9
  • DOI: 10.1029/2008JD011006

20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing
journal, September 2007


Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations
journal, January 2007

  • McFarquhar, Greg M.; Zhang, Gong; Poellot, Michael R.
  • Journal of Geophysical Research, Vol. 112, Issue D24
  • DOI: 10.1029/2007JD008633

Indirect and Semi-direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds
journal, February 2011

  • McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes
  • Bulletin of the American Meteorological Society, Vol. 92, Issue 2
  • DOI: 10.1175/2010BAMS2935.1

Hygroscopicity and composition of Alaskan Arctic CCN during April 2008
journal, January 2011

  • Moore, R. H.; Bahreini, R.; Brock, C. A.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 22
  • DOI: 10.5194/acp-11-11807-2011

Droplet number uncertainties associated with CCN: an assessment using observations and a global model adjoint
journal, January 2013

  • Moore, R. H.; Karydis, V. A.; Capps, S. L.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 8
  • DOI: 10.5194/acp-13-4235-2013

Characteristic updrafts for computing distribution-averaged cloud droplet number and stratocumulus cloud properties
journal, January 2010

  • Morales, R.; Nenes, A.
  • Journal of Geophysical Research, Vol. 115, Issue D18
  • DOI: 10.1029/2009JD013233

Evaluation of an entraining droplet activation parameterization using in situ cloud data
journal, January 2011

  • Morales, R.; Nenes, A.; Jonsson, H.
  • Journal of Geophysical Research, Vol. 116, Issue D15
  • DOI: 10.1029/2010JD015324

Climate change and disruptions to global fire activity
journal, June 2012

  • Moritz, Max A.; Parisien, Marc-André; Batllori, Enric
  • Ecosphere, Vol. 3, Issue 6
  • DOI: 10.1890/ES11-00345.1

Resilience of persistent Arctic mixed-phase clouds
journal, December 2011

  • Morrison, Hugh; de Boer, Gijs; Feingold, Graham
  • Nature Geoscience, Vol. 5, Issue 1
  • DOI: 10.1038/ngeo1332

Method to measure time-dependent scattering cross sections of particles evaporating in a laser beam
journal, April 2008


On the occurrence of open ocean particle production and growth events: MARINE PARTICLE PRODUCTION AND GROWTH
journal, October 2010

  • O'Dowd, Colin; Monahan, Ciaran; Dall'Osto, Manuel
  • Geophysical Research Letters, Vol. 37, Issue 19
  • DOI: 10.1029/2010GL044679

Marine microgels as a source of cloud condensation nuclei in the high Arctic
journal, August 2011

  • Orellana, M. V.; Matrai, P. A.; Leck, C.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 33
  • DOI: 10.1073/pnas.1102457108

The cloud albedo-cloud droplet effective radius relationship for clean and polluted clouds from RACE and FIRE.ACE: EVIDENCE FOR INDIRECT AEROSOL EFFECT
journal, June 2002

  • Peng, Yiran; Lohmann, Ulrike; Leaitch, Richard
  • Journal of Geophysical Research: Atmospheres, Vol. 107, Issue D11
  • DOI: 10.1029/2000JD000281

The MODIS cloud products: algorithms and examples from terra
journal, February 2003

  • Platnick, S.; King, M. D.; Ackerman, S. A.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, Issue 2
  • DOI: 10.1109/TGRS.2002.808301

Surface submicron aerosol chemical composition: What fraction is not sulfate?
journal, March 2000

  • Quinn, P. K.; Bates, T. S.; Miller, T. L.
  • Journal of Geophysical Research: Atmospheres, Vol. 105, Issue D5
  • DOI: 10.1029/1999JD901034

A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska: CHEMICAL AND OPTICAL PROPERTIES AT BARROW, ALASKA
journal, June 2002

  • Quinn, P. K.; Miller, T. L.; Bates, T. S.
  • Journal of Geophysical Research: Atmospheres, Vol. 107, Issue D11
  • DOI: 10.1029/2001JD001248

A coupled observation – modeling approach for studying activation kinetics from measurements of CCN activity
journal, January 2012

  • Raatikainen, T.; Moore, R. H.; Lathem, T. L.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 9
  • DOI: 10.5194/acp-12-4227-2012

Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations
journal, July 2001

  • Rangno, Arthur L.; Hobbs, Peter V.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D14
  • DOI: 10.1029/2000JD900286

The Chisholm firestorm: observed microstructure, precipitation and lightning activity of a pyro-cumulonimbus
journal, January 2007

  • Rosenfeld, D.; Fromm, M.; Trentmann, J.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 3
  • DOI: 10.5194/acp-7-645-2007

The roles of cloud drop effective radius and LWP in determining rain properties in marine stratocumulus : THE ROLES OF CLOUD DROP EFFECTIVE RADIUS
journal, July 2012

  • Rosenfeld, Daniel; Wang, Hailong; Rasch, Philip J.
  • Geophysical Research Letters, Vol. 39, Issue 13
  • DOI: 10.1029/2012GL052028

Combined satellite and radar retrievals of drop concentration and CCN at convective cloud base: ROSENFELD ET. AL.; RETRIEVING CONVECTIVE CLOUD BASE CCN
journal, May 2014

  • Rosenfeld, Daniel; Fischman, Baruch; Zheng, Youtong
  • Geophysical Research Letters, Vol. 41, Issue 9
  • DOI: 10.1002/2014GL059453

Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique
journal, January 1987

  • Sachse, Glen W.; Hill, Gerald F.; Wade, Larry O.
  • Journal of Geophysical Research, Vol. 92, Issue D2
  • DOI: 10.1029/JD092iD02p02071

Aged boreal biomass-burning aerosol size distributions from BORTAS 2011
journal, January 2015

  • Sakamoto, K. M.; Allan, J. D.; Coe, H.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 4
  • DOI: 10.5194/acp-15-1633-2015

Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
journal, October 1998

  • Seinfeld, John H.; Pandis, Spyros N.; Noone, Kevin
  • Physics Today, Vol. 51, Issue 10
  • DOI: 10.1063/1.882420

Estimates of the Regression Coefficient Based on Kendall's Tau
journal, December 1968


Spatial and temporal variability of aerosol particles in Arctic spring
journal, May 2012

  • Shantz, N. C.; Gultepe, I.; Liu, P. S. K.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 138, Issue 669
  • DOI: 10.1002/qj.1940

Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008
journal, March 2014

  • Shantz, N. C.; Gultepe, I.; Andrews, E.
  • International Journal of Climatology, Vol. 34, Issue 10
  • DOI: 10.1002/joc.3898

Influence of mixing on evaluation of the aerosol first indirect effect
journal, January 2006

  • Shao, Hongfei; Liu, Guosheng
  • Geophysical Research Letters, Vol. 33, Issue 14
  • DOI: 10.1029/2006GL026021

Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004
journal, January 2006

  • Stohl, A.; Andrews, E.; Burkhart, J. F.
  • Journal of Geophysical Research, Vol. 111, Issue D22
  • DOI: 10.1029/2006JD007216

Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006
journal, January 2007

  • Stohl, A.; Berg, T.; Burkhart, J. F.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 2
  • DOI: 10.5194/acp-7-511-2007

Variations in western Arctic temperatures in response to cloud radiative and synoptic-scale influences
journal, September 1997

  • Stone, Robert S.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D18
  • DOI: 10.1029/97JD01840

On small particles in the Arctic summer boundary layer: observations at two different heights near Ny-Ålesund, Svalbard
journal, April 2009


Space-based evaluation of interactions between aerosols and low-level Arctic clouds during the Spring and Summer of 2008
journal, January 2011


Changes in Arctic clouds during intervals of rapid sea ice loss
journal, April 2010


Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008: HAZE FROM BIOMASS BURNING IN THE ARCTIC
journal, January 2009

  • Warneke, C.; Bahreini, R.; Brioude, J.
  • Geophysical Research Letters, Vol. 36, Issue 2
  • DOI: 10.1029/2008GL036194

An important contribution to springtime Arctic aerosol from biomass burning in Russia: ARCTIC AEROSOL FROM BIOMASS BURNING
journal, January 2010

  • Warneke, C.; Froyd, K. D.; Brioude, J.
  • Geophysical Research Letters, Vol. 37, Issue 1
  • DOI: 10.1029/2009GL041816

Organic trace gas measurements by PTR-MS during INDOEX 1999
journal, January 2002


In Situ Characterization of Cloud Condensation Nuclei, Interstitial, and Background Particles Using the Single Particle Mass Spectrometer, SPLAT II
journal, October 2010

  • Zelenyuk, Alla; Imre, Dan; Earle, Michael
  • Analytical Chemistry, Vol. 82, Issue 19
  • DOI: 10.1021/ac1013892

Airborne Single Particle Mass Spectrometers (SPLAT II & miniSPLAT) and New Software for Data Visualization and Analysis in a Geo-Spatial Context
journal, January 2015

  • Zelenyuk, Alla; Imre, Dan; Wilson, Jacqueline
  • Journal of The American Society for Mass Spectrometry, Vol. 26, Issue 2
  • DOI: 10.1007/s13361-014-1043-4

Effects of Arctic haze on surface cloud radiative forcing: Arctic Haze Effect on Surface CRF
journal, January 2015

  • Zhao, Chuanfeng; Garrett, Timothy J.
  • Geophysical Research Letters, Vol. 42, Issue 2
  • DOI: 10.1002/2014GL062015

Aerosol first indirect effects on non-precipitating low-level liquid cloud properties as simulated by CAM5 at ARM sites: AEROSOL FIE SIMULATED BY CAMS
journal, April 2012

  • Zhao, Chuanfeng; Klein, Stephen A.; Xie, Shaocheng
  • Geophysical Research Letters, Vol. 39, Issue 8
  • DOI: 10.1029/2012GL051213

Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer
journal, December 2001

  • Zhou, Jingchuan; Swietlicki, Erik; Berg, Olle H.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D23
  • DOI: 10.1029/2000JD900426

An Arctic Springtime Mixed-Phase Cloudy Boundary Layer Observed during SHEBA
journal, January 2005

  • Zuidema, P.; Baker, B.; Han, Y.
  • Journal of the Atmospheric Sciences, Vol. 62, Issue 1
  • DOI: 10.1175/JAS-3368.1

Works referencing / citing this record:

Sources, Load, Vertical Distribution, and Fate of Wintertime Aerosols North of Svalbard From Combined V4 CALIOP Data, Ground-Based IAOOS Lidar Observations and Trajectory Analysis
journal, January 2018

  • Di Biagio, C.; Pelon, J.; Ancellet, G.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 2
  • DOI: 10.1002/2017jd027530

Year-Round In Situ Measurements of Arctic Low-Level Clouds: Microphysical Properties and Their Relationships With Aerosols
journal, February 2019

  • Koike, M.; Ukita, J.; Ström, J.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 3
  • DOI: 10.1029/2018jd029802

Progress and Challenges in Quantifying Wildfire Smoke Emissions, Their Properties, Transport, and Atmospheric Impacts
journal, December 2019

  • Sokolik, I. N.; Soja, A. J.; DeMott, P. J.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 23
  • DOI: 10.1029/2018jd029878

Space‐Based Observations for Understanding Changes in the Arctic‐Boreal Zone
journal, January 2020

  • Duncan, Bryan N.; Ott, Lesley E.; Abshire, James B.
  • Reviews of Geophysics, Vol. 58, Issue 1
  • DOI: 10.1029/2019rg000652

Effects of 20–100 nm particles on liquid clouds in the clean summertime Arctic
journal, January 2016

  • Leaitch, W. Richard; Korolev, Alexei; Aliabadi, Amir A.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 17
  • DOI: 10.5194/acp-16-11107-2016

Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean
journal, January 2016

  • Bougiatioti, Aikaterini; Bezantakos, Spiros; Stavroulas, Iasonas
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 11
  • DOI: 10.5194/acp-16-7389-2016

A satellite-based estimate of combustion aerosol cloud microphysical effects over the Arctic Ocean
journal, January 2018

  • Zamora, Lauren M.; Kahn, Ralph A.; Huebert, Klaus B.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 20
  • DOI: 10.5194/acp-18-14949-2018

Investigation of short-term effective radiative forcing of fire aerosols over North America using nudged hindcast ensembles
journal, January 2018

  • Liu, Yawen; Zhang, Kai; Qian, Yun
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 1
  • DOI: 10.5194/acp-18-31-2018