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Abstract

In many scientific fields, empirical models are employed to facilitate computational
simulations of engineering systems. For example, in fluid mechanics, empirical Reynolds
stress closures enable computationally-efficient Reynolds Averaged Navier Stokes simu-
lations. Likewise, in solid mechanics, constitutive relations between the stress and strain
in a material are required in deformation analysis. Traditional methods for developing
and tuning empirical models usually combine physical intuition with simple regression
techniques on limited data sets. The rise of high performance computing has led to a
growing availability of high fidelity simulation data. These data open up the possibil-
ity of using machine learning algorithms, such as random forests or neural networks, to
develop more accurate and general empirical models. A key question when using data-
driven algorithms to develop these empirical models is how domain knowledge should
be incorporated into the machine learning process. This paper will specifically address
physical systems that possess symmetry or invariance properties. Two different methods
for teaching a machine learning model an invariance property are compared. In the first
method, a basis of invariant inputs is constructed, and the machine learning model is
trained upon this basis, thereby embedding the invariance into the model. In the sec-
ond method, the algorithm is trained on multiple transformations of the raw input data
until the model learns invariance to that transformation. Results are discussed for two
case studies: one in turbulence modeling and one in crystal elasticity. It is shown that
in both cases embedding the invariance property into the input features yields higher
performance at significantly reduced computational training costs.
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1. Introduction

In many scientific domains, macroscopic phenomena are governed by microscopic in-
teractions. In order to enable efficient simulations of such systems, empirical models are
often employed to approximate the effect of the microscopic interactions. For example,
in turbulence modeling, Reynolds Averaged Navier Stokes (RANS) simulations use em-
pirical models for the Reynolds stresses to approximate the effect of turbulent transport
on the mean momentum field. These simulations provide significant savings in computa-
tional cost in comparison to Direct Numerical Simulations (DNS), which directly resolve
the turbulent fluctuations all the way down to the smallest scales. Empirical models
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are also used in solid mechanics in the form of constitutive models to relate stress to
deformation that is potentially complex at the atomic scale, and in thermodynamic rela-
tions for non-ideal gases, and in electromagnetism to define material properties such as
conductivity.

Traditionally, these models have been developed through a combination of theoret-
ical knowledge and calibration to a limited set of data from simplified test cases. For
example, the widely-used Spalart-Allmaras RANS turbulence model was initially tuned
to reproduce experimental results for two-dimensional mixing layers and wakes [1]. The
wall functions commonly employed to model the effects of walls on turbulent flows were
developed based on results for a flat plate boundary layer [2]. When defining the constitu-
tive relations for hyper-elastic materials, Ogden [3] used physical arguments to determine
the key terms, then fit the coefficients to experimental data. Valanis and Landel [4] used
a similar methodology for forming their constitutive relation for hyper-elastic materials.
These examples are typical of data-limited regimes, where simple models with only a
few free parameters are desirable because they can avoid over-fitting when tuned to the
limited amount of available experimental data.

More recently, the rise of high performance computing has led to the availability of
large high-fidelity data sets in increasingly complex configurations. In fluid mechanics,
Direct Numerical Simulations (DNS) resolve all scales of the time-dependent flow. In
solid mechanics, Molecular Dynamics (MD) simulations resolve complex material defor-
mation with atomic resolution. While it is not yet computationally feasible to run these
high fidelity simulations for many full-scale applications, these simulations output huge
quantities of data that can be mined to develop and improve empirical models. Fur-
thermore, advances in experimental techniques, such as digital volume correlation [5, 6],
tomographic particle image velocimetry [7], and magnetic resonance velocimetry [8], are
yielding experimental data sets of unprecedented size and detail.

There have already been several efforts to use machine learning algorithms to leverage
these large high-fidelity data sets to construct more accurate model closures. Milano
and Koumoutsakos [9] used DNS results for a turbulent channel flow to train a neural
network to reconstruct the near wall flow. Tracey et al. [10, 11] used machine learning
algorithms to model the Reynolds stress anisotropy, and also to mimic the source terms
from the Spalart-Allmaras turbulence model. Duraisamy et al. [12] used neural networks
and Gaussian processes to model intermittency in transitional turbulence, and Zhang
et al. [13] used these algorithms to model turbulence production in channel flow. Data
driven models have also been used to calibrate models for sub-surface flows [14]. Ling and
Templeton [15] used Random Forests to predict regions of high model form uncertainty
in RANS results.

Data-driven methods have also been adopted to develop advanced constitutive models
in solid mechanics. Ghaboussi [16, 17] proposed the use of neural networks for consti-
tutive modeling. Neural networks have been used to model the stress-strain relation in
a variety of materials, including sand [18], viscoplastic materials [19], metal alloys [20],
and concrete [21]. Feng and Yang [22] also used data-driven genetic evolution methods
to derive a constitutive relation for composite materials. Shen et al. [23] and Liang et
al. [24] implemented neural networks to model the strain energy function for hyper-elastic
materials and elastomeric foams, respectively. Clearly, data-driven methods are gaining
popularity in the context of solid mechanics as well.

One of the key questions when applying data-driven techniques to physical systems is
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to what extent domain knowledge can and should be built into the algorithms. One school
of thought in the machine learning community is that very little domain knowledge needs
to be injected into the algorithm, and that given sufficient data, the algorithm should
be capable of discerning patterns and structure on its own [25, 26]. One drawback of
embedding domain knowledge into the machine learning model is that if that domain
knowledge proves faulty, it can lead to diminished performance in the machine-learned
model. In many physical systems, however, definitive and exact domain knowledge does
exist in the form of known invariances and symmetries. A function is an invariant under
a given transformation if its value does not change when its inputs are subjected to that
transformation. A more thorough discussion of invariants is given in Sec. 2.1.

For example, the classical laws of motion are known to obey Galilean invariance, which
states that these laws do not change in different inertial frames of reference. In fact, the
laws of motion are intricately linked to invariance properties. Noether’s theorem [27, 28]
describes how symmetry properties represent fundamental constraints that can be used
to derive the laws of motion, underlining how central these properties are in physical
systems. Given the importance of these symmetry properties, it would be desirable,
both for model accuracy and physical realizability, for any machine learning model of a
system with an invariance property to respect those invariances. In the context of fluid
mechanics, Galilean invariance dictates that any scalar flow variable, such as pressure or
velocity magnitude, will be invariant to rotations, reflections, or translations of the frame
of reference. Likewise, the same principle dictates that solid deformation response will
depend only on stretches, not on local rotations. Similarly, many crystalline materials
exhibit material symmetry properties, such that scalar functions like the internal strain
energy will be invariant to rotations within the symmetry group associated with the
crystal.

While there has been increasing interest in applying data-driven methods to closure
models for physical systems, there is no real consensus in the literature on how the in-
put feature sets for these models should be chosen, and whether these input features
should respect the invariance properties of the system. Whereas in traditional closure
modeling, invariance properties are typically enforced explicitly, machine learning clo-
sure models have the option of using non-invariant inputs and then training the model
to learn the invariance property. Milano and Koumoutsakos [9] used the instantaneous
velocity field as an input to their neural network to predict the velocity components in
the near wall region; they made no effort to ensure rotational invariance in their neural
network, since it was designed to make predictions in only a single flow configuration.
When using neural networks to construct a model for the turbulence intermittency fac-
tor, Duraisamy et al. [12] used a hill-climbing feature selection technique to determine
the key input features. The chosen features did not respect rotational invariance, and the
model was trained and tested on only a single flow configuration. Lefik and Schrefler [29]
used a neural network to model the constitutive relation for a super-conducting cable.
Instead of using invariant input features, they trained their neural network on several
rotations of their original training data to try to enforce invariance properties in the
model. While Tracey et al. [10] and Ling and Templeton [15] both used Galilean invari-
ant input features for their machine learning models, both studies used physical intuition
to guide their choice of input features. A more thorough understanding of the benefits of
using invariant features and a comprehensive methodology for determining a complete
input feature basis, would serve to significantly aid efforts to apply machine learning to
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constitutive modeling applications.

There has been some research in the machine learning community on learning invari-
ance properties, particularly in the domain of image recognition. For example, in face
detection, it would be desirable to be able to detect a face in an image regardless of the
orientation of the face. Similarly, in text processing, models should be able to interpret
handwritten letters even if they are slightly distorted, scaled, or rotated. In the con-
text of text processing for documents with some mis-printed letters, Baird [30] suggested
expanding the training set to including distorted versions of the initial training data.
For the application of hand-written digit recognition, Simard et al. [31] developed the
Tprop algorithm, which made use of cost function derivative information to better learn
invariance to distortion. Decoste et al. [32], working with support vector machines on the
same problem of digit recognition, suggested the idea of using jittering kernels to find the
closest match between any two examples within an invariance space. Other researchers
have proposed using more complex machine learning models, such as deep convolutional
neural networks [33] or weight-sharing neural networks [34] for image recognition systems
with invariance properties.

There are several distinguishing factors between the invariance properties of image
recognition and those considered in the present study. First, the invariance properties
considered here are exact. In digit recognition, for example, exact rotational invariance is
not desirable, as it would lead to confusion in differentiating a 6 from a 9. Second, in many
physical systems, it is important for invariance properties be respected perfectly. While
95% invariance to rotation may be tolerable in face detection, it can lead to non-realizable
results or numerical divergence in many physical applications. Lastly, the invariance
properties and inputs are fundamentally different. Whereas in image recognition, the
input is an NxN (or NxNx3 in the case of color images) image matrix, in physical
systems, the relevant inputs are often 3x1 vectors or 3x3 tensors which represent local
properties at a given point in 3-dimensional space and are invariant under a group action.
In these physical systems, it is possible to derive a finite invariant basis of inputs.

The main question addressed in this paper is how to teach a machine learning model
about an invariance or symmetry property in a physical system. Two main approaches
will be explored. In the first approach, a basis of invariant inputs is constructed and the
algorithm is trained on this basis. This approach uses domain knowledge to embed the
invariance into the input basis, such that the output will necessarily obey the invariance.
This basis is complete: any invariant function can be expressed in terms of this basis,
as will be discussed further in Section 2. In the second approach, the machine learning
algorithm is trained on the raw data, not on a basis of invariants. In order to teach
the model to be invariant to a given transformation, the training data set must be
expanded to include transformed states of the system. For example, to teach a model to
be rotationally invariant, the algorithm would be trained on data from multiple angular
orientations of the system. In this way, the model has the opportunity to learn the
invariance property on its own, without that property being specifically embedded into
the algorithm or inputs.

The purpose of this paper is two-fold. First, it presents the procedure for building
a basis of invariant inputs that can serve as a systematic methodology for constructing
a complete input feature set in which no relevant information has been omitted. This
procedure will be of use to researchers hoping to develop data-driven models for physical
systems with invariance properties. Second, it compares the performance of a model
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trained on this invariant basis to that of a model trained on raw, non-invariant inputs. It
is expected that the model trained on the invariant basis will be more effective at enforc-
ing this invariance, since it is an embedded property, not just a learned property. How-
ever, a key question of interest is how much training data and computational resources
are needed in order for a model to learn an invariance property. While the case studies
presented in this paper come from the fields of fluid and solid mechanics, the results have
broader implications for the application of data-driven techniques to any system with a
symmetry property. Section 2 will give an overview of how a basis of invariants can be
constructed, and of the overall methodology by which the machine learning algorithms
were trained and tested. Section 3 will describe case studies in turbulence modeling and
crystal elasticity modeling. In both cases, results will be presented that quantify the
ability of the machine learning algorithms to learn the relevant invariance properties.
Section 4 will present conclusions and ideas for future research.

2. Methodology

2.1. Construction of an Invariant Basis

One method of embedding an invariance property into a machine learning model is to
formulate all of the inputs to the model such that they are invariant. Necessarily, then,
the output prediction will also be invariant. Given an arbitrary set of tensors, vectors,
and scalars that are potential raw inputs, this method requires formulating these into
invariant inputs. Many previous researchers have relied on physical intuition to formulate
these invariant inputs [10, 12, 15], but this method risks excluding key information from
the input set if the modeler omits a relevant invariant. It would be more useful to have
a systematic process for creating a complete functional basis of invariants. The relevant
questions then become whether or not such a basis exists, whether it is finite, and how it
can be constructed. To answer these questions, this section will give a very brief overview
of pertinent results from group theory, representation theory, and invariant theory.

A group is a set of elements and a binary operator which satisfy the following condi-
tions: i) associativity, ii) every element has an inverse also in the group, iii) the group
contains an identity element which is its own inverse, and iv) the group is closed under
the action of the operator (i.e. if  and y are in a group with operator @, then z Py is
also in the group) [35]. In representation theory, these groups are represented as linear
transformations, such that each element of the group is represented by a matrix and the
operator is matrix multiplication [36]. For example, the set of all invertible nxn matrices
and the operation of matrix multiplication form a group representation, called the gen-
eral linear group of degree n, GL(n). Symmetry and invariance properties can often be
formulated conveniently in terms of algebraic groups and their matrix representations.

A function is invariant under a given group if its output value does not change when
its inputs are subjected to the transformation specified by any element in that group.
For example, a function of a vector and a tensor f = f(v, A) is rotationally invariant if:

£(Qv,QAQ") = f(v,A), VQeSO(3) (1)

The proper orthogonal group, SO(3), is the group of all rotation matrices in 3 dimen-

sions. A function that is invariant to the proper orthogonal group is called isotropic.

A polynomial invariant is an invariant polynomial function of the tensor elements. A
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given second-order tensor has 3 independent isotropic polynomial invariants: its trace
Tr(A), the trace of its square Tr(A?), and the trace of its cube Tr(A?%). Any isotropic
polynomial function of A can be written as a function of these three invariants, so these
invariants form an integrity basis. These invariants also form a functional basis, meaning
that any general isotropic function of A can be formulated as a function of these invari-
ants [37]. Notably, if we have two tensors A and B, the functional basis of these two
tensors is more than just the union of the basis of each individual tensor—the basis will
also include invariants that depend on the product of these tensors. The question then
becomes how to construct a basis of invariants for an arbitrary collection of tensors and
vectors.

In fact, it can be shown that such a basis can be constructed in most cases of interest.
For an arbitrary finite collection of vectors and tensors and a given symmetry property
defined by either a finite group or the orthogonal group, the Hilbert Basis Theorem [38,
39] states that a finite integrity basis of invariants can be constructed. Any invariant
function of that collection of tensors and vectors can be formulated as a function of the
corresponding invariant basis [39].

In order to construct an invariant basis, the easiest approach is to refer to the
literature: invariant bases have been thoroughly tabulated for arbitrary combinations
of vectors and tensors for most common symmetry groups, including the orthogonal
group [39, 40, 41, 42, 43]. Therefore, the construction of an invariant basis consists sim-
ply of referencing the table corresponding to the desired number of tensors and vectors
for the relevant symmetry group. Thus, a finite basis of invariants both exists and is sim-
ple to construct for most symmetry properties of interest. This systematic procedure for
creating an input basis mitigates the risk of omitting a key invariant from the input set,
given the correct set of raw tensor and vector inputs. However, if the modeler neglects
to include a key tensor in the input set, creating a complete basis of an incomplete set
of tensor inputs will still result in missing information and poor model performance. It
should also be noted that these invariant bases are not unique, and the machine learning
model performance may vary with the choice of basis. Therefore, physical intuition can
still play a role in developing the final input basis.

2.2. Machine Learning Model Construction

Training a machine learning model is the process by which the model is fit to the
data; this same process is often termed calibration or fitting in the context of regression
or Bayesian inference. The training data are all the data points used in this training pro-
cess. Two different approaches for teaching the machine learning model about a system
invariance were compared. In the first approach, the raw inputs were converted into
an invariant basis for the known system invariances. The machine learning model was
then trained on this basis, effectively embedding the invariance in the model. In the
second approach, the raw inputs were transformed according to the known invariance
property and the model was trained on this transformed data. For example, in the case
of rotational invariance, the original data were rotated a specified number of times, and
all the rotated data were compiled into one larger training set that was used to learn
the invariance. The data were rotated in evenly spaced extrinsic rotations of the Euler
angles around the cardinal axes: Q(es,03)Q(ez2,02)Q(e1,0;1), where 65,6; € [0,27] and
02 € [0, 7]. Figure 1 shows this work flow in a block diagram format.
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Figure 1: Block diagram of two approaches for training and evaluating machine learning models.

2.83. Machine Learning Algorithms

Two different machine learning algorithms were investigated. The first algorithm was
a Random Forest (RF) regressor, implemented using the sci-kit learn open source Python
library [44]. RF's are composed of an ensemble of binary decision trees. Each decision tree
is trained on a random subset of the training data, obtained through random sampling
with replacement (i.e. bagging). Each branch of the decision tree uses an if-then logic
that determines an input and a threshold value at which to split the data, based on
minimizing the Gini impurity score [45]. The result is that data points that end up
at the same leaf node tend to have similar output values. In Random Forests, extra
randomness is incorporated into the tree generation process by only using a random
subset of the input features to determine the split criterion at each branch [46]. The
final prediction of an RF regressor is given by the average prediction value among all
the trees in the ensemble. RF's are an attractive option because of their robust behavior
and easy implementation [47]. There are only two tunable hyper-parameters in RF
implementation: the ensemble size and the maximum tree depth.

The maximum tree depth is a key parameter because it trades off between model
performance and memory usage: full-depth trees will have maximal performance, but
may result in excessive memory usage. For RFs with no cap on the maximum tree depth,
the number of tree leaves tends to scale linearly with the training data set size (if each
data point adds new information to the data set), and the tree depth scales roughly
logarithmically with the number of tree leaves [48]. Therefore, in the case of the RF
trained on multiple transformations of the original training data set, the RF size and
memory usage would be expected to increase with the number of transformations included
in the training data set. In the extreme case, this increase in tree size can cause memory
overflow issues.

In order to explore the effect of imposing a maximum tree depth, in Section 3.1 for the
turbulence modeling case study, the maximum tree depth was set at 15. This maximum
depth was chosen because it was shown to be sufficient for the RF trained on the basis
of invariants, causing only a 2.5% increase in error relative to using full-depth trees. On
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the other hand, in Section 3.2, the case study in crystal elasticity, no maximum tree
depth was imposed, and trees were allowed to grow to their full depth. In this case,
the RFs trained on many transformations of the training data grew deeper and fuller
to accommodate the large training data size. Results from these two case studies can
therefore be compared to assess the effect of prescribing a maximum tree depth.

In general, the RF performance will improve as the number of trees in the ensemble
increases, but with diminishing returns. An ensemble size of 500 was prescribed for both
case studies as it was determined that at this size, the model performance was no long
strongly dependent on the ensemble size.

The second algorithm that was evaluated was the Neural Network (NN) [49, 50].
While NNs are neither as robust nor as easy to implement as RFs, they are capable
of deep learning, in which low-level features are combined and transformed into higher-
level features. This capability could allow them to learn meta-properties like symmetry
or invariance more easily. Multi-layer perceptrons were implemented through the finet
open source Python package [51]. These networks consist of layers of neurons. Each
neuron non-linearly combines its inputs through the sigmoid function, and its output is
used as an input to the next layer. The layers are densely connected: the output of each
neuron from one layer is used as an input for every neuron in the following layer.

The network architecture was determined through a constructive method, starting
with a small network with only one hidden layer. In general, a network with more hid-
den nodes can capture more complex behavior but with increased risk of overfitting the
data [52]. The performance of the network was monitored as more nodes and hidden lay-
ers were added until the addition of more nodes or hidden layers did not improve model
performance on validation points. The number of neurons in each layer was directly
proportional to the number of input features, N;,. In the turbulence modeling case
study, the network architecture was Ny, — 6N;, — 12N, — 6N, — 2N;, — 1 (meaning
N, nodes in the first layer, 6/V;;, nodes in the second layer, 12/N;, nodes in the third
layer, etc.), and in the crystal elasticity case study it was N;, —3N;, — Ny, — 1. Network
training was accomplished through a stochastic truncated Newton optimization scheme,
implemented in parallel in the ffnet python library [51].

Over-fitting was avoided through the use of an early stopping criterion [53]. Overfit-
ting occurs when the model error rate is lower on the training set than on the validation
set. 10% of the training data was held out and not used for training, and the model
performance on this subset was monitored during training. An increase in model error
rate on this subset during training indicated the onset of overfitting, and triggered the
halt of the training process, thereby preventing over-fitting. It should be noted that this
held-out subset of the training data was separate from the validation data later used to
evaluate model performance.

3. Case Studies

Two ditferent case studies are presented to demonstrate the process of construct-
ing an invariant basis and to investigate the comparative performance of models that
use invariant inputs versus models that use non-invariant inputs. The first case study is
from turbulence modeling, and discusses the prediction of the anisotropy of the Reynolds
stress tensor from the mean strain rate and rotation rate tensors. The second case study
is from solid mechanics, and examines the strain energy function of a material exhibiting
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crystalline symmetry. Both case studies begin by presenting an overview of the quan-
tity of interest and how it is typically modeled, then discuss the physical invariances of
the system and detail the construction of an invariant basis. Finally, the accuracy and
computational cost of the machine learning algorithms are presented and discussed.

3.1. Case Study from Turbulence Modeling
8.1.1. Problem Statement

Reynolds Averaged Navier Stokes (RANS) turbulence models rely on empirical clo-
sures for the Reynolds stresses u ® u, the transport of momentum due to turbulent
fluctuations. A very common closure for the Reynolds stresses is the Boussinesq hypoth-
esis [2]:

2
u®u= gkI—21/tS (2)

In Eqn. 2, u is the fluctuating component of the velocity field, k is the turbulent
kinetic energy, I is the identity matrix, v; is the eddy viscosity, and S is the symmetric
mean strain rate tensor. This closure has the advantages of simplicity and aiding in
convergence. However, in many flows, it gives poor predictions of the Reynolds stress
anisotropy. The non-dimensional Reynolds stress anisotropy tensor is given by A =
%m— %I. In flows with significant anisotropy, RANS models relying on the Boussinesq
hypothesis are prone to elevated uncertainty [54]. Ling and Templeton [15] developed
a machine learning model to predict regions of the flow with high anisotropy as an
indicator of where RANS predictions would have high uncertainty. They used the second
invariant of the anisotropy tensor, II, = 2[(Tr(A))? — Tr(A?)], to quantify the degree
of anisotropy [2].

In order to quantify the uncertainty of a given RANS simulation, it would be useful
to be able to predict the Reynolds stress anisotropy, given RANS simulation results for
the flow field. Therefore, in this case study, the target quantity of the machine learning
models was the second invariant of the Reynolds stress anisotropy II,. The true value
of I1,, required to train and evaluate the machine learning model, was calculated from
DNS data. The input tensor to the machine learning model was the mean velocity
field gradient VU as predicted by RANS. For modeling purposes, it is often convenient
to decompose the velocity gradient into its symmetric and anti-symmetric components,
S and R, respectively. Pope [55] suggested the following non-dimensionalization for
these tensors: S = 15(V, U + VIU) and R = 1E(V,U - VIU). In the interest
of consistency with the non-linear eddy viscosity modeling efforts of Craft et al. [56],
Pope [55], and others [57, 58], the inputs in this case study were formulated in terms of
these non-dimensionalized S and R.

3.1.2. Invariance Properties

The Navier-Stokes equations obey Galilean invariance: the laws of motion do not
change for inertial transformations of the frame of reference. In the context of this
problem, this invariance dictates that the Reynolds stress anisotropy invariant at a given
point in the flow will not change if the reference frame is translated, moved at constant
velocity, rotated or reflected. S and R are invariant to translations and constant velocity
offsets, but not to reflections or rotations. Therefore, to construct a basis of invariants
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Figure 2: Schematic of wall-mounted cube in crossflow flow configuration. Solid bottom wall and cube
shown in gray. Contours of streamwise velocity shown on mid-plane with streamlines overlaid in black.

to Galilean transformations from these two tensors, that basis must be invariant to the
orthogonal group. The full orthogonal group is comprised of matrices for which the
transpose is equal to the inverse (QT = Q~1!). This group includes all reflection and
rotation matrices.

The basis of invariants of S and R to the orthogonal group can be constructed using
tables from Johnson [39] which enumerate the invariants to the orthogonal group for a
symmetric and anti-symmetric tensor:

IO :TT(S

N ~—

I, =Tr(S%)

I, =Tr(S?)

I; =Tr(R?) (3)
I, =Tr(R?S)

Is =Tr(R?S?)

Is =Tr(R*SRS?)

In incompressible flows, continuity dictates that Tr(S) = 0, so this integrity basis can
be reduced to 6 non-zero invariants: I, ..., Ig.

Therefore, when applying the two approaches described in Section 2.1, the machine
learning model can either be trained using the 9 distinct tensor components (6 from
the symmetric S, and 3 from the skew symmetric R) or using the integrity basis of 6
invariants Iy, ..., Ig.

3.1.3. Data set

The data sets that were used to train and evaluate the machine learning model in this
case study were a RANS and DNS of a wall-mounted cube in crossflow. These simulation
results have been previously presented by Rossi et al., and details of the computational
set-up are contained in Refs. [59, 60]. The RANS simulation was performed using the
k-e model, as implemented in FLUENT 12.0. The Reynolds number based on the free
stream velocity and cube height was 5000. Figure 2 shows a schematic of this flow
configuration with contours of mean streamwise velocity at the mid-plane, as calculated
using DNS. As this figure shows, there is a substantial recirculation region downstream of
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Figure 3: Error as a function of number of training rotations for (a) Random Forests and (b) Neural
Networks in the turbulence modeling case study. The models trained on a basis of invariants (black
line, no symbols) are not trained on any rotated data, since they are invariant to rotations. The models
trained on raw tensor components are trained on evenly spaced rotations of the training data in 2D
(circles) and in 3D (squares). Training error shown with dashed lines, validation error shown with solid
lines. The error bars represent the standard deviation of the error.

the cube. Ling and Templeton [15] showed that there are regions of significant Reynolds
stress anisotropy in this flow, particularly in the stagnation region immediately upstream
of the cube. With its three-dimensionality, flow curvature, stagnation and separation,
this flow configuration presents a challenging case on which to train and test a machine
learning model for Reynolds stress anisotropy.

15,000 points were randomly sampled from the wall-mounted cube data set. At
each of these points, the tensors S and R were calculated, as was the Reynolds stress
anisotropy invariant II,. These 15,000 points were then randomly partitioned such that
10,000 were used for training the machine learning models and the other 5,000 were used
for validation to test the model performance.

3.1.4. Results

The performance of the Random Forest algorithm was evaluated first. An RF was
trained on the basis of invariants from Eqn. 3, and its performance was evaluated both
on the training set (yielding the training error) as well as on the validation set (yielding
the validation error) using the normalized error metric:

_ > |1, pns — g mw
> 11, pNs

In Eqn. 4, II, pns is the DNS value of the anisotropy invariant, II, yr, is the predicted
value of the invariant from the machine learning model, and the sum is over all the data
points. In effect, this error metric gives the mean difference magnitude between the true
and predicted anisotropy, normalized by the mean value of the anisotropy.
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Figure 3(a) plots the error E of the RF trained on the basis of invariants, as well
as the RF trained on the raw tensor components. The RF trained on the raw tensor
components uses a specified number of rotations of the training data in order to teach the
algorithm rotational invariance. As a first step, the RF was trained only on 2D rotations
(only rotations in the 65 direction), and was tested on 20 realizations of random 65
rotations of the validation data. The case of only 2D rotations is interesting because
learning 2D rotational invariance is an easier problem that reveals how performance and
computational requirements vary with the complexity of the invariance property. As a
second step, the RF was trained on full 3D rotations, and tested on 20 realizations of
random 3D rotations of the validation data. Results for both of these steps are shown
in Figure 3. In the case of 3D rotations, the plot shows the number of training rotations
in each direction, so 10 rotations in each direction corresponds to 1000 total rotations of
the training data.

As this figure shows, the validation error of the RF trained on the basis of invariants
is approximately 0.32. This relatively high error level reflects the fact that local values
of S and R will never be able to completely predict the Reynolds stresses, since non-
local effects are non-negligible in turbulent flows. In the case of the RF trained on 2D
rotations of the raw tensor components, the RF is able to learn the invariance relatively
well (W = 9%) when the training data is rotated at least 10 times. In the
case of 3D rotations, the RF never successfully learns rotational invariance. The training
error increases significantly as the number of training rotations increases, most likely due
to the cap on the maximum depth of the trees which constrains the model complexity.

Figure 3(b) presents the error of Neural Networks trained on the basis of invariants
and on the raw tensor components. The RF and NN trained on the basis of invariants
have similar performance to each other (EN%i;;ERF = 12%). The NN trained on raw
tensor components learns invariance to 2D rotations after 10 rotations of the training
data. In fact, this NN is able to achieve a validation error lower than the NN trained on
the invariant basis. This is possible because the invariant basis is over-constrained in the
case of 2D invariance, since this basis is invariant to the full 3D rotation group. In the
case of 3D rotations, the NN trained on 10 rotations in each direction of the raw tensor
components is able to achieve a validation error only 5% higher than the NN trained
on the invariant basis. These results demonstrate that the NNs are capable of learning
rotational invariance if their training data is rotated a sufficient number of times.

It is noteworthy that training the NN on 1000 times the initial training data set
to achieve this 3D rotational invariance drastically increased the computational cost of

Table 1: Computational Requirements of Various Algorithms in the Turbulence Modeling Case Study

Algorithm Compute Time | Memory
(CPU hours) Usage
Invariant RF 0.03 0.4 GB
Raw RF, 10 rotations in 2D | 0.3 0.9 GB
Raw RF, 10 rotations in 3D | 46 13 GB
Invariant NN 7 0.1 MB
Raw NN, 10 rotations in 2D | 105 2 MB
Raw NN, 10 rotations in 3D | 1176 2 MB

12



0 —&=2D, raw, train error

10
—=— 2D, raw, validation error
=~ ~Invariant, train error
— Invariant, validation error
o
o]
o
3 T \I
=
2
&
S | e e
c /?
° z
2 7
@ '
= s
I s
i i
o~ et
~ -
\\"\ _—"’/’
ST
-1
10 IU I\
10 10

Number of rotations in training data
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no symbols) as well as the raw tensor components (circles). Training error shown with dashed lines,
validation error shown with solid lines. The error bars represent the standard deviation of the error.

the network training. Table 1 details the computational requirements for both the RF
and NN, including the CPU hours needed to train the algorithm and the final memory
requirement to store the trained model. The training was performed in parallel on a
system with 32 GB of RAM and 12 2.2 GHz processors per node. As this table shows, the
computational cost of training the NNs was, in general, much higher than that of training
the RFs. While RF training follows a greedy algorithm that lends itself to computational
efficiency, training NNs requires iteratively solving a non-convex optimization problem.
The RF and NN trained on 10 3D rotations of the raw tensor components required orders
of magnitude longer to train than the RF and NN trained on the basis of invariants,
respectively.

Even with the maximum tree depth capped at 15, the memory usage of the RFs
significantly exceeded that of the NNs. In particular, when the RF was trained on 3D
rotations of the training data, the memory required to store the trained RF exceeded 10
GB. This increase in memory usage is due to an increase in the number of tree nodes.
The depth of a tree is given by the maximum number of branches connecting any leaf
node to the root node. However, it is very possible for one leaf node to be connected to
the root through 15 branchings, and for another leaf node to be connected to the root
through only 2 branchings. While a tree of depth 15 could have as many as 2'° = 32, 768
leaves, the invariant RF trees had only 2,370 leaves on average, indicating that many
leaves connected to the root through fewer than 15 branchings. The RF trained on
3D rotations of the data, on the other hand, had trees with 17,500 leaves on average,
accounting for the much higher memory usage in this case. In comparison, all of the NNs
used less than 0.01 GB of memory.

An interesting question is what governs the number of training rotations that are
required before the machine learning model learns the invariance property. In this case
study, approximately 10 training rotations were needed in each direction for either algo-
rithm to learn rotational invariance. In order to better understand this dependence, a
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sub-problem was investigated in which only dependence on S, not R, was permitted. In
this case, one RF was trained on the 6 distinct tensor components of S, and another RF
was trained on the 2 non-zero invariants of S. The results for this case are shown in Fig. 4
for 2D rotations. As this figure shows, the RF trained on the tensor invariants of S has a
higher error rate than when it was trained on those of both S and R, confirming that R
contains useful information content. The RF trained on the raw tensor components of S
learns the invariance property after 10 training rotations-the same number of rotations
required for learning invariance when using the components of both S and R. Therefore,
the number of required training rotations appears to be somewhat independent of both
the problem complexity and the algorithm used. Perhaps approximately 10 rotations
corresponds to the point at which interpolating between the rotated training data yields
accurate results.

Up to this point, the focus has been on rotational invariance. For full Galilean invari-
ance, invariance under reflection of the reference frame is also required. The invariant
basis proposed in Eqn. 3 is invariant under the full orthogonal group, including reflec-
tions. The full orthogonal group can be generated by products of the proper orthogonal
group (rotation matrices only) and central inversion (the identity matrix times -1) [61].
Therefore, training a machine learning model to obey invariance to reflection required
doubling the training data set size to include centrally inverted transformations of the
rotated training data, as well. The NNs were evaluated for their ability to learn invari-
ance to the full orthogonal group, including reflections. A NN was trained on 10 training
rotations in each direction in 3D, as well as central inversions of each of those training
rotations (2,000 transformed versions of the original training data in all). The NN was
then tested on 20 random rotations and reflections of the validation data. The validation
error of the NN trained and tested in this manner was E = 0.40: 8% higher than the
error of the NN trained and tested on only 3D rotations without reflections, and 14%
higher than the NN trained on the basis of invariants. Therefore, training the NN to
obey invariance to reflections and rotations in 3D requires a huge increase in training
data set size, and is not able to fully recover the performance of the NN trained on the
basis of invariants.

3.2. Case Study from Crystal Elasticity

8.2.1. Problem Statement

In solid mechanics, constitutive relations between the stress and strain in a material
are required to predict material deformation. In the case of elastic materials, a strain
energy function, W, can be introduced, where W is a function of the deformation gra-
dient, F, which is the derivative of the current material positions with respect to their
reference positions. The strain energy function can be differentiated with respect to F to
recover the stress [62]. Thus, for elastic materials, the problem of defining a constitutive
relation can be reduced to the problem of determining the value of W as a function of
F. Hence, the target quantity for the machine learning models to predict is the strain
energy function, and the tensor input is the deformation gradient.

3.2.2. Invariance and Symmetry Properties

In this case, the strain energy function W exhibits two invariance properties. First,
W is invariant to rigid body rotations. Therefore, W(F) = W(QF) for any Q in the
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Figure 5: 2D Schematic of the data generation process for the crystal elasticity case study.

proper orthogonal group. Second, the material of interest in this case study has a cubic
symmetry, so the W will not change if the crystal is rotated by an element G of the
cubic symmetry group: W(F) = W(FG). The cubic symmetry group, also called the
octahedral group, has 48 members which generate quarter rotations and inversions about
the coordinate axes.

A basis of six invariants to both rigid body rotations and the cubic symmetry group
was constructed using the tables in Ref. [63]:

L =TrC

I, =TrC?

I; =Tr C? )
I, =C:M:C

I; =C:M:C?

Is =C?:M:C?

In Eqn. 5, C = FTF is the right Cauchy-Green deformation gradient tensor. M =
3
> e;®e;Re;®e; is the fourth order structure tensor characteristic of the cubic symmetry
i=1
group. The operator : denotes the double inner product. For example, for tensors

3
A and B and structure tensor M, A:M:B = > A;iM,;;Bi. In the case of
W4,k 1=1
the cubic structure tensor, this expression can be further simplified to: A: M :B =
A11Bi1 + A2Bos + Ag3Bas.
Therefore, the machine learning models will either be trained on the 6 invariants
I, ..., Is specified in Eqn. 5, or on the 9 components of F.

3.2.3. Data set

The data used to train and validate the machine learning models were generated
using small face-centered cubic lattices interacting with an Embedded Atom Method
(EAM) potential for Nickel [64]. In the interest of giving the machine learning models
a simplified data set on which to learn, the temperature was set to zero. Whereas in
the turbulence modeling case study, the training set was generated through a single
simulation run with the different data points representing different locations in the flow,
in this case study, the training set was constructed of individual samples of the strain
energy function for varying crystal orientations and stretches. Perfect lattices were first
rotated then stretched triaxially and the sum of the pair-wise bond energies was equated
to strain energy. This process is shown schematically in Figure 5.
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Figure 6: Error as a function of number of training rotations for Random Forests (a) and Neural
Networks (b) in the solid mechanics case study. The models trained on a basis of invariants (black line,
no symbols) are not trained on any rotated data, since they are invariant to rotations. The results for
a linear regression model using the invariant basis as inputs are shown for comparison (triangles). The
models trained on raw tensor components are trained on evenly spaced rotations of the training data in
2D (circles) and in 3D (squares). Training error shown with dashed lines, validation error shown with
solid lines. The error bars represent the standard deviation of the error.

Using the same method as in the turbulence modeling case study, 15,000 points were
randomly sampled from this data set, of which 10,000 were used for training and the
remaining 5,000 were used for validation.

8.2.4. Results

The two invariance properties were studied separately, by either left multiplying the
deformation gradient tensor by an element of the proper orthogonal group, or by right
multiplying the deformation gradient tensor by an element of the cubic symmetry group.
Figure 6 shows the performance of the RFs and NNs in learning the invariance to rigid
body rotations. Since the temperature was set to zero, the error in the NN and RF

trained on the basis of invariants is very low (E = W < 3%). Unlike in the

turbulence modeling case study, an exact functional form exists for W (F), so the error
could theoretically go to zero. A Cauchy-Born model can exactly represent the strain
energy response to homogeneous deformations of a perfect crystal. The strain energy of
a Cauchy-Born model is the sum of the bond energies given by the particular potential
each stretched by the deformation gradient. Figure 6 also shows the error for a linear
model trained on the tensor invariants. In the case of the linear model, the training
error differed by less than 1% from the validation error, indicating that no over-fitting
occurred for this very simple model. Because this material has a non-linear constitutive
equation due to the form of the EAM potential for the range of forces being applied, the
linear model has a higher error than the RF and NN trained on the invariant basis, as
these algorithms are able to better capture this non-linearity.

Because the RFs did not have a prescribed maximum depth in this case, the training
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error remained low even as the number of training rotations increased. By 160 2D
training rotations, the RF had learned invariance to 2D rigid body rotations with only a
5% validation error. However, the RFs were not able to learn invariance to 3D rigid body
rotations before memory overflow occurred. Table 2 presents the computational costs of
the various algorithms in this case study. Once again, the compute time for the RFs was
significantly less than that of the corresponding NNs. However, in this case, because the
trees were allowed to grow to full depth, the memory usage of the RFs quickly became
excessive when they were trained on multiple rotations of the training data. For the RF
trained on the basis of invariants, the average tree depth was 20 and the average number
of leaves per tree was 2650. For the RF trained on 5 rotations in each direction in 3D,
the average tree depth was 24 and the average number of leaves per tree was 238,000.
This difference in tree size manifested in an increase of memory usage to over 60 GB
for the RF trained on the 3D rotations. Models with such high memory usage would be
unwieldy to deploy in many practical applications.

The NNs, on the other hand, were able to learn invariance to both 2D and 3D rigid
body rotations, as shown in Figure 6(b). The NN error is lower than that of the linear
model, indicating that the NN has also captured the non-linear behavior to some extent.
However, the NNs trained on the rotated raw data were not able to recover as low an
error as the NN trained on the tensor invariants.

Figure 7 compares the error in the predicted values of W to the true values. The
predictions are shown for the NN trained on the invariant basis, the linear fit trained on
the invariant basis, and the NN trained on raw tensor components rotated 10 times in
each direction in 3D. As this figure shows, none of the models are perfect—all of them
have non-zero errors. However, the NN trained on the invariant basis has by far the most
accurate predictions at very high and very low values of W. While the NN trained on
the raw tensor components has slightly better performance than the linear fit, neither
of these two models is able to fully capture the non-linear behavior in W. Overall, the
relative difference in error between the linear fit to the invariants and the NN trained

.. Elinenr—Ex.
on the rotated raw tensor components is —=gr—=%=% = 7%. Therefore, even after
raw,

training on 1000 rotations of the training data, the NN is only barely able to surpass the
performance of a simple linear regression on the invariant basis.

A relevant question is why the NN trained on the raw tensor components fails to fully
capture the non-linear dependence of W on F. One possible explanation is that the NN
has a fixed number of neurons, so as it is trained, it uses those neurons to minimize the
cost function as efficiently as possible. If the NN does not learn rotational invariance,

Table 2: Computational Requirements of Various Algorithms in the Crystal Elasticity Case Study

Algorithm Compute Time | Memory
(CPU hours) Usage
Invariant RF 0.03 1.1 GB
Raw RF, 160 rotations in 2D | 5 185 GB
Raw RF, 5 rotations in 3D 5 61.5 GB
Invariant NN 0.6 0.04 MB
Raw NN, 10 rotations in 2D | 34 0.08 MB
Raw NN, 10 rotations in 3D | 434 0.08 MB
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Fig. 6 shows that the resulting model has very high error (> 100%). On the other hand,
the non-linearity is a relatively minor effect (< 10% contribution to error, as the linear
model results show). Therefore, it makes sense that in minimizing its cost function, the
NN would learn rotational invariance before the non-linearity in W.

Separately, the NN was also investigated for its ability to learn cubic symmetry.
The cubic symmetry group has 48 elements. If the NN was not trained on any of the
cubic transformations of the training data, but was tested on cubic transformations of
the validation data, the error was very high (E > 2). When trained on all 48 cubic
transformations of the training data, the validation error on cubically transformed data
was reduced to E = 0.085 (still 3.3 times as high as the error of the NN trained on the
invariant basis). It has therefore been shown that in order for the NN to learn just rigid
body rotation invariance, it required approximately 1,000 total training rotations in 3
directions (applied by left-multiplication of the deformation gradient tensor by elements
of the proper orthogonal group), and for the NN to learn just cubic symmetry, it had
to be trained on 48 cubic rotations and reflections of the training data (applied by
right-multiplication of the deformation gradient tensor by elements of the octahedral
group). Overall, then, to learn both the rigid body invariance and the cubic symmetry,
approximately 48,000 times the original training data set would be required. This huge
increase in training data set size would result in a significant increase in network training
time.

4. Conclusions

The rise of high performance computing is opening up new possibilities for applying
machine learning to physical systems to develop advanced data-driven empirical models
based on high fidelity simulation results. A key question when using data driven models
is to what extent domain knowledge should be embedded in the model versus learned
through exposure to training data. In many physical systems, symmetry and invariance
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properties are known a priori, and it is important that the empirical model respect these
properties. This paper explored the ability of two different machine learning algorithms,
Random Forests and Neural Networks, to learn invariance properties.

Two different approaches for incorporating the invariance properties into the machine
learning models were explored. One approach was to build a basis of invariant inputs,
such that the invariance property was embedded into the model. This paper discussed
the theory and methodology of constructing such a basis of invariants using concepts
from group theory and invariant theory. Several previous papers [10, 12, 15] have pre-
sented data-driven turbulence models in which physical intuition was used to craft the
input feature set. The methodology of constructing an invariant basis provides a more
systematic and exhaustive process for building the input feature set which is of immedi-
ate utility to machine learning practitioners building models for physical systems. While
this process of building an invariant basis is not new, it is novel in the context of ma-
chine learning. The second approach was training the machine learning model on many
transformed versions of the data until it had learned the invariance property. These two
approaches were compared for two different case studies: one in turbulence modeling and
one in crystal elasticity.

Comparisons between the results from the Random Forest and the Neural Network
showed that when trained on an invariant basis, the two algorithms gave very similar
performance in both case studies. However, NNs had better performance than RFs when
trained on the raw tensor components. When a maximum tree depth was set for the
RF's, both the training and validation error quickly rose as rotated versions of the data
were added to the training data set. On the other hand, when no maximum tree depth
was imposed, the RF memory usage became excessive. It is not surprising that the NNs
were better able to learn invariance properties, since NNs are well known for their deep
learning capabilities. These results show that when the algorithms are trained on a basis
of invariants, the algorithmic requirements are significantly relaxed, and even simple
models can have good performance. Indeed, in the solid mechanics case study, it was
shown that a linear regression model trained on the basis of invariants had almost as
good performance as the NN trained on the raw tensor components. Since both linear
regression and RFs are significantly easier to implement than NNs, the good performance
of these algorithms when trained on an invariant basis is a significant advantage of the
invariant basis approach to embedding symmetries.

In both case studies, the NN required approximately 10 training rotations in each
direction to learn rotational invariance. As discussed in Section 3.1, the exact depen-
dence of this required number of training rotations is not fully understood, but appears
to be largely independent of the problem complexity. This number of rotations could
correspond to the number of training data points required to build an accurate inter-
polant using the sigmoidal activation functions of the NN neurons. The requirement of 10
training rotations in each direction led to an increase of training data set size of 3 orders
of magnitude in order for the networks to learn rotational invariance in 3D. Moreover,
in both case studies, additional symmetry properties led to further increases in training
data set size. This increase in training data set size results in commensurate increases in
training time. Therefore, while these case studies demonstrated that NNs are capable of
learning invariance properties given an extensive enough training database, the compu-
tational requirements can become excessive. Furthermore, the resulting neural network
performance was poorer than that of the network trained on the basis of invariants. It
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was not unexpected that using a basis of invariants would yield better invariance proper-
ties than teaching a model invariance through repeated exposure to rotated training sets,
since using the invariant inputs will exactly and directly embed the invariance property.
What is more interesting is how much better the models trained on the invariant basis
perform. They use less than 0.01% of the computational power to train, yet yield higher
accuracy in both of the case studies explored.

It is important to note that no attempt was made to optimize the sampling of the
training rotations. The rotations of the training set were evenly spaced in the three
Euler angles. More complex sampling strategies would most likely be able to train the
NN to learn rotational invariance with fewer training rotations. Nevertheless, these
results demonstrate that for systems with multiple invariance properties, training the
NN to learn these properties by expanding the training set quickly becomes intractable
because of the blow up in training time. These results demonstrate the significant utility
of constructing a basis of invariants and training the machine learning algorithm on this
basis.

An interesting area for future work would be to apply feature selection algorithms
to the invariant basis, and to compare the top ranking features from the invariant basis
to the features selected through physical intuition in previous studies, such as that of
Duraisamy et al. [12] and Ling and Templeton [15]. It would also be interesting to
explore optimal sampling schemes for the training rotations in order to train the data-
driven models to be rotationally invariant with as few training rotations as possible.
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