DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of the Bacterioferritin/Bacterioferritin Associated Ferredoxin Protein–Protein Interaction in Solution and Determination of Binding Energy Hot Spots

Abstract

Mobilization of iron stored in the interior cavity of BfrB requires electron transfer from the [2Fe–2S] cluster in Bfd to the core iron in BfrB. A crystal structure of the Pseudomonas aeruginosa BfrB:Bfd complex revealed that BfrB can bind up to 12 Bfd molecules at 12 structurally identical binding sites, placing the [2Fe–2S] cluster of each Bfd immediately above a heme group in BfrB. We report here a study aimed at characterizing the strength of the P. aeruginosa BfrB:Bfd association using surface plasmon resonance and isothermal titration calorimetry as well as determining the binding energy hot spots at the protein–protein interaction interface. The results show that the 12 Bfd-binding sites on BfrB are equivalent and independent and that the protein–protein association at each of these sites is driven entropically and is characterized by a dissociation constant (Kd) of approximately 3 μM. Determination of the binding energy hot spots was carried out by replacing certain residues that comprise the protein–protein interface with alanine and by evaluating the effect of the mutation on Kd and on the efficiency of core iron mobilization from BfrB. The results identified hot spot residues in both proteins [LB68, EA81, and EA85 in BfrB (superscript for residuemore » number and subscript for chain) and Y2 and L5 in Bfd] that network at the interface to produce a highly complementary hot region for the interaction. The hot spot residues are conserved in the amino acid sequences of Bfr and Bfd proteins from a number of Gram-negative pathogens, indicating that the BfrB:Bfd interaction is of widespread significance in bacterial iron metabolism.« less

Authors:
 [1];  [1];  [1];  [1];  [2];  [1];  [1]
  1. Univ. of Kansas, Lawrence, KS (United States)
  2. Hauptman Woodward Medical Research Inst., Argonne, IL (United States). IMCA-CAT
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
National Center for Research Resources; National Institute of General Medical Sciences (NIGMS); National Institutes of Health (NIH); National Science Foundation (NSF); Industrial Macromolecular Crystallography Association; USDOE Office of Science (SC); 2014 University of Kansas Strategic Grant
OSTI Identifier:
1240165
Grant/Contract Number:  
5P20RR017708-10; 8 P20 GM 103420; AC02-06CH11357; MCB-1158469
Resource Type:
Accepted Manuscript
Journal Name:
Biochemistry
Additional Journal Information:
Journal Volume: 54; Journal Issue: 40; Journal ID: ISSN 0006-2960
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; Iron; Bioinorganic chemistry; Genetics; Molecules; Surface plasmon resonance

Citation Formats

Wang, Yan, Yao, Huili, Cheng, Yuan, Lovell, Scott, Battaile, Kevin P., Midaugh, C. Russell, and Rivera, Mario. Characterization of the Bacterioferritin/Bacterioferritin Associated Ferredoxin Protein–Protein Interaction in Solution and Determination of Binding Energy Hot Spots. United States: N. p., 2015. Web. doi:10.1021/acs.biochem.5b00937.
Wang, Yan, Yao, Huili, Cheng, Yuan, Lovell, Scott, Battaile, Kevin P., Midaugh, C. Russell, & Rivera, Mario. Characterization of the Bacterioferritin/Bacterioferritin Associated Ferredoxin Protein–Protein Interaction in Solution and Determination of Binding Energy Hot Spots. United States. https://doi.org/10.1021/acs.biochem.5b00937
Wang, Yan, Yao, Huili, Cheng, Yuan, Lovell, Scott, Battaile, Kevin P., Midaugh, C. Russell, and Rivera, Mario. Fri . "Characterization of the Bacterioferritin/Bacterioferritin Associated Ferredoxin Protein–Protein Interaction in Solution and Determination of Binding Energy Hot Spots". United States. https://doi.org/10.1021/acs.biochem.5b00937. https://www.osti.gov/servlets/purl/1240165.
@article{osti_1240165,
title = {Characterization of the Bacterioferritin/Bacterioferritin Associated Ferredoxin Protein–Protein Interaction in Solution and Determination of Binding Energy Hot Spots},
author = {Wang, Yan and Yao, Huili and Cheng, Yuan and Lovell, Scott and Battaile, Kevin P. and Midaugh, C. Russell and Rivera, Mario},
abstractNote = {Mobilization of iron stored in the interior cavity of BfrB requires electron transfer from the [2Fe–2S] cluster in Bfd to the core iron in BfrB. A crystal structure of the Pseudomonas aeruginosa BfrB:Bfd complex revealed that BfrB can bind up to 12 Bfd molecules at 12 structurally identical binding sites, placing the [2Fe–2S] cluster of each Bfd immediately above a heme group in BfrB. We report here a study aimed at characterizing the strength of the P. aeruginosa BfrB:Bfd association using surface plasmon resonance and isothermal titration calorimetry as well as determining the binding energy hot spots at the protein–protein interaction interface. The results show that the 12 Bfd-binding sites on BfrB are equivalent and independent and that the protein–protein association at each of these sites is driven entropically and is characterized by a dissociation constant (Kd) of approximately 3 μM. Determination of the binding energy hot spots was carried out by replacing certain residues that comprise the protein–protein interface with alanine and by evaluating the effect of the mutation on Kd and on the efficiency of core iron mobilization from BfrB. The results identified hot spot residues in both proteins [LB68, EA81, and EA85 in BfrB (superscript for residue number and subscript for chain) and Y2 and L5 in Bfd] that network at the interface to produce a highly complementary hot region for the interaction. The hot spot residues are conserved in the amino acid sequences of Bfr and Bfd proteins from a number of Gram-negative pathogens, indicating that the BfrB:Bfd interaction is of widespread significance in bacterial iron metabolism.},
doi = {10.1021/acs.biochem.5b00937},
journal = {Biochemistry},
number = 40,
volume = 54,
place = {United States},
year = {Fri Sep 25 00:00:00 EDT 2015},
month = {Fri Sep 25 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Iron homeostasis and management of oxidative stress response in bacteria
journal, January 2011

  • Cornelis, Pierre; Wei, Qing; Andrews, Simon C.
  • Metallomics, Vol. 3, Issue 6
  • DOI: 10.1039/c1mt00022e

Iron availability and infection
journal, July 2009


Iron and infection: the heart of the matter
journal, March 2005

  • Bullen, John J.; Rogers, Henry J.; Spalding, Paul B.
  • FEMS Immunology & Medical Microbiology, Vol. 43, Issue 3
  • DOI: 10.1016/j.femsim.2004.11.010

Iron and Oxidative Stress in Bacteria
journal, January 2000


Superoxide accelerates DNA damage by elevating free-iron levels
journal, November 1996

  • Keyer, K.; Imlay, J. A.
  • Proceedings of the National Academy of Sciences, Vol. 93, Issue 24
  • DOI: 10.1073/pnas.93.24.13635

Unity in the Biochemistry of the Iron-Storage Proteins Ferritin and Bacterioferritin
journal, November 2014

  • Honarmand Ebrahimi, Kourosh; Hagedoorn, Peter-Leon; Hagen, Wilfred R.
  • Chemical Reviews, Vol. 115, Issue 1
  • DOI: 10.1021/cr5004908

Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic
journal, February 2015

  • Yao, Huili; Rui, Huan; Kumar, Ritesh
  • Biochemistry, Vol. 54, Issue 8
  • DOI: 10.1021/bi501255r

Local packing modulates diversity of iron pathways and cooperative behavior in eukaryotic and prokaryotic ferritins
journal, March 2014

  • Ruvinsky, Anatoly M.; Vakser, Ilya A.; Rivera, Mario
  • The Journal of Chemical Physics, Vol. 140, Issue 11
  • DOI: 10.1063/1.4868229

Bacterial iron homeostasis
journal, June 2003

  • Andrews, Simon C.; Robinson, Andrea K.; Rodríguez-Quiñones, Francisco
  • FEMS Microbiology Reviews, Vol. 27, Issue 2-3
  • DOI: 10.1016/S0168-6445(03)00055-X

The Structure of the BfrB–Bfd Complex Reveals Protein–Protein Interactions Enabling Iron Release from Bacterioferritin
journal, August 2012

  • Yao, Huili; Wang, Yan; Lovell, Scott
  • Journal of the American Chemical Society, Vol. 134, Issue 32
  • DOI: 10.1021/ja305180n

Iron-responsive bacterial small RNAs: variations on a theme
journal, January 2013

  • Oglesby-Sherrouse, Amanda G.; Murphy, Erin R.
  • Metallomics, Vol. 5, Issue 4
  • DOI: 10.1039/c3mt20224k

Effect of RyhB Small RNA on Global Iron Use in Escherichia coli
journal, October 2005


Siderophore-controlled Iron Assimilation in the Enterobacterium Erwinia chrysanthemi
journal, December 2008

  • Expert, Dominique; Boughammoura, Aïda; Franza, Thierry
  • Journal of Biological Chemistry, Vol. 283, Issue 52
  • DOI: 10.1074/jbc.M807749200

Cloning, sequencing, and mapping of the bacterioferritin gene (bfr) of Escherichia coli K-12
journal, July 1989


Spectroscopic and Voltammetric Characterisation of the Bacterioferritin-Associated Ferredoxin ofEscherichia coli
journal, December 1996

  • Quail, Michael A.; Jordan, Peter; Grogan, Janette M.
  • Biochemical and Biophysical Research Communications, Vol. 229, Issue 2
  • DOI: 10.1006/bbrc.1996.1856

A [2Fe-2S] Protein Encoded by an Open Reading Frame Upstream of the Escherichia coli Bacterioferritin Gene
journal, January 1996

  • Garg, Ram P.; Vargo, Christopher J.; Cui, Xiaoyuan
  • Biochemistry, Vol. 35, Issue 20
  • DOI: 10.1021/bi9600862

Transcriptome analysis of the Pseudomonas aeruginosa response to iron
journal, November 2003

  • Palma, Marco; Worgall, Stefan; Quadri, Luis E. N.
  • Archives of Microbiology, Vol. 180, Issue 5
  • DOI: 10.1007/s00203-003-0602-z

Structural Studies of Bacterioferritin B from Pseudomonas aeruginosa Suggest a Gating Mechanism for Iron Uptake via the Ferroxidase Center,
journal, February 2010

  • Weeratunga, Saroja K.; Lovell, Scott; Yao, Huili
  • Biochemistry, Vol. 49, Issue 6
  • DOI: 10.1021/bi9015204

Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra
journal, February 1987


Iron metabolism in Rhodobacter capsulatus. Characterisation of bacterioferritin and formation of non-haem iron particles in intact cells
journal, August 1994


Integration, scaling, space-group assignment and post-refinement
journal, January 2010

  • Kabsch, Wolfgang
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 133-144
  • DOI: 10.1107/S0907444909047374

An introduction to data reduction: space-group determination, scaling and intensity statistics
journal, March 2011

  • Evans, Philip R.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 67, Issue 4
  • DOI: 10.1107/S090744491003982X

Phaser crystallographic software
journal, July 2007

  • McCoy, Airlie J.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.
  • Journal of Applied Crystallography, Vol. 40, Issue 4
  • DOI: 10.1107/S0021889807021206

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

MolProbity : all-atom structure validation for macromolecular crystallography
journal, December 2009

  • Chen, Vincent B.; Arendall, W. Bryan; Headd, Jeffrey J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 1
  • DOI: 10.1107/S0907444909042073

Solvent content of protein crystals
journal, April 1968


An1H–13C–13C-Edited1H NMR Experiment for Making Resonance Assignments in the Active Site of Heme Proteins
journal, January 1998

  • Qiu, Feng; Rivera, Mario; Stark, Ruth E.
  • Journal of Magnetic Resonance, Vol. 130, Issue 1
  • DOI: 10.1006/jmre.1997.1276

Quantitative Analysis of Protein–Protein Interactions
book, January 2004


Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors
book, January 1998


Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions
journal, November 2004

  • Krissinel, E.; Henrick, K.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 60, Issue 12
  • DOI: 10.1107/S0907444904026460

A hot spot of binding energy in a hormone-receptor interface
journal, January 1995


Anatomy of hot spots in protein interfaces
journal, July 1998

  • Bogan, Andrew A.; Thorn, Kurt S.
  • Journal of Molecular Biology, Vol. 280, Issue 1
  • DOI: 10.1006/jmbi.1998.1843

Principles of Protein−Protein Interactions: What are the Preferred Ways For Proteins To Interact?
journal, April 2008

  • Keskin, Ozlem; Gursoy, Attila; Ma, Buyong
  • Chemical Reviews, Vol. 108, Issue 4
  • DOI: 10.1021/cr040409x

Hot Regions in Protein–Protein Interactions: The Organization and Contribution of Structurally Conserved Hot Spot Residues
journal, February 2005


Iron and Oxidative Stress in Bacteria
journal, January 2000


Anatomy of hot spots in protein interfaces
journal, July 1998

  • Bogan, Andrew A.; Thorn, Kurt S.
  • Journal of Molecular Biology, Vol. 280, Issue 1
  • DOI: 10.1006/jmbi.1998.1843

An1H–13C–13C-Edited1H NMR Experiment for Making Resonance Assignments in the Active Site of Heme Proteins
journal, January 1998

  • Qiu, Feng; Rivera, Mario; Stark, Ruth E.
  • Journal of Magnetic Resonance, Vol. 130, Issue 1
  • DOI: 10.1006/jmre.1997.1276

Transcriptome analysis of the Pseudomonas aeruginosa response to iron
journal, November 2003

  • Palma, Marco; Worgall, Stefan; Quadri, Luis E. N.
  • Archives of Microbiology, Vol. 180, Issue 5
  • DOI: 10.1007/s00203-003-0602-z

Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra
journal, February 1987


Iron availability and infection
journal, July 2009


Hot Regions in Protein–Protein Interactions: The Organization and Contribution of Structurally Conserved Hot Spot Residues
journal, February 2005


Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic
journal, February 2015

  • Yao, Huili; Rui, Huan; Kumar, Ritesh
  • Biochemistry, Vol. 54, Issue 8
  • DOI: 10.1021/bi501255r

A [2Fe-2S] Protein Encoded by an Open Reading Frame Upstream of the Escherichia coli Bacterioferritin Gene
journal, January 1996

  • Garg, Ram P.; Vargo, Christopher J.; Cui, Xiaoyuan
  • Biochemistry, Vol. 35, Issue 20
  • DOI: 10.1021/bi9600862

Principles of Protein−Protein Interactions: What are the Preferred Ways For Proteins To Interact?
journal, April 2008

  • Keskin, Ozlem; Gursoy, Attila; Ma, Buyong
  • Chemical Reviews, Vol. 108, Issue 4
  • DOI: 10.1021/cr040409x

Unity in the Biochemistry of the Iron-Storage Proteins Ferritin and Bacterioferritin
journal, November 2014

  • Honarmand Ebrahimi, Kourosh; Hagedoorn, Peter-Leon; Hagen, Wilfred R.
  • Chemical Reviews, Vol. 115, Issue 1
  • DOI: 10.1021/cr5004908

The Structure of the BfrB–Bfd Complex Reveals Protein–Protein Interactions Enabling Iron Release from Bacterioferritin
journal, August 2012

  • Yao, Huili; Wang, Yan; Lovell, Scott
  • Journal of the American Chemical Society, Vol. 134, Issue 32
  • DOI: 10.1021/ja305180n

Iron homeostasis and management of oxidative stress response in bacteria
journal, January 2011

  • Cornelis, Pierre; Wei, Qing; Andrews, Simon C.
  • Metallomics, Vol. 3, Issue 6
  • DOI: 10.1039/c1mt00022e

Iron-responsive bacterial small RNAs: variations on a theme
journal, January 2013

  • Oglesby-Sherrouse, Amanda G.; Murphy, Erin R.
  • Metallomics, Vol. 5, Issue 4
  • DOI: 10.1039/c3mt20224k

Fe-haem bound to Escherichia coli bacterioferritin accelerates iron core formation by an electron transfer mechanism
journal, May 2012

  • Wong, Steve G.; Abdulqadir, Raz; Le Brun, Nick E.
  • Biochemical Journal, Vol. 444, Issue 3
  • DOI: 10.1042/bj20112200

Local packing modulates diversity of iron pathways and cooperative behavior in eukaryotic and prokaryotic ferritins
journal, March 2014

  • Ruvinsky, Anatoly M.; Vakser, Ilya A.; Rivera, Mario
  • The Journal of Chemical Physics, Vol. 140, Issue 11
  • DOI: 10.1063/1.4868229

Superoxide accelerates DNA damage by elevating free-iron levels
journal, November 1996

  • Keyer, K.; Imlay, J. A.
  • Proceedings of the National Academy of Sciences, Vol. 93, Issue 24
  • DOI: 10.1073/pnas.93.24.13635

Iron metabolism in Rhodobacter capsulatus. Characterisation of bacterioferritin and formation of non-haem iron particles in intact cells
journal, August 1994


A hot spot of binding energy in a hormone-receptor interface
journal, January 1995


Opening the Iron Box: Transcriptional Metalloregulation by the Fur Protein
journal, October 1999


Regulation by Iron: RNA Rules the Rust
journal, October 2005


Quantitative Analysis of Protein–Protein Interactions
book, January 2004


Works referencing / citing this record:

Widespread distribution of encapsulin nanocompartments reveals functional diversity
journal, March 2017


Evidence that cyanobacterial Sll1217 functions analogously to PGRL1 in enhancing PGR5-dependent cyclic electron flow
journal, November 2019


Small Molecule Inhibitors of the BfrB–Bfd Interaction Decrease Pseudomonas aeruginosa Fitness and Potentiate Fluoroquinolone Activity
journal, May 2019

  • Punchi Hewage, Achala N. D.; Yao, Huili; Nammalwar, Baskar
  • Journal of the American Chemical Society
  • DOI: 10.1021/jacs.9b00394

Evidence that cyanobacterial Sll1217 functions analogously to PGRL1 in enhancing PGR5-dependent cyclic electron flow
journal, November 2019