DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy

Abstract

Autophagy is an essential component of innate immunity, enabling the detection and elimination of intracellular pathogens. Legionella pneumophila, an intracellular pathogen that can cause a severe pneumonia in humans, is able to modulate autophagy through the action of effector proteins that are translocated into the host cell by the pathogen’s Dot/Icm type IV secretion system. Many of these effectors share structural and sequence similarity with eukaryotic proteins. Indeed, phylogenetic analyses have indicated their acquisition by horizontal gene transfer from a eukaryotic host. Here we report that L. pneumophila translocates the effector protein sphingosine-1 phosphate lyase (LpSpl) to target the host sphingosine biosynthesis and to curtail autophagy. Our structural characterization of LpSpl and its comparison with human SPL reveals high structural conservation, thus supporting prior phylogenetic analysis. Here, we show that LpSpl possesses S1P lyase activity that was abrogated by mutation of the catalytic site residues. L. pneumophila triggers the reduction of several sphingolipids critical for macrophage function in an LpSpl-dependent and -independent manner. LpSpl activity alone was sufficient to prevent an increase in sphingosine levels in infected host cells and to inhibit autophagy during macrophage infection. LpSpl was required for efficient infection of A/J mice, highlighting an important virulence rolemore » for this effector. Thus, we have uncovered a previously unidentified mechanism used by intracellular pathogens to inhibit autophagy, namely the disruption of host sphingolipid biosynthesis.« less

Authors:
 [1];  [1];  [1];  [2];  [2]; ORCiD logo [3];  [4];  [5];  [6];  [6];  [1];  [1];  [1];  [7];  [8];  [8];  [8];  [9];  [9];  [2] more »;  [10];  [11];  [6];  [1] « less
  1. Inst. Pasteur, Paris (France); CNRS UMR 3525, Paris (France)
  2. Inst. Necker Enfants-Malades, Paris (France); Univ. Paris Descartes-Sorbonne Paris Cité, Paris (France)
  3. Centre de Recherches en Cancérologie de Toulouse (France); Inst. of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona (Spain)
  4. Univ. of Toronto, ON (Canada); Hospital for Sick Children, Toronto, ON (Canada)
  5. Monash Univ., Melbourne, VIC (Australia)
  6. Univ. of Toronto, ON (Canada)
  7. Univ. of Zurich (Switzerland)
  8. Univ. of Melbourne (Australia)
  9. Univ. of Melbourne at the Peter Doherty Inst. for Infection and Immunity, Melbourne, VIC (Australia)
  10. Centre de Recherches en Cancérologie de Toulouse (France)
  11. Monash Univ., Clayton, VIC (Australia)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Institutes of Health (NIH); Swiss National Science Foundation (SNSF)
OSTI Identifier:
1239413
Grant/Contract Number:  
ANR-10-LABX-62-IBEID; ANR-13-IFEC-0003-02; GM074942; GM094585; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 113; Journal Issue: 7; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences
Country of Publication:
United States
Language:
ENGLISH
Subject:
59 BASIC BIOLOGICAL SCIENCES; Legionella pneumophila; sphingosine-1-phosphate lyase; autophagy; sphingolipids; virulence

Citation Formats

Rolando, Monica, Escoll, Pedro, Nora, Tamara, Botti, Joëlle, Boitez, Valérie, Bedia, Carmen, Daniels, Craig, Abraham, Gilu, Stogios, Peter J., Skarina, Tatiana, Christophe, Charlotte, Dervins-Ravault, Delphine, Cazalet, Christel, Hilbi, Hubert, Rupasinghe, Thusitha W. T., Tull, Dedreia, McConville, Malcolm J., Ong, Sze Ying, Hartland, Elizabeth L., Codogno, Patrice, Levade, Thierry, Naderer, Thomas, Savchenko, Alexei, and Buchrieser, Carmen. Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. United States: N. p., 2016. Web. doi:10.1073/pnas.1522067113.
Rolando, Monica, Escoll, Pedro, Nora, Tamara, Botti, Joëlle, Boitez, Valérie, Bedia, Carmen, Daniels, Craig, Abraham, Gilu, Stogios, Peter J., Skarina, Tatiana, Christophe, Charlotte, Dervins-Ravault, Delphine, Cazalet, Christel, Hilbi, Hubert, Rupasinghe, Thusitha W. T., Tull, Dedreia, McConville, Malcolm J., Ong, Sze Ying, Hartland, Elizabeth L., Codogno, Patrice, Levade, Thierry, Naderer, Thomas, Savchenko, Alexei, & Buchrieser, Carmen. Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy. United States. https://doi.org/10.1073/pnas.1522067113
Rolando, Monica, Escoll, Pedro, Nora, Tamara, Botti, Joëlle, Boitez, Valérie, Bedia, Carmen, Daniels, Craig, Abraham, Gilu, Stogios, Peter J., Skarina, Tatiana, Christophe, Charlotte, Dervins-Ravault, Delphine, Cazalet, Christel, Hilbi, Hubert, Rupasinghe, Thusitha W. T., Tull, Dedreia, McConville, Malcolm J., Ong, Sze Ying, Hartland, Elizabeth L., Codogno, Patrice, Levade, Thierry, Naderer, Thomas, Savchenko, Alexei, and Buchrieser, Carmen. Mon . "Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy". United States. https://doi.org/10.1073/pnas.1522067113. https://www.osti.gov/servlets/purl/1239413.
@article{osti_1239413,
title = {Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy},
author = {Rolando, Monica and Escoll, Pedro and Nora, Tamara and Botti, Joëlle and Boitez, Valérie and Bedia, Carmen and Daniels, Craig and Abraham, Gilu and Stogios, Peter J. and Skarina, Tatiana and Christophe, Charlotte and Dervins-Ravault, Delphine and Cazalet, Christel and Hilbi, Hubert and Rupasinghe, Thusitha W. T. and Tull, Dedreia and McConville, Malcolm J. and Ong, Sze Ying and Hartland, Elizabeth L. and Codogno, Patrice and Levade, Thierry and Naderer, Thomas and Savchenko, Alexei and Buchrieser, Carmen},
abstractNote = {Autophagy is an essential component of innate immunity, enabling the detection and elimination of intracellular pathogens. Legionella pneumophila, an intracellular pathogen that can cause a severe pneumonia in humans, is able to modulate autophagy through the action of effector proteins that are translocated into the host cell by the pathogen’s Dot/Icm type IV secretion system. Many of these effectors share structural and sequence similarity with eukaryotic proteins. Indeed, phylogenetic analyses have indicated their acquisition by horizontal gene transfer from a eukaryotic host. Here we report that L. pneumophila translocates the effector protein sphingosine-1 phosphate lyase (LpSpl) to target the host sphingosine biosynthesis and to curtail autophagy. Our structural characterization of LpSpl and its comparison with human SPL reveals high structural conservation, thus supporting prior phylogenetic analysis. Here, we show that LpSpl possesses S1P lyase activity that was abrogated by mutation of the catalytic site residues. L. pneumophila triggers the reduction of several sphingolipids critical for macrophage function in an LpSpl-dependent and -independent manner. LpSpl activity alone was sufficient to prevent an increase in sphingosine levels in infected host cells and to inhibit autophagy during macrophage infection. LpSpl was required for efficient infection of A/J mice, highlighting an important virulence role for this effector. Thus, we have uncovered a previously unidentified mechanism used by intracellular pathogens to inhibit autophagy, namely the disruption of host sphingolipid biosynthesis.},
doi = {10.1073/pnas.1522067113},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 7,
volume = 113,
place = {United States},
year = {Mon Feb 01 00:00:00 EST 2016},
month = {Mon Feb 01 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 101 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Sphingosine-1-phosphate lyase SPL is an endoplasmic reticulum-resident, integral membrane protein with the pyridoxal 5′-phosphate binding domain exposed to the cytosol
journal, December 2004

  • Ikeda, Mika; Kihara, Akio; Igarashi, Yasuyuki
  • Biochemical and Biophysical Research Communications, Vol. 325, Issue 1
  • DOI: 10.1016/j.bbrc.2004.10.036

TOR-dependent control of autophagy: biting the hand that feeds
journal, April 2010


Genome Dynamics in Legionella: The Basis of Versatility and Adaptation to Intracellular Replication
journal, June 2013


Sphingolipids: regulators of crosstalk between apoptosis and autophagy
journal, November 2012

  • Young, Megan M.; Kester, Mark; Wang, Hong-Gang
  • Journal of Lipid Research, Vol. 54, Issue 1
  • DOI: 10.1194/jlr.R031278

Roles of Autophagy in Elimination of Intracellular Bacterial Pathogens
journal, January 2013


Bacteria–autophagy interplay: a battle for survival
journal, January 2014

  • Huang, Ju; Brumell, John H.
  • Nature Reviews Microbiology, Vol. 12, Issue 2
  • DOI: 10.1038/nrmicro3160

Autophagy paradox and ceramide
journal, May 2014

  • Jiang, Wenhui; Ogretmen, Besim
  • Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, Vol. 1841, Issue 5
  • DOI: 10.1016/j.bbalip.2013.09.005

Molecular Pathogenesis of Infections Caused by Legionella pneumophila
journal, April 2010

  • Newton, H. J.; Ang, D. K. Y.; van Driel, I. R.
  • Clinical Microbiology Reviews, Vol. 23, Issue 2
  • DOI: 10.1128/CMR.00052-09

The Role of Lipids in the Control of Autophagy
journal, January 2013

  • Dall'Armi, Claudia; Devereaux, Kelly A.; Di Paolo, Gilbert
  • Current Biology, Vol. 23, Issue 1
  • DOI: 10.1016/j.cub.2012.10.041

Screening in Planarians Identifies MORN2 as a Key Component in LC3-Associated Phagocytosis and Resistance to Bacterial Infection
journal, September 2014


Autophagosomes form at ER–mitochondria contact sites
journal, March 2013

  • Hamasaki, Maho; Furuta, Nobumichi; Matsuda, Atsushi
  • Nature, Vol. 495, Issue 7441
  • DOI: 10.1038/nature11910

Autophagy in Protein and Organelle Turnover
journal, January 2011


Autophagic flux and autophagosome morphogenesis require the participation of sphingolipids
journal, February 2015


A Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria
journal, August 2009


Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity
journal, October 2004

  • Cazalet, Christel; Rusniok, Christophe; Brüggemann, Holger
  • Nature Genetics, Vol. 36, Issue 11
  • DOI: 10.1038/ng1447

“Inside-Out” Signaling of Sphingosine-1-Phosphate: Therapeutic Targets
journal, June 2008

  • Takabe, Kazuaki; Paugh, Steven W.; Milstien, Sheldon
  • Pharmacological Reviews, Vol. 60, Issue 2
  • DOI: 10.1124/pr.107.07113

Structure and Function of Sphingosine-1-Phosphate Lyase, a Key Enzyme of Sphingolipid Metabolism
journal, August 2010


The Legionella Effector RavZ Inhibits Host Autophagy Through Irreversible Atg8 Deconjugation
journal, October 2012


Listeria and autophagy escape: Involvement of InlK, an internalin-like protein
journal, January 2012


Inflammasome Components Coordinate Autophagy and Pyroptosis as Macrophage Responses to Infection
journal, February 2013

  • Byrne, Brenda G.; Dubuisson, Jean-Francois; Joshi, Amrita D.
  • mBio, Vol. 4, Issue 1
  • DOI: 10.1128/mBio.00620-12

Autophagy Gene Variant IRGM −261T Contributes to Protection from Tuberculosis Caused by Mycobacterium tuberculosis but Not by M. africanum Strains
journal, September 2009


p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
journal, November 2005

  • Bjørkøy, Geir; Lamark, Trond; Brech, Andreas
  • The Journal of Cell Biology, Vol. 171, Issue 4
  • DOI: 10.1083/jcb.200507002

Cytoplasmic sphingosine-1-phosphate pathway modulates neuronal autophagy
journal, October 2015

  • Moruno Manchon, Jose Felix; Uzor, Ndidi-Ese; Dabaghian, Yuri
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep15213

Regulation of Autophagy by Sphingolipids
journal, November 2011

  • Bedia, Carmen; Levade, Thierry; Codogno, Patrice
  • Anti-Cancer Agents in Medicinal Chemistry, Vol. 11, Issue 9
  • DOI: 10.2174/187152011797655131

Autophagy targeting of Listeria monocytogenes and the bacterial countermeasure
journal, March 2011


Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function
journal, January 2010


Molecular mimicry: an important virulence strategy employed by Legionella pneumophila to subvert host functions
journal, August 2009

  • Nora, Tamara; Lomma, Mariella; Gomez-Valero, Laura
  • Future Microbiology, Vol. 4, Issue 6
  • DOI: 10.2217/fmb.09.47

Secrets of a Successful Pathogen: Legionella Resistance to Progression Along the Autophagic Pathway
journal, January 2011


A bacterial protein promotes the recognition of the L egionella pneumophila vacuole by autophagy: Innate immunity
journal, April 2013

  • Khweek, Arwa A.; Caution, Kyle; Akhter, Anwari
  • European Journal of Immunology, Vol. 43, Issue 5
  • DOI: 10.1002/eji.201242835

Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions
journal, March 2008


Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
journal, December 2010

  • Nakahira, Kiichi; Haspel, Jeffrey Adam; Rathinam, Vijay A. K.
  • Nature Immunology, Vol. 12, Issue 3
  • DOI: 10.1038/ni.1980

Autophagy in Antimicrobial Immunity
journal, April 2014


Autophagy is an immediate macrophage response to Legionella pneumophila
journal, June 2005


Pyridoxal Phosphate Enzymes: Mechanistic, Structural, and Evolutionary Considerations
journal, June 2004


Legionella pneumophila Effector RomA Uniquely Modifies Host Chromatin to Repress Gene Expression and Promote Intracellular Bacterial Replication
journal, April 2013


Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice
journal, December 2007


Lysosomal Turnover, but Not a Cellular Level, of Endogenous LC3 is a Marker for Autophagy
journal, July 2005

  • Tanida, Isei; Minematsu-Ikeguchi, Naoko; Ueno, Takashi
  • Autophagy, Vol. 1, Issue 2
  • DOI: 10.4161/auto.1.2.1697

Data growth and its impact on the SCOP database: new developments
journal, December 2007

  • Andreeva, A.; Howorth, D.; Chandonia, J. -M.
  • Nucleic Acids Research, Vol. 36, Issue Database
  • DOI: 10.1093/nar/gkm993

Human IRGM Induces Autophagy to Eliminate Intracellular Mycobacteria
journal, August 2006


Synthesis of a Fluorogenic Analogue of Sphingosine-1-Phosphate and Its Use to Determine Sphingosine-1-Phosphate Lyase Activity
journal, March 2009


Autophagy in the regulation of pathogen replication and adaptive immunity
journal, October 2012


The Legionella Anti-autophagy Effector RavZ Targets the Autophagosome via PI3P- and Curvature-Sensing Motifs
journal, September 2015


Regulation of Autophagy by Sphingosine Kinase 1 and Its Role in Cell Survival during Nutrient Starvation
journal, January 2006

  • Lavieu, Grégory; Scarlatti, Francesca; Sala, Giusy
  • Journal of Biological Chemistry, Vol. 281, Issue 13
  • DOI: 10.1074/jbc.M506182200

Regulation of cell death by sphingosine 1-phosphate lyase
journal, April 2010


Structure and function of sphingosine-1-phosphate lyase, a key enzyme of sphingolipid metabolism
text, January 2010


Autophagy in the regulation of pathogen replication and adaptive immunity
text, January 2012


Works referencing / citing this record:

Autophagy—from molecular mechanisms to clinical relevance
journal, December 2016


Sphingosine kinase 2 activates autophagy and protects neurons against ischemic injury through interaction with Bcl-2 via its putative BH3 domain
journal, July 2017

  • Song, Dan-Dan; Zhang, Tong-Tong; Chen, Jia-Li
  • Cell Death & Disease, Vol. 8, Issue 7
  • DOI: 10.1038/cddis.2017.289

Legionella effector Lpg1137 shuts down ER-mitochondria communication through cleavage of syntaxin 17
journal, May 2017

  • Arasaki, Kohei; Mikami, Yumi; Shames, Stephanie R.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15406

Legionella and Coxiella effectors: strength in diversity and activity
journal, July 2017


Mitochondria-associated membranes (MAMs) and inflammation
journal, February 2018

  • Missiroli, Sonia; Patergnani, Simone; Caroccia, Natascia
  • Cell Death & Disease, Vol. 9, Issue 3
  • DOI: 10.1038/s41419-017-0027-2

Sphingosine kinase 1-associated autophagy differs between neurons and astrocytes
journal, May 2018

  • Moruno-Manchon, Jose F.; Uzor, Ndidi-Ese; Ambati, Chandrashekar R.
  • Cell Death & Disease, Vol. 9, Issue 5
  • DOI: 10.1038/s41419-018-0599-5

Intracellular parasitism, the driving force of evolution of Legionella pneumophila and the genus Legionella
journal, May 2019


More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells
journal, January 2019

  • Gomez-Valero, Laura; Rusniok, Christophe; Carson, Danielle
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 6
  • DOI: 10.1073/pnas.1808016116

Interaction between autophagic vesicles and the Coxiella -containing vacuole requires CLTC (clathrin heavy chain)
journal, July 2018


Bacterial interaction with host autophagy
journal, January 2019


Tiny architects: biogenesis of intracellular replicative niches by bacterial pathogens
journal, March 2018

  • Martinez, Eric; Siadous, Fernande Ayenoue; Bonazzi, Matteo
  • FEMS Microbiology Reviews
  • DOI: 10.1093/femsre/fuy013

Evasion of phagotrophic predation by protist hosts and innate immunity of metazoan hosts by Legionella pneumophila
journal, October 2018

  • Best, Ashley M.; Abu Kwaik, Yousef
  • Cellular Microbiology, Vol. 21, Issue 1
  • DOI: 10.1111/cmi.12971

The Life Cycle of L. pneumophila: Cellular Differentiation Is Linked to Virulence and Metabolism
journal, January 2018

  • Oliva, Giulia; Sahr, Tobias; Buchrieser, Carmen
  • Frontiers in Cellular and Infection Microbiology, Vol. 8
  • DOI: 10.3389/fcimb.2018.00003

Acanthamoeba and Dictyostelium as Cellular Models for Legionella Infection
journal, March 2018

  • Swart, A. Leoni; Harrison, Christopher F.; Eichinger, Ludwig
  • Frontiers in Cellular and Infection Microbiology, Vol. 8
  • DOI: 10.3389/fcimb.2018.00061

How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication
journal, March 2019

  • Eisenreich, Wolfgang; Rudel, Thomas; Heesemann, Jürgen
  • Frontiers in Cellular and Infection Microbiology, Vol. 9
  • DOI: 10.3389/fcimb.2019.00042

Macrophage Autophagy and Bacterial Infections
journal, November 2017


Amino Acids As Mediators of Metabolic Cross Talk between Host and Pathogen
journal, February 2018


Autophagy and Its Interaction With Intracellular Bacterial Pathogens
journal, May 2018

  • Siqueira, Mariana da Silva; Ribeiro, Renato de Moraes; Travassos, Leonardo H.
  • Frontiers in Immunology, Vol. 9
  • DOI: 10.3389/fimmu.2018.00935

Bacterial Manipulation of Autophagic Responses in Infection and Inflammation
journal, December 2019


Intracellular parasitism, the driving force of evolution of Legionella pneumophila and the genus Legionella
journal, June 2019


Acanthamoeba and Dictyostelium as Cellular Models for Legionella Infection
text, January 2018

  • Leoni, Swart, A.; F., Harrison, Christopher; Ludwig, Eichinger,
  • Frontiers Research Foundation
  • DOI: 10.5167/uzh-157988

More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells.
text, January 2019

  • Gomez-Valero, Laura; Rusniok, Christophe; Carson, Danielle
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.36809

Legionella pneumophila Modulates Mitochondrial Dynamics to Trigger Metabolic Repurposing of Infected Macrophages
journal, September 2017


Sphingosine kinase 2 activates autophagy and protects neurons against ischemic injury through interaction with Bcl-2 via its putative BH3 domain
journal, July 2017

  • Song, Dan-Dan; Zhang, Tong-Tong; Chen, Jia-Li
  • Cell Death & Disease, Vol. 8, Issue 7
  • DOI: 10.1038/cddis.2017.289

Legionella effector Lpg1137 shuts down ER-mitochondria communication through cleavage of syntaxin 17
journal, May 2017

  • Arasaki, Kohei; Mikami, Yumi; Shames, Stephanie R.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15406

Mitochondria-associated membranes (MAMs) and inflammation
journal, February 2018

  • Missiroli, Sonia; Patergnani, Simone; Caroccia, Natascia
  • Cell Death & Disease, Vol. 9, Issue 3
  • DOI: 10.1038/s41419-017-0027-2

Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis
journal, March 2017

  • Hubber, Andree; Kubori, Tomoko; Coban, Cevayir
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep44795

Interaction between autophagic vesicles and the Coxiella -containing vacuole requires CLTC (clathrin heavy chain)
journal, July 2018


Bacterial interaction with host autophagy
journal, January 2019


How to rewire the host cell: A home improvement guide for intracellular bacteria
journal, November 2017

  • Cornejo, Elias; Schlaermann, Philipp; Mukherjee, Shaeri
  • The Journal of Cell Biology, Vol. 216, Issue 12
  • DOI: 10.1083/jcb.201701095

S1P Lyase Regulation of Thymic Egress and Oncogenic Inflammatory Signaling
journal, January 2017

  • Kumar, Ashok; Zamora-Pineda, Jesus; Degagné, Emilie
  • Mediators of Inflammation, Vol. 2017
  • DOI: 10.1155/2017/7685142

Manipulation of Autophagy by Bacterial Pathogens Impacts Host Immunity
book, January 2017

  • Kunz, Tobias C.; Viana, Flávia; Buchrieser, Carmen
  • Bacterial Evasion of the Host Immune System
  • DOI: 10.21775/9781910190692.04

A Comprehensive Review on the Manipulation of the Sphingolipid Pathway by Pathogenic Bacteria
journal, August 2019


Legionella RavZ Plays a Role in Preventing Ubiquitin Recruitment to Bacteria-Containing Vacuoles
journal, August 2017

  • Kubori, Tomoko; Bui, Xuan T.; Hubber, Andree
  • Frontiers in Cellular and Infection Microbiology, Vol. 7
  • DOI: 10.3389/fcimb.2017.00384

Modulation of Host Autophagy during Bacterial Infection: Sabotaging Host Munitions for Pathogen Nutrition
journal, March 2016


Macrophage Autophagy and Bacterial Infections
journal, November 2017


Amino Acids As Mediators of Metabolic Cross Talk between Host and Pathogen
journal, February 2018


Autophagy and Its Interaction With Intracellular Bacterial Pathogens
journal, May 2018

  • Siqueira, Mariana da Silva; Ribeiro, Renato de Moraes; Travassos, Leonardo H.
  • Frontiers in Immunology, Vol. 9
  • DOI: 10.3389/fimmu.2018.00935

Bacterial Manipulation of Autophagic Responses in Infection and Inflammation
journal, December 2019