DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy

Abstract

Since its inception over two decades ago, Kelvin probe force microscopy (KPFM) has become the standard technique for characterizing electrostatic, electrochemical and electronic properties at the nanoscale. In this work, we present a purely digital, software-based approach to KPFM utilizing big data acquisition and analysis methods. General Mode (G-Mode) KPFM, works by capturing the entire photodetector data stream, typically at the sampling rate limit, followed by subsequent de-noising, analysis and compression of the cantilever response. We demonstrate that the G-Mode approach allows simultaneous multi-harmonic detection, combined with on-the-fly transfer function correction required for quantitative CPD mapping. The KPFM approach outlined in this work significantly simplifies the technique by avoiding cumbersome instrumentation optimization steps (i.e. lock in parameters, feedback gains etc.), while also retaining the flexibility to be implemented on any atomic force microscopy platform. We demonstrate the added advantages of G-Mode KPFM by allowing simultaneous mapping of CPD and capacitance gradient (C') channels as well as increased flexibility in data exploration across frequency, time, space, and noise domains. As a result, G-Mode KPFM is particularly suitable for characterizing voltage sensitive materials or for operation in conductive electrolytes, and will be useful for probing electrodynamics in photovoltaics, liquids and ionic conductors.

Authors:
 [1];  [1];  [1];  [1];  [2];  [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Univ. College Dublin, Dublin (Ireland)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1238748
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nanotechnology
Additional Journal Information:
Journal Volume: 27; Journal Issue: 10; Journal ID: ISSN 0957-4484
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 47 OTHER INSTRUMENTATION; Kelvin probe force microscopy; contact potential difference; dual harmonic KPFM; big data; multivariate statistical analysis

Citation Formats

Collins, Liam F., Jesse, Stephen, Belianinov, Alex, Somnath, Suhas, Rodriguez, Brian J., Balke, Nina, and Kalinin, Sergei V. Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy. United States: N. p., 2016. Web. doi:10.1088/0957-4484/27/10/105706.
Collins, Liam F., Jesse, Stephen, Belianinov, Alex, Somnath, Suhas, Rodriguez, Brian J., Balke, Nina, & Kalinin, Sergei V. Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy. United States. https://doi.org/10.1088/0957-4484/27/10/105706
Collins, Liam F., Jesse, Stephen, Belianinov, Alex, Somnath, Suhas, Rodriguez, Brian J., Balke, Nina, and Kalinin, Sergei V. Thu . "Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy". United States. https://doi.org/10.1088/0957-4484/27/10/105706. https://www.osti.gov/servlets/purl/1238748.
@article{osti_1238748,
title = {Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy},
author = {Collins, Liam F. and Jesse, Stephen and Belianinov, Alex and Somnath, Suhas and Rodriguez, Brian J. and Balke, Nina and Kalinin, Sergei V.},
abstractNote = {Since its inception over two decades ago, Kelvin probe force microscopy (KPFM) has become the standard technique for characterizing electrostatic, electrochemical and electronic properties at the nanoscale. In this work, we present a purely digital, software-based approach to KPFM utilizing big data acquisition and analysis methods. General Mode (G-Mode) KPFM, works by capturing the entire photodetector data stream, typically at the sampling rate limit, followed by subsequent de-noising, analysis and compression of the cantilever response. We demonstrate that the G-Mode approach allows simultaneous multi-harmonic detection, combined with on-the-fly transfer function correction required for quantitative CPD mapping. The KPFM approach outlined in this work significantly simplifies the technique by avoiding cumbersome instrumentation optimization steps (i.e. lock in parameters, feedback gains etc.), while also retaining the flexibility to be implemented on any atomic force microscopy platform. We demonstrate the added advantages of G-Mode KPFM by allowing simultaneous mapping of CPD and capacitance gradient (C') channels as well as increased flexibility in data exploration across frequency, time, space, and noise domains. As a result, G-Mode KPFM is particularly suitable for characterizing voltage sensitive materials or for operation in conductive electrolytes, and will be useful for probing electrodynamics in photovoltaics, liquids and ionic conductors.},
doi = {10.1088/0957-4484/27/10/105706},
journal = {Nanotechnology},
number = 10,
volume = 27,
place = {United States},
year = {Thu Feb 11 00:00:00 EST 2016},
month = {Thu Feb 11 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Scanning Probe Microscopy
book, January 2007


Label-free and high-resolution protein/DNA nanoarray analysis using Kelvin probe force microscopy
journal, September 2007


Improved Kelvin probe force microscopy for imaging individual DNA molecules on insulating surfaces
journal, November 2010

  • Leung, Carl; Maradan, Dario; Kramer, Armin
  • Applied Physics Letters, Vol. 97, Issue 20
  • DOI: 10.1063/1.3512867

Kelvin probe force microscopy
journal, June 1991

  • Nonnenmacher, M.; O’Boyle, M. P.; Wickramasinghe, H. K.
  • Applied Physics Letters, Vol. 58, Issue 25
  • DOI: 10.1063/1.105227

Kelvin probe force microscopy for characterization of semiconductor devices and processes
journal, March 1996

  • Tanimoto, Masafumi
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 14, Issue 2
  • DOI: 10.1116/1.589136

Electrostatic force microscopy: principles and some applications to semiconductors
journal, November 2001


Local potential and polarization screening on ferroelectric surfaces
journal, March 2001


Kelvin Probe Force Microscopy Study on Conjugated Polymer/Fullerene Bulk Heterojunction Organic Solar Cells
journal, February 2005

  • Hoppe, H.; Glatzel, T.; Niggemann, M.
  • Nano Letters, Vol. 5, Issue 2
  • DOI: 10.1021/nl048176c

Imaging Surface Charges of Individual Biomolecules
journal, July 2009

  • Leung, Carl; Kinns, Helen; Hoogenboom, Bart W.
  • Nano Letters, Vol. 9, Issue 7
  • DOI: 10.1021/nl9012979

Surface potential at surface-interface junctions in SrTiO 3 bicrystals
journal, October 2000


Probing Local Ionic Dynamics in Functional Oxides at the Nanoscale
journal, July 2013

  • Strelcov, Evgheni; Kim, Yunseok; Jesse, Stephen
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl400780d

Space- and Time-Resolved Mapping of Ionic Dynamic and Electroresistive Phenomena in Lateral Devices
journal, July 2013

  • Strelcov, Evgheni; Jesse, Stephen; Huang, Yen-Lin
  • ACS Nano, Vol. 7, Issue 8
  • DOI: 10.1021/nn4017873

Direct Probing of Charge Injection and Polarization-Controlled Ionic Mobility on Ferroelectric LiNbO 3 Surfaces
journal, November 2013

  • Strelcov, Evgheni; Ievlev, Anton V.; Jesse, Stephen
  • Advanced Materials, Vol. 26, Issue 6
  • DOI: 10.1002/adma.201304002

Controlled creation of a carbon nanotube diode by a scanned gate
journal, November 2001

  • Freitag, Marcus; Radosavljevic, Marko; Zhou, Yangxin
  • Applied Physics Letters, Vol. 79, Issue 20
  • DOI: 10.1063/1.1419055

Quantifying Surface Charge Density by Using an Electric Force Microscope with a Referential Structure
journal, December 2008

  • Qi, Guicun; Yang, Yanlian; Yan, Hao
  • The Journal of Physical Chemistry C, Vol. 113, Issue 1
  • DOI: 10.1021/jp806667h

Quantifying the dielectric constant of thick insulators using electrostatic force microscopy
journal, May 2010

  • Fumagalli, L.; Gramse, G.; Esteban-Ferrer, D.
  • Applied Physics Letters, Vol. 96, Issue 18
  • DOI: 10.1063/1.3427362

Quantitative Noncontact Electrostatic Force Imaging of Nanocrystal Polarizability
journal, February 2003

  • Cherniavskaya, Oksana; Chen, Liwei; Weng, Vivian
  • The Journal of Physical Chemistry B, Vol. 107, Issue 7
  • DOI: 10.1021/jp0265438

Open loop Kelvin probe force microscopy with single and multi-frequency excitation
journal, October 2013


ac driving amplitude dependent systematic error in scanning Kelvin probe microscope measurements: Detection and correction
journal, April 2006

  • Wu, Yan; Shannon, Mark A.
  • Review of Scientific Instruments, Vol. 77, Issue 4
  • DOI: 10.1063/1.2195104

Practical aspects of Kelvin probe force microscopy
journal, March 1999

  • Jacobs, H. O.; Knapp, H. F.; Stemmer, A.
  • Review of Scientific Instruments, Vol. 70, Issue 3
  • DOI: 10.1063/1.1149664

Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection
journal, April 2015


Note: Quantitative (artifact-free) surface potential measurements using Kelvin force microscopy
journal, March 2011

  • Mélin, T.; Barbet, S.; Diesinger, H.
  • Review of Scientific Instruments, Vol. 82, Issue 3
  • DOI: 10.1063/1.3516046

Kelvin force microscopy at the second cantilever resonance: An out-of-vacuum crosstalk compensation setup
journal, July 2008


Band excitation Kelvin probe force microscopy utilizing photothermal excitation
journal, March 2015

  • Collins, Liam; Jesse, Stephen; Balke, Nina
  • Applied Physics Letters, Vol. 106, Issue 10
  • DOI: 10.1063/1.4913910

Imaging Local Trap Formation in Conjugated Polymer Solar Cells: A Comparison of Time-Resolved Electrostatic Force Microscopy and Scanning Kelvin Probe Imaging
journal, October 2010

  • Reid, Obadiah G.; Rayermann, Glennis E.; Coffey, David C.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 48
  • DOI: 10.1021/jp1056607

Submicrosecond Time Resolution Atomic Force Microscopy for Probing Nanoscale Dynamics
journal, January 2012

  • Giridharagopal, Rajiv; Rayermann, Glennis E.; Shao, Guozheng
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203956q

Time-resolved electrostatic force microscopy of polymer solar cells
journal, August 2006

  • Coffey, David C.; Ginger, David S.
  • Nature Materials, Vol. 5, Issue 9
  • DOI: 10.1038/nmat1712

Probing charge screening dynamics and electrochemical processes at the solid–liquid interface with electrochemical force microscopy
journal, May 2014

  • Collins, Liam; Jesse, Stephen; Kilpatrick, Jason I.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4871

Kelvin probe force microscopy in liquid using electrochemical force microscopy
journal, January 2015

  • Collins, Liam; Jesse, Stephen; Kilpatrick, Jason I.
  • Beilstein Journal of Nanotechnology, Vol. 6
  • DOI: 10.3762/bjnano.6.19

The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale
journal, September 2007


Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination
journal, January 2011

  • Jaafar, Miriam; Iglesias-Freire, Oscar; Serrano-Ramón, Luis
  • Beilstein Journal of Nanotechnology, Vol. 2
  • DOI: 10.3762/bjnano.2.59

Update of technologies for examining the stratum corneum at the molecular level
journal, September 2014


Complete information acquisition in dynamic force microscopy
journal, March 2015

  • Belianinov, Alexei; Kalinin, Sergei V.; Jesse, Stephen
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7550

Note: Switching crosstalk on and off in Kelvin probe force microscopy
journal, April 2014

  • Polak, Leo; de Man, Sven; Wijngaarden, Rinke J.
  • Review of Scientific Instruments, Vol. 85, Issue 4
  • DOI: 10.1063/1.4873331

Dual frequency open-loop electric potential microscopy for local potential measurements in electrolyte solution with high ionic strength
journal, March 2012

  • Kobayashi, Naritaka; Asakawa, Hitoshi; Fukuma, Takeshi
  • Review of Scientific Instruments, Vol. 83, Issue 3
  • DOI: 10.1063/1.3698207

Dual harmonic Kelvin probe force microscopy at the graphene–liquid interface
journal, March 2014

  • Collins, Liam; Kilpatrick, Jason I.; Vlassiouk, Ivan V.
  • Applied Physics Letters, Vol. 104, Issue 13
  • DOI: 10.1063/1.4870074

Calibration of rectangular atomic force microscope cantilevers
journal, October 1999

  • Sader, John E.; Chon, James W. M.; Mulvaney, Paul
  • Review of Scientific Instruments, Vol. 70, Issue 10
  • DOI: 10.1063/1.1150021

Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy
journal, February 2009


Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces
journal, July 2012

  • Fumagalli, Laura; Esteban-Ferrer, Daniel; Cuervo, Ana
  • Nature Materials, Vol. 11, Issue 9
  • DOI: 10.1038/nmat3369

Theory of amplitude modulated electrostatic force microscopy for dielectric measurements in liquids at MHz frequencies
journal, September 2013


Nanoscale Measurement of the Dielectric Constant of Supported Lipid Bilayers in Aqueous Solutions with Electrostatic Force Microscopy
journal, March 2013


Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets
journal, May 2015

  • Belianinov, Alex; Vasudevan, Rama; Strelcov, Evgheni
  • Advanced Structural and Chemical Imaging, Vol. 1, Issue 1
  • DOI: 10.1186/s40679-015-0006-6

Surface potential studies of self-assembling monolayers using Kelvin probe force microscopy
journal, May 1999


Kelvin Probe Force Microscopy
book, March 2018


Scanning Probe Microscopy
journal, January 2008


Works referencing / citing this record:

Deep neural networks for understanding noisy data applied to physical property extraction in scanning probe microscopy
journal, February 2019

  • Borodinov, Nikolay; Neumayer, Sabine; Kalinin, Sergei V.
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0148-5

Application of pan-sharpening algorithm for correlative multimodal imaging using AFM-IR
journal, April 2019

  • Borodinov, Nikolay; Bilkey, Natasha; Foston, Marcus
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0186-z

Microwave measurement of giant unilamellar vesicles in aqueous solution
journal, January 2018


Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography
journal, May 2016

  • Jesse, S.; Chi, M.; Belianinov, A.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep26348

Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space
journal, August 2016

  • Collins, Liam; Belianinov, Alex; Somnath, Suhas
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep30557

Mapping piezoelectric response in nanomaterials using a dedicated non-destructive scanning probe technique
journal, January 2017

  • Calahorra, Yonatan; Smith, Michael; Datta, Anuja
  • Nanoscale, Vol. 9, Issue 48
  • DOI: 10.1039/c7nr06714c

G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics
journal, May 2016

  • Collins, Liam; Belianinov, Alex; Proksch, Roger
  • Applied Physics Letters, Vol. 108, Issue 19
  • DOI: 10.1063/1.4948601

Ferroelectric or non-ferroelectric: Why so many materials exhibit “ferroelectricity” on the nanoscale
journal, June 2017

  • Vasudevan, Rama K.; Balke, Nina; Maksymovych, Peter
  • Applied Physics Reviews, Vol. 4, Issue 2
  • DOI: 10.1063/1.4979015

Quantitative comparison of closed-loop and dual harmonic Kelvin probe force microscopy techniques
journal, December 2018

  • Kilpatrick, Jason I.; Collins, Liam; Weber, Stefan A. L.
  • Review of Scientific Instruments, Vol. 89, Issue 12
  • DOI: 10.1063/1.5025432

Time resolved surface photovoltage measurements using a big data capture approach to KPFM
journal, September 2018


Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: a review
journal, July 2018

  • Collins, Liam; Kilpatrick, Jason I.; Kalinin, Sergei V.
  • Reports on Progress in Physics, Vol. 81, Issue 8
  • DOI: 10.1088/1361-6633/aab560

Mapping piezoelectric response in nanomaterials using a dedicated non-destructive scanning probe technique
text, January 2017

  • Calahorra, Yonatan; Smith, Mike; Datta, Anuja
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.18818

Ferroelectric or non-ferroelectric: why so many materials exhibit ferroelectricity on the nanoscale
preprint, January 2017


Rapid mapping of polarization switching through complete information acquisition
journal, December 2016

  • Somnath, Suhas; Belianinov, Alex; Kalinin, Sergei V.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13290

Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography
journal, May 2016

  • Jesse, S.; Chi, M.; Belianinov, A.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep26348

Implementation of data-cube pump–probe KPFM on organic solar cells
journal, February 2020

  • Grévin, Benjamin; Bardagot, Olivier; Demadrille, Renaud
  • Beilstein Journal of Nanotechnology, Vol. 11
  • DOI: 10.3762/bjnano.11.24