Itinerant density wave instabilities at classical and quantum critical points
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Leading Summary: Charge ordering in metals is a fundamental instability of the
electron sea, occurring in a host of materials and often linked to other collective ground
states such as superconductivity. What is difficult to parse, however, is whether the
charge order originates among the itinerant electrons or whether it arises from coupling to
the ionic lattice. Here we employ high-resolution x-ray diffraction, combined with high
pressure and low temperature techniques and theoretical modeling, to trace the evolution
of the ordering wave vector Q in charge and spin density wave systems at the approach to
both thermal and quantum phase transitions. The non-monotonic behavior of Q with
pressure and the limiting sinusoidal form of the density wave point to the dominant role
of the itinerant instability in the vicinity of the critical points, with little influence from
the lattice. Fluctuations rather than disorder appear to disrupt coherence.

Text:

Understanding the formation and evolution of instabilities in electronic systems,
from charge and spin order [1-6] to heavy fermion and high-T. superconductivity [7, 8],
to insulator-metal transitions [9], has assumed a central stance in physics for decades.
These different ordering mechanisms can compete and coexist, for instance charge and
spin order vying with superconductivity in both normal [10] and high-T, materials [1, 3,
4], enriching the phase space of possible physical states. At the same time, isolating the
fundamental mechanisms underlying a particular Fermi surface instability becomes key
to progress in the field. At stake is not simply Fermiology, but the role of quantum
critical points and the emergence of non-Fermi-liquid behavior [11, 12]. Perhaps the
quintessential example, going back to the work of Peierls [13] in the 1950s, is the
ongoing debate about the origin of charge-density-wave ordering in numerous
compounds. Suggested mechanisms range from Fermi surface nesting and related
instabilities in the electronic structure to mediation by electron-phonon coupling effects,
to more exotic phenomena such as excitons paired through the screened Coulomb
interaction [14-19].



In the case of charge (CDW) and spin (SDW) density waves, a continuous gap
opening at the Fermi surface at zero temperature is complicated by the presence and
potential influence of quantum critical fluctuations. Over the past two decades, there have
been several theoretical approaches on quantum phase transitions with a 2k type of
instability [20-23]. This work has mainly focused on cuprates in two dimensions, and
differ primarily on subtle issues such as distinguishing between nesting or hot spots,
treating curved Fermi surfaces with parallel or non-parallel electron velocities, and
modeling commensurate (%2, ¥2) vs. incommensurate states. Given the presence of both
bosonic and fermionic degrees of freedom in the theoretical framework, it is still unclear
how the 2kr type quantum phase transition becomes first [20] or second [23] order.

Experimental insight into the evolution of the electronic gap at the Fermi surface
is typically provided by photoemission spectroscopy [18], measurement of the Hall
coefficient [11, 24], or the observation of quantum oscillations [8]. It is important to note,
however, that the wave vectors of the incommensurate CDW/SDW order also directly
reflect the location and evolution of the associated energy gap in reciprocal space. With
improved x-ray diffraction techniques applied over an extended pressure range [6, 25], it
is now possible to finely resolve the evolution of incommensurate wave vectors and the
role of an itinerant instability at a pressure-driven quantum critical point. This is a topic
rarely discussed in the literature mainly because direct measurement of the evolution of
the wave vector Q by either neutron or x-ray diffraction was previously scarce, limited to
low pressures, and of low resolution [26, 27]. Here, using diffraction-resolved
incommensurate orders of the CDW in NbSe, and the SDW in Cr, we examine the
fundamental physics of density wave formation approaching a pressure-driven critical
point. The itinerant instability plays a dominant role when the order parameter forms,
assuming a pure sinusoidal shape apparently shielded from interactions with other
degrees of freedom. The maximum of the electronic susceptibility dominates the incipient
long-range order at both the thermal and quantum critical points.

Incommensurate wave vector in P-T space

We plot in Fig. 1 both the Pressure-Temperature (P-T) phase diagram and Q(T, P)
for our two model systems: the CDW in 2H-NbSe, and the SDW in Cr. Although of
different dimensions (two and three dimensions, respectively), the phase behavior of
these two density-wave systems is similar (Fig. 1 insets). Pressure monotonically
suppresses Tpw, and both quantum phase transitions under pressure have proved to be
continuous, with signatures of critical behavior in both electrical transport and x-ray
diffraction [2, 5, 24].

The evolution of Q(P) over a 1.5% reduction in the lattice constant [2, 5] is non-
monotonic in the zero temperature limit, in contrast to the monotonic trend in Tpw(P).
The ordering wave vector Q at the critical point represents an instability in the electronic
structure, corresponds to a maximum in the electronic susceptibility, and is often related
to special features of the electronic bands or its Fermi surface. A typical example is the
2ke instability in well-nested materials. The value of Q also may be tuned by physical



processes beyond the band structure, resulting in non-monotonic behavior with T or P,
and potentially revealing the influence of fluctuations about critical points.

Mean-field evolution of Q(T, P=0)

Before discussing the Q(P) behavior in detail, we survey Q(T) of several
CDW/SDW materials at ambient pressure. The materials listed in Fig. 2a have
incommensurate ordering existing to the lowest temperature and represent a diverse
spectrum of spin or charge origins in various dimensions from one (NbSes;) to three (Cr,
GdSi). Some, such as ThTesz [28], Cr, and GdSi [6, 29], have well established nesting
conditions at the Fermi surface, while others such as NbSe, are at best described as hot
spots [18]. Nevertheless, all five SDW/CDW states are clearly tied to instabilities of the
itinerant electrons, resulting in the formation of gaps in the Fermi surface, with both
resistivity anomalies [24, 28-31] and strong changes in the Hall coefficient [29, 32] at the
transition. By contrast to Q(P), all of the Q(T) of the CDW/SDW systems in Fig. 2a
evolve monotonically with temperature.

McMiillan prescribed key elements of a mean-field free-energy expression for an
incommensurate CDW/SDW [33]. Here we take the essence of the McMillan theory and
neglect both interlayer and multi-Q interactions between CDWSs. They are not a common
feature of the examples listed above and thus are not expected to be necessary for
explaining the Q(T) behavior. The free energy density is then [2, 33]:

F = —ay? + byp* + c&2|VY|? + ey?|Vp — q|? + fpT cosng ().

The complex CDW order parameter e ‘¢ has amplitude y and phase ¢. g is the
natural period of the CDW determined by a maximum in its electronic susceptibility, and
& is the spatial correlation length of the CDW. The first two terms are leading orders in a
Landau free-energy expansion. The third and fourth terms come from the energy costs of
distorting a CDW from its ideal condition by stretching/compressing the wave from the
wave vector set by the susceptibility, and from having a finite spatial correlation length &.
For CDWs, these two terms includes both electronic energy from repopulating the
Brillouin zone [33] and static phonon energy from coupling to the lattice. The fifth term
reflects the lock-in effect, which favors a CDW commensurate with the lattice. Q(T) is
determined by the competition between the fourth and fifth terms, as y grows with
decreasing temperature.

This competition is best visualized by plotting Q(w) (Fig. 2b), using as examples
TTF-TCNQ and 2H-TaSe; [34, 35]. Both CDW systems order incommensurately at high
temperature, before experiencing a first-order phase transition to a commensurate state
with discontinuities in both Q and y. As shown in Fig. 2b, Q is independent of w in the
= 0 limit. As w increases, Q evolves continuously until the lock-in transition creates
discontinuities in both Q and . At even lower temperature, y continues to grow while Q
remains constant at the commensurate position. For TTF-TCNQ and TaSe,, dQ/dy
approaches zero at both small and large w, which clearly indicates the alternating
dominance of either the fourth or fifth term in Eg. 1 with different powers of w. As



exemplified by TTF-TCNQ, the lock-in position can be located far from the intrinsic
CDW wave vector g, and AQ can be as large as one quarter of the reciprocal lattice unit
[34]. In addition, a lock-in transition does not necessarily exist for every n value such as
n=3 for TTF-TCNQ. This possibly explains the wave vectors in NbSes;, GdSi, and Cr
seemingly moving away from commensurate positions of n = 4, 2, and 1, respectively.
For NbSe;, n = 3 was assumed to be the commensurate position, in association with the
lock-in transition in TaSe; [33].

For CDWs that remain incommensurate, the Q(w) plot in Fig. 2c only manifests
partial features of the full evolution demonstrated in Fig. 2b. This indicates that the
strength of v is insufficient for higher order terms to contribute substantially to the free
energy. Q(v) behavior similar to Fig. 2c is also observed for the SDW in Cr at ambient P
(Fig. 3a of Ref. [2]). Hence Q(w) provides a direct measure of the relative importance of
terms with different powers of  for a collection of vastly different physical systems.
Importantly, Q(w) is a macroscopic indicator independent of the microscopic and
quantitative details of the CDW-lattice coupling. This is reflective of the fact that all Q(T)
behave similarly despite a variation of over a decade in the ordering temperature Tpw.

Harmonics of the incommensurate density wave

For a sinusoidal incommensurate DW with both y(x)=constant and #(x)=Qx, the
last term in EqQ. 1, fy™ cos n¢, always will be zero when summed over all lattice sites,
no matter the magnitude of w. For a CDW and a collinear SDW, y is a scalar and
constant in a mean field framework [36], while all deviations of the DW from a pure
sinusoid are represented by A@(x)=¢(x)-Qx. Experimentally, the deviation of an
incommensurate wave from a sinusoidal form is reflected by the presence of higher order
harmonics in the diffraction pattern [37, 38]. For the CDW in NbSe,, we were able to
measure both the primary wave and its second harmonic with our bulk-sensitive, high-
resolution x-ray diffraction technique (Fig. 3). Combining measurements at orders such
as (Q, 0, 0), (1£Q, 0, 0), and (2-Q, 0, 0), the amplitude ratio between primary and second
harmonics is y»/y1=0.09+£0.02 at T=3.5 K. No other higher harmonic was observed
within our measurement sensitivity (Fig. 3). Similar behavior in higher harmonics was
observed in the SDW of Cr up to 4™ order of the primary wave [38]. For Cr in the low
temperature limit, the amplitude ratios for SDW/CDW and their higher harmonics are
w3l y1=0.018 and wa/ w»,=0.019£0.003, respectively [38], only a factor of five weaker than
the ratio y»/ya in NbSes.

The deviation from pure sinusoidal behavior, A¢g(x), is chosen to minimize the
free energy in Eg. 1. One possible solution was proposed by McMillan [39] as a
“discommensuration” state, which has been widely considered as a model for the CDW
in NbSe,. Locally, the CDW state is forced into a perfectly commensurate wavelength of
3a by its coupling to the atomic lattice. In order to satisfy the requirement of having an
incommensurate wave on average, the density modulations then develop phase slips of -
21t/3 between neighboring unit cells at every distance & [39]. To create the specific Q
=1/3-6 = 0.3286 r.l.u. observed at T=3.5 K for NbSe,, the -27/3 phase slips need to be



placed at every 1/(36)~ 70 unit cells, or a distance &~ 240 A. To have an
incommensurate order with a longer wavelength than that of the commensurate order 1/3
r.l.u., all phase slips also need to have the same value of -27t/3 and no phase slips of 27/3
are allowed. A perfectly sharp -27t/3 phase slip creates many strong higher harmonics that
would be readily observable, with amplitude ratios such as y»/y1=0.45 for first and
second harmonics (Fig. 3b). To get agreement with the observed intensity ratios in
NbSe,, we thus find that each phase slip is spread over a distance of the same order of
magnitude as &. Our measurements show that the modulation of the electronic density in
the bulk is closer to that of a perfectly incommensurate pattern than the
discommensuration form with sharp phase slips proposed by McMillan and observed in
the surface state of NbSe; [40].

Approaching the thermal transition temperature, Tpw, the diminishing coupling
between the CDW and the lattice is reflected directly in the harmonic behavior. In Fig. 4,
we plot representative diffraction profiles and the temperature evolution of the CDW at
(1+Q, 0, 0). The intensities of both the primary and secondary harmonics of the CDW in
NbSe; decrease with increasing T. However, the intensity of the second harmonic drops
much faster than that of the primary CDW, with a relative ratio between the two evolving
in a nearly linear fashion in temperature (Fig. 4 inset). Similar behavior was seen as well
in Cr, where the higher harmonic intensities scale as Io(T) ~ lag™? ~ lso"* [38]. We
conclude that the density waves due to the itinerant instabilities in NbSe, and Cr both
have the limiting form of a purely sinusoidal wave at Tpw, with a Ag(x)—0.

Evolution of a non-monotonic Q(T=0, P)

The non-monotonic behavior of Q(T=0, P) in Fig. 1 evolves over a range of
0.003-0.012 r.l.u., which is well below the resolution of photoemission techniques [18].
As density functional theory approaches are still insufficient to describe the SDW ground
state in Cr [41], this subtle non-monotonic behavior is difficult to resolve with ab initio
calculations. Here instead, we argue that Q(P) can be explained by macroscopic free
energy considerations similar to those made for Q(T) at ambient P, once the pressure
dependence of the different contributions to the electronic susceptibility are taken into
account.

As discussed above, the temperature evolution of the incommensurate wave
vector Q starts at the itinerant condition q at Tpw and changes to Q(T=0, P) due to the
higher-order lock-in term that pulls Q away from q. The pressure dependence of g also
has been measured, as a part of the full Q(T) evolution, at several low pressures up to 0.2
and 0.6 GPa for NbSe, and Cr, respectively [26, 27]. Those studies provide valuable
information of initial changes in q(P) = Q(Tpw, P). From Fig. 1, q(P) is clearly non-
linear, but nevertheless is still likely monotonic, given the small variation of 1.5% in the
lattice constant. When the transition temperature Tpw decreases towards the quantum
critical point, the strength of the order parameter y monotonically decreases with P at
zero temperature. The competition between the lower-order electronic instability term
and the higher-order lock-in term in Eqg. 1 becomes increasingly one-sided with reducing
w under pressure. This is consistent with the experimental observation that AQ(P)=q(P)-



Q(T=0,P) decreases in magnitude under pressure in both NbSe, and Cr [26, 27] (Fig. 1).
Eventually, close to the quantum critical point the lower-order term ¥?|V¢ — q|? in Eq. 1
dominates, and q(P) and Q(T=0, P) converge at P.. The non-monotonic behavior in
Q(T=0, P) is therefore due to a changing balance between terms of various powers in y,
in addition to a varying q under pressure. The measured CDW/SDW wave vector at the
quantum critical point is a true reflection of a maximum in the electronic susceptibility
arising from features such as (but not limited to) the presence of nesting or hot spots in
the electronic structure.

We model in Fig. 5 the Q(T, P) behavior for NbSe, using the free energy
expression in Eq. 1, with parameters and coefficients constrained by physical
considerations in the following way. For a(T, P), which determines Tcpw, its temperature
dependence is assumed to be linear, while its pressure dependence is determined from the
measured phase diagram: a(T, P)=-ao(1-T/Tcow(P)). The coefficient b(T, P) for the
quartic term is assumed constant, which determines the primary CDW amplitude at T=0
through the ratio b/a. Note, however, that this restricts the Q(T, 0) evolution to be linear.
Although the spatial correlation length & is pressure dependent [5], the third term in Eq. 1
describing spatial variations of the DW amplitude is neglected in our modeling since it
does not directly affect Q. The pressure dependence of the fourth term is directly taken
from experimental data as q(P)=Q(Tow, P). The pressure dependence of the coefficient f
of the lock-in term, which arises from the variation of orbital overlaps with pressure, is
assumed linear given the small change in the compressed lattice constant. We use
McMillan’s discommensuration construction to build phase distortion Ag(X). The width
and density of phase slips in ¢(x) can be varied to minimize the free energy F of Eq. 1
and generate the Q value at every point in phase space.

Apart from an overall scaling factor for the magnitude of the free energy, there
are only two free parameters left. They describe the ratio of the lock-in energy to the
energy cost of deviating from q set by the fourth term in Eq. 1, as well as the slope of the
linear pressure dependence in the lock-in term. While A@(x) minimizes the free energy
and determines Q at every P-T point, optimizing those two parameters results in the
global behavior of Q(T, P) in Fig. 5. The qualitative agreement with experimental results
in both the magnitude of Q variations, as well as the non-monotonic pressure
dependence, is satisfying given the simplicity of approximations used.

2Kkr instability at a quantum critical point

In our current study, the CDW state in NbSe, was tracked under pressure (Fig. 1,
Fig. 6) up to the quantum phase boundary at P.=4.6 GPa [5]. In addition to wave vector
Q(T, P), x-ray diffraction also provides the CDW correlation length & in real space, with
£=600 A for our samples at T = 3.5 K and ambient pressure (Fig. 6). While the lattice
correlation length remains long range to at least 1500 A throughout our probed P-T
space, & gradually decreases as it approaches both the thermal and quantum critical points
[5], similar to thermal behavior in other SDW/CDWs [38, 42]. Near both thermal and
quantum phase boundaries, & is about 26-50 A in NbSe; (Fig. 6), roughly 3-5 CDW wave
lengths or 8-15 unit cell sizes.



The mechanism for destroying long-range CDW coherence, leading to a
shortened &, has been attributed to an increase in either fluctuation effects [5] or disorder
pinning [36, 38, 42]. At T=3.5K, our observed CDW line shape is described by a
Lorentzian-squared function (Figs. 3b, 6¢), which is consistent with disorder pinning at a
CDW domain boundary [5]. A strong pinning picture is unlikely to apply near the
transition, since it necessarily introduces many higher harmonics of the CDW, by contrast
to our observed temperature evolution (Fig. 4). Approaching both the thermal and
guantum phase transitions, the line shape is best described by a Lorentzian form (Fig. 6a)
[5, 42], which indicates that the CDW phase correlation is exponentially decaying in real
space without experiencing abrupt changes. Although this seems qualitatively consistent
with a weak-pinning picture that allows the CDW phase distortion to be distributed over a
spatial range across a pinning site [36], the extremely short & of 8-15 unit cells in our
observation is unlikely to host multiple disorder sites within a coherent volume,
necessary to collectively anchor the phase-coherent CDW domain. We conclude that,
@#(x) is not constrained by disorder, but has the freedom to adjust to the itinerant
instability and the observed incommensurate CDW wave vector Q continuously evolves
approaching both the thermal and quantum limits (Fig. 1). Similarly, CDWs remain
incommensurate with very short correlation lengths in cuprates [3, 4], despite significant
disorder from doping. Our observation of a sinusoidal, incommensurate density wave
with a short correlation length signifies the importance of itinerant instability and
fluctuation effects at both classical and quantum critical points.

Our study examines 2kr density waves in solid-state materials from a top-down
perspective. Pressure tuning helps to identify the itinerant instability as the dominant
influence at a quantum critical point, even in the presence of spin, charge, orbital, and
lattice degrees of freedom. The striking similarity between the SDW and CDW P-T
behavior should motivate attempts to reconcile theories that describe charge and spin
instabilities from very different points of view. In complementary experiments, Fermi
surfaces with a nesting instability potentially could be manufactured from a bottom-up
approach using cold atoms. Following the early idea of a commensurate nesting condition
[43], recent developments in shaken optical lattices [44] have pointed to a method to
produce customized band structures with incommensurate nesting. Since phonons are not
naturally present in an optical lattice, the coupling between paired atoms instead comes
from the short-range Van der Waals interaction, which is nearly g-independent in
reciprocal space and could be tuned to be attractive. This is comparable to various
interactions between itinerant pairs in solids that are not phonon-mediated, such as the
screened Coulomb interaction in excitons [14, 19] or a Ruderman-Kittel-Kasuya-Yosida
interaction mediated by locally ordered spins [29]. Alternatively, the electron-phonon
interaction may be mirrored in a mixture of Fermionic and Bosonic atoms in a weak
optical potential. A comparison of these different constructions in cold atom systems
could shed additional light on itinerant instabilities at quantum critical points [15,17].

Methods
X-ray diffraction. Both ambient and high-pressure x-ray diffractions were performed at
beamline 4-1D-D of the Advanced Photon Source. 18.85 keV x-rays were used, chosen to



lie below the Nb K-edge to avoid this fluorescence excitation. The x-ray beam was
focused to a FWHM size of 250x120 (HxV) um? using Pd coated mirrors and further
narrowed by motorized slits for high-pressure work. For high-resolution longitudinal
scans, a vertical detector slit size of 0.1 or 0.2 mm was used, with a sample to slit
distance of 1.25 m. Diffraction in the vertical plane thus had a maximal momentum-space
resolution of about 1 10° A™. Both ambient and high-pressure diffraction were
performed in the transmission geometry to the a-b plane of NbSe, for bulk sensitivity. At
ambient pressure, a Vortex® Si-drift detector was used to reject Se K-fluorescence. For
the high-pressure study, a Cyberstar Nal x-ray detector was used for a higher counting
efficiency, as the diamond anvils absorb the majority of the Se K-fluorescence. Both x-
ray detectors only have coarse energy resolutions of 0.1-1 keV. However, the spanned
solid angle of 1-3 107" sr by our detector slits effectively eliminated the detected intensity
of inelastic scattering of dynamic CDW fluctuations. Thus our observed CDW diffraction
near the quantum critical point represents the static order, in comparison to the quasi-
elastic nature of resonant x-ray scattering techniques [3].

Sample and high-pressure environment. Single crystals of NbSe, were used in as-
grown condition at ambient pressure. The thickness of ambient pressure samples, varying
from 40 to 75 um, matches well with one x-ray absorption length of our x-rays. For
high-pressure measurements, single crystals were prepared by blade dicing to a typical
size of 80x80x50 um?®. More details can be found in Refs. [5, 25].
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Figure captions

Figure 1 | Pressure-temperature evolution of incommensurate wave vector Q. For (a)
CDW in NbSe, and (b) SDW in Cr, the ordering wave vector Q is plotted as a function of
both temperature T and pressure P. For NbSe,, Q(T, P) with solid symbols are from the
current study, while open symbols are from Refs. [27] and [35] with a shift of all Q by
0.00095 r.l.u. to match our data at Q(0, 0). For Cr, Q(T, P) are collected from the
literature (open symbols) [26] and our previous work (solid symbols) [2, 45]. (Insets) P-
T phase diagrams of NbSe; [5, 30] and Cr [24] show similar monotonic trends in Tpw(P).
On the other hand, Q(P) of NbSe, and Cr manifest a non-monotonic behavior in the low
temperature limit. Arrows in phase diagrams mark our measurement trajectories for data
plotted in main panels.

Figure 2 | Temperature evolution of wave vector Q. (a) Incommensurate Q(T) for
CDWs and SDWs arranged by increasing Tpw over one decade. (b) Q(w) are plotted for
the CDW systems TTF-TCNQ and TaSe,, both of which manifest a lock-in transition to a
commensurate state. Here, yp at zero temperature is strong enough that Q(y) shows the
full evolution between the two limits of y/yw=0 and 1; each end is dominated by
individual terms of different powers of win the Hamiltonian of Eq. 1. (c) Q(y) for
CDWs which remain incommensurate at low temperature only evolves over part of the
master curve in Fig. 3b. Q(T) of NbSe, from the current study is compared to data from
the literature: NbSe; [35], GdSi [6, 29], NbSes [46, 47], Cr [45], TbTes [28], TaSe, [35],
TTF-TCNQ [34], and Ky3MoO; [48]. The CDW amplitude y is converted from
diffraction intensity 1 by I~y”0 For Ko3MoOs;, the experimental resolution was
insufficient to determine whether or not a lock-in transition occurs. No first order
discontinuity was observed in the temperature dependence of both the order parameter
and the wave vector [48].

Figure 3 | CDW harmonics in NbSe,. (a) Longitudinal (4/26) scan in reciprocal lattice

unit (r.l.u.) along the in-plane direction of (H, 0, 0) for NbSe,. Both the primary and
second harmonics of CDW are clearly resolved over the background around mirroring
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(Q, 0, 0) and (1-Q, 0, 0) positions. The plotted intensity is normalized to that of the (1, O,
0) lattice order. Vertical error bars represent 1o s.d. of counting statistics. (b) A profile
comparison between the experimental observed CDW for NbSe; at (Q, 0, 0) (red points)
and a simulated diffraction pattern of a discommensurate CDW with phase slips in the
sharp limit (grey line) [39]. For comparison, both intensities are normalized to unity at
the primary wave vector position. The fine longitudinal CDW scan in panel b was
measured with our best instrument resolution (better by a factor of two than the long scan
in Fig. 2a; Methods). The data is fit by the summation of two Lorentzian-squared
functions for primary and second harmonics in addition to a constant background (red
solid line). Positions of CDW harmonics are marked by black arrows on the horizontal
axes in both panels a and b, with the separation between the primary incommensurate
CDW and the commensurate (1/3, 0, 0) position (white circle) denoted as 6. Harmonics
from 4™ to 10" orders are not observed even with a CDW signal-to-background ratio
larger than 5000. The simulated diffraction profile for a discommensurate CDW with
single-helicity -27t/3 phase slips over a single unit-cell at a regular spacing of 70 unit-cell
distance has strong harmonic peaks at all orders within our measurement range [40].

Figure 4 | Temperature evolution of CDW harmonics in NbSe,. (Main)
Representative longitudinal scans of (1+Q, 0, 0) and (2-2Q, 0, 0) at four different
temperatures below Tcpw. (Inset) Temperature dependence of the intensity ratio between
the second harmonic and the primary CDW, plotted for one single sample. The intensity

ratio was fit (solid line) to a power law of 7, ,,00 /Lup00 ~ (Tepy - T)?° With
,820.510.1, and Tcpw= 36.8+3.3 K.

Figure 5 | Theoretical modeling of Q(T, P). The evolution of Q(T, P) is modeled by
minimizing the free energy in Eq. 1 for the CDW in NbSe; with optimally spaced and
widened phase slips, with the global behavior controlled by two free parameters.
Calculated Q(P) at several fixed temperatures (linked dots) are plotted in comparison
with experimental data (grey crosses bound by grey dashed lines, from Fig. 1), capturing
the overall size of variations in Q as well as its non-monotonic behavior as a function of
pressure.

Figure 6 | CDW fluctuations near the thermal and quantum critical points.
Longitudinal x-ray diffraction scans are plotted for the CDW in NbSe,. At () (T~Tcpw,
P=0) and (b) (T—0, P~P.), the CDW line shapes are best fit with a Lorentzian form plus
a linear background (red, panel a; light blue, panel b). At (c) (T—0, P=0), the fit to the
CDW line shape instead requires the sum of two Lorentzian-squared functions and a
constant background (blue, panel ¢). A Lorentzian-squared form with a linear background
(black) is also used to fit data in panel a as a comparison. The vertical dashed lines mark
the 1/3 commensurate position. Locations of all three (T, P) points are marked by
asterisks of the same color on the grey P-T phase diagram in the background. Near the
phase boundary, the CDW profile represents a small CDW correlation length & which is
~50 A for (T~Tcpw, P=0) and ~26 A for (T—0, P~P.) in the basal plane. The shortened
£is inconsistent with pinning from disorder and is instead attributed to thermal
fluctuations and quantum fluctuations [5] near their respective critical points.
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