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Leading Summary: Charge ordering in metals is a fundamental instability of the 

electron sea, occurring in a host of materials and often linked to other collective ground 

states such as superconductivity. What is difficult to parse, however, is whether the 

charge order originates among the itinerant electrons or whether it arises from coupling to 

the ionic lattice. Here we employ high-resolution x-ray diffraction, combined with high 

pressure and low temperature techniques and theoretical modeling, to trace the evolution 

of the ordering wave vector Q in charge and spin density wave systems at the approach to 

both thermal and quantum phase transitions. The non-monotonic behavior of Q with 

pressure and the limiting sinusoidal form of the density wave point to the dominant role 

of the itinerant instability in the vicinity of the critical points, with little influence from 

the lattice. Fluctuations rather than disorder appear to disrupt coherence.  

 

Text: 

Understanding the formation and evolution of instabilities in electronic systems, 

from charge and spin order [1-6] to heavy fermion and high-Tc superconductivity [7, 8], 

to insulator-metal transitions [9], has assumed a central stance in physics for decades. 

These different ordering mechanisms can compete and coexist, for instance charge and 

spin order vying with superconductivity in both normal [10] and high-Tc materials [1, 3, 

4], enriching the phase space of possible physical states. At the same time, isolating the 

fundamental mechanisms underlying a particular Fermi surface instability becomes key 

to progress in the field. At stake is not simply Fermiology, but the role of quantum 

critical points and the emergence of non-Fermi-liquid behavior [11, 12]. Perhaps the 

quintessential example, going back to the work of Peierls [13] in the 1950s, is the 

ongoing debate about the origin of charge-density-wave ordering in numerous 

compounds. Suggested mechanisms range from Fermi surface nesting and related 

instabilities in the electronic structure to mediation by electron-phonon coupling effects, 

to more exotic phenomena such as excitons paired through the screened Coulomb 

interaction [14-19].  
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In the case of charge (CDW) and spin (SDW) density waves, a continuous gap 

opening at the Fermi surface at zero temperature is complicated by the presence and 

potential influence of quantum critical fluctuations. Over the past two decades, there have 

been several theoretical approaches on quantum phase transitions with a 2kF type of 

instability [20-23]. This work has mainly focused on cuprates in two dimensions, and 

differ primarily on subtle issues such as distinguishing between nesting or hot spots, 

treating curved Fermi surfaces with parallel or non-parallel electron velocities, and 

modeling commensurate (½, ½) vs. incommensurate states.  Given the presence of both 

bosonic and fermionic degrees of freedom in the theoretical framework, it is still unclear 

how the 2kF type quantum phase transition becomes first [20] or second [23] order.  

 

Experimental insight into the evolution of the electronic gap at the Fermi surface 

is typically provided by photoemission spectroscopy [18], measurement of the Hall 

coefficient [11, 24], or the observation of quantum oscillations [8]. It is important to note, 

however, that the wave vectors of the incommensurate CDW/SDW order also directly 

reflect the location and evolution of the associated energy gap in reciprocal space. With 

improved x-ray diffraction techniques applied over an extended pressure range [6, 25], it 

is now possible to finely resolve the evolution of incommensurate wave vectors and the 

role of an itinerant instability at a pressure-driven quantum critical point. This is a topic 

rarely discussed in the literature mainly because direct measurement of the evolution of 

the wave vector Q by either neutron or x-ray diffraction was previously scarce, limited to 

low pressures, and of low resolution [26, 27]. Here, using diffraction-resolved 

incommensurate orders of the CDW in NbSe2 and the SDW in Cr, we examine the 

fundamental physics of density wave formation approaching a pressure-driven critical 

point. The itinerant instability plays a dominant role when the order parameter forms, 

assuming a pure sinusoidal shape apparently shielded from interactions with other 

degrees of freedom. The maximum of the electronic susceptibility dominates the incipient 

long-range order at both the thermal and quantum critical points.  

 

Incommensurate wave vector in P-T space 

 

We plot in Fig. 1 both the Pressure-Temperature (P-T) phase diagram and Q(T, P) 

for our two model systems: the CDW in 2H-NbSe2 and the SDW in Cr. Although of 

different dimensions (two and three dimensions, respectively), the phase behavior of 

these two density-wave systems is similar (Fig. 1 insets). Pressure monotonically 

suppresses TDW, and both quantum phase transitions under pressure have proved to be 

continuous, with signatures of critical behavior in both electrical transport and x-ray 

diffraction [2, 5, 24].   

 

The evolution of Q(P) over a 1.5% reduction in the lattice constant [2, 5] is non-

monotonic in the zero temperature limit, in contrast to the monotonic trend in TDW(P). 

The ordering wave vector Q at the critical point represents an instability in the electronic 

structure, corresponds to a maximum in the electronic susceptibility, and is often related 

to special features of the electronic bands or its Fermi surface. A typical example is the 

2kF instability in well-nested materials. The value of Q also may be tuned by physical 
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processes beyond the band structure, resulting in non-monotonic behavior with T or P, 

and potentially revealing the influence of fluctuations about critical points.  

 

Mean-field evolution of Q(T, P=0)  

 

Before discussing the Q(P) behavior in detail, we survey Q(T) of several 

CDW/SDW materials at ambient pressure. The materials listed in Fig. 2a have 

incommensurate ordering existing to the lowest temperature and represent a diverse 

spectrum of spin or charge origins in various dimensions from one (NbSe3) to three (Cr, 

GdSi). Some, such as TbTe3 [28], Cr, and GdSi [6, 29], have well established nesting 

conditions at the Fermi surface, while others such as NbSe2 are at best described as hot 

spots [18]. Nevertheless, all five SDW/CDW states are clearly tied to instabilities of the 

itinerant electrons, resulting in the formation of gaps in the Fermi surface, with both 

resistivity anomalies [24, 28-31] and strong changes in the Hall coefficient [29, 32] at the 

transition. By contrast to Q(P), all of the Q(T) of the CDW/SDW systems in Fig. 2a 

evolve monotonically with temperature.  

 

McMillan prescribed key elements of a mean-field free-energy expression for an 

incommensurate CDW/SDW [33].  Here we take the essence of the McMillan theory and 

neglect both interlayer and multi-Q interactions between CDWs. They are not a common 

feature of the examples listed above and thus are not expected to be necessary for 

explaining the Q(T) behavior. The free energy density is then [2, 33]: 

 

                 |  |     |    |             (1). 

 

The complex CDW order parameter       has amplitude  and phase . q is the 

natural period of the CDW determined by a maximum in its electronic susceptibility, and 

 is the spatial correlation length of the CDW. The first two terms are leading orders in a 

Landau free-energy expansion. The third and fourth terms come from the energy costs of 

distorting a CDW from its ideal condition by stretching/compressing the wave from the 

wave vector set by the susceptibility, and from having a finite spatial correlation length . 

For CDWs, these two terms includes both electronic energy from repopulating the 

Brillouin zone [33] and static phonon energy from coupling to the lattice. The fifth term 

reflects the lock-in effect, which favors a CDW commensurate with the lattice. Q(T) is 

determined by the competition between the fourth and fifth terms, as grows with 

decreasing temperature.  

 

This competition is best visualized by plotting Q() (Fig. 2b), using as examples 

TTF-TCNQ and 2H-TaSe2 [34, 35]. Both CDW systems order incommensurately at high 

temperature, before experiencing a first-order phase transition to a commensurate state 

with discontinuities in both Q and . As shown in Fig. 2b, Q is independent of  in the  

= 0 limit. As  increases, Q evolves continuously until the lock-in transition creates 

discontinuities in both Q and. At even lower temperature, continues to grow while Q 

remains constant at the commensurate position.  For TTF-TCNQ and TaSe2, dQ/d 

approaches zero at both small and large , which clearly indicates the alternating 

dominance of either the fourth or fifth term in Eq. 1 with different powers of . As 
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exemplified by TTF-TCNQ, the lock-in position can be located far from the intrinsic 

CDW wave vector q, and Q can be as large as one quarter of the reciprocal lattice unit 

[34]. In addition, a lock-in transition does not necessarily exist for every n value such as 

n=3 for TTF-TCNQ.  This possibly explains the wave vectors in NbSe3, GdSi, and Cr 

seemingly moving away from commensurate positions of n = 4, 2, and 1, respectively. 

For NbSe2, n = 3 was assumed to be the commensurate position, in association with the 

lock-in transition in TaSe2 [33].  

 

For CDWs that remain incommensurate, the Q() plot in Fig. 2c only manifests 

partial features of the full evolution demonstrated in Fig. 2b. This indicates that the 

strength of is insufficient for higher order terms to contribute substantially to the free 

energy. Q() behavior similar to Fig. 2c is also observed for the SDW in Cr at ambient P 

(Fig. 3a of Ref. [2]).  Hence Q() provides a direct measure of the relative importance of 

terms with different powers of  for a collection of vastly different physical systems. 

Importantly, Q() is a macroscopic indicator independent of the microscopic and 

quantitative details of the CDW-lattice coupling. This is reflective of the fact that all Q(T) 

behave similarly despite a variation of over a decade in the ordering temperature TDW.  

 

Harmonics of the incommensurate density wave  

 

For a sinusoidal incommensurate DW with both (x)=constant and (x)=Qx, the 

last term in Eq. 1,         , always will be zero when summed over all lattice sites, 

no matter the magnitude of . For a CDW and a collinear SDW,  is a scalar and 

constant in a mean field framework [36], while all deviations of the DW from a pure 

sinusoid are represented by (x)=(x)-Qx. Experimentally, the deviation of an 

incommensurate wave from a sinusoidal form is reflected by the presence of higher order 

harmonics in the diffraction pattern [37, 38]. For the CDW in NbSe2, we were able to 

measure both the primary wave and its second harmonic with our bulk-sensitive, high-

resolution x-ray diffraction technique (Fig. 3). Combining measurements at orders such 

as (Q, 0, 0), (1±Q, 0, 0), and (2-Q, 0, 0), the amplitude ratio between primary and second 

harmonics is 2/1=0.09±0.02 at T=3.5 K. No other higher harmonic was observed 

within our measurement sensitivity (Fig. 3). Similar behavior in higher harmonics was 

observed in the SDW of Cr up to 4
th

 order of the primary wave [38].  For Cr in the low 

temperature limit, the amplitude ratios for SDW/CDW and their higher harmonics are 

3/1=0.018 and 4/2=0.019±0.003, respectively [38], only a factor of five weaker than 

the ratio 2/1 in NbSe2. 

 

The deviation from pure sinusoidal behavior, (x), is chosen to minimize the 

free energy in Eq. 1. One possible solution was proposed by McMillan [39] as a 

“discommensuration” state, which has been widely considered as a model for the CDW 

in NbSe2. Locally, the CDW state is forced into a perfectly commensurate wavelength of 

3a by its coupling to the atomic lattice. In order to satisfy the requirement of having an 

incommensurate wave on average, the density modulations then develop phase slips of -

2/3 between neighboring unit cells at every distance 0 [39]. To create the specific Q 

=1/3- = 0.3286 r.l.u. observed at T=3.5 K for NbSe2, the -2/3 phase slips need to be 
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placed at every 1/(3~ 70 unit cells, or a distance 0~ 240 Å. To have an 

incommensurate order with a longer wavelength than that of the commensurate order 1/3 

r.l.u., all phase slips also need to have the same value of -2/3 and no phase slips of 2/3 

are allowed. A perfectly sharp -2/3 phase slip creates many strong higher harmonics that 

would be readily observable, with amplitude ratios such as 2/1=0.45 for first and 

second harmonics (Fig. 3b). To get agreement with the observed intensity ratios in 

NbSe2, we thus find that each phase slip is spread over a distance of the same order of 

magnitude as 0. Our measurements show that the modulation of the electronic density in 

the bulk is closer to that of a perfectly incommensurate pattern than the 

discommensuration form with sharp phase slips proposed by McMillan and observed in 

the surface state of NbSe2 [40].  

 

Approaching the thermal transition temperature, TDW, the diminishing coupling 

between the CDW and the lattice is reflected directly in the harmonic behavior. In Fig. 4, 

we plot representative diffraction profiles and the temperature evolution of the CDW at 

(1+Q, 0, 0). The intensities of both the primary and secondary harmonics of the CDW in 

NbSe2 decrease with increasing T. However, the intensity of the second harmonic drops 

much faster than that of the primary CDW, with a relative ratio between the two evolving 

in a nearly linear fashion in temperature (Fig. 4 inset). Similar behavior was seen as well 

in Cr, where the higher harmonic intensities scale as IQ(T) ~ I2Q
1/2

 ~ I4Q
1/4

 [38]. We 

conclude that the density waves due to the itinerant instabilities in NbSe2 and Cr both 

have the limiting form of a purely sinusoidal wave at TDW, with a (x)0.   

 

Evolution of a non-monotonic Q(T=0, P)   

 

The non-monotonic behavior of Q(T=0, P) in Fig. 1 evolves over a range of 

0.003-0.012 r.l.u., which is well below the resolution of photoemission techniques [18]. 

As density functional theory approaches are still insufficient to describe the SDW ground 

state in Cr [41], this subtle non-monotonic behavior is difficult to resolve with ab initio 

calculations. Here instead, we argue that Q(P) can be explained by macroscopic free 

energy considerations similar to those made for Q(T) at ambient P, once the pressure 

dependence of the different contributions to the electronic susceptibility are taken into 

account. 

 

As discussed above, the temperature evolution of the incommensurate wave 

vector Q starts at the itinerant condition q at TDW and changes to Q(T=0, P) due to the 

higher-order lock-in term that pulls Q away from q. The pressure dependence of q also 

has been measured, as a part of the full Q(T) evolution, at several low pressures up to 0.2 

and 0.6 GPa for NbSe2 and Cr, respectively [26, 27]. Those studies provide valuable 

information of initial changes in q(P) = Q(TDW, P). From Fig. 1, q(P) is clearly non-

linear, but nevertheless is still likely monotonic, given the small variation of 1.5% in the 

lattice constant. When the transition temperature TDW decreases towards the quantum 

critical point, the strength of the order parameter  monotonically decreases with P at 

zero temperature. The competition between the lower-order electronic instability term 

and the higher-order lock-in term in Eq. 1 becomes increasingly one-sided with reducing 

 under pressure. This is consistent with the experimental observation that Q(P)=q(P)-
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Q(T=0,P) decreases in magnitude under pressure in both NbSe2 and Cr [26, 27] (Fig. 1). 

Eventually, close to the quantum critical point the lower-order term   |    |  in Eq. 1 

dominates, and q(P) and Q(T=0, P) converge at Pc. The non-monotonic behavior in 

Q(T=0, P) is therefore due to a changing balance between terms of various powers in , 

in addition to a varying q under pressure.  The measured CDW/SDW wave vector at the 

quantum critical point is a true reflection of a maximum in the electronic susceptibility 

arising from features such as (but not limited to) the presence of nesting or hot spots in 

the electronic structure.  

 

We model in Fig. 5 the Q(T, P) behavior for NbSe2 using the free energy 

expression in Eq. 1, with parameters and coefficients constrained by physical 

considerations in the following way. For a(T, P), which determines TCDW, its temperature 

dependence is assumed to be linear, while its pressure dependence is determined from the 

measured phase diagram: a(T, P)=-a0(1-T/TCDW(P)). The coefficient b(T, P) for the 

quartic term is assumed constant, which determines the primary CDW amplitude at T=0 

through the ratio b/a. Note, however, that this restricts the Q(T, 0) evolution to be linear. 

Although the spatial correlation length  is pressure dependent [5], the third term in Eq. 1 

describing spatial variations of the DW amplitude is neglected in our modeling since it 

does not directly affect Q. The pressure dependence of the fourth term is directly taken 

from experimental data as q(P)=Q(TDW, P). The pressure dependence of the coefficient f 

of the lock-in term, which arises from the variation of orbital overlaps with pressure, is 

assumed linear given the small change in the compressed lattice constant. We use 

McMillan’s discommensuration construction to build phase distortion (x). The width 

and density of phase slips in (x) can be varied to minimize the free energy F of Eq. 1 

and generate the Q value at every point in phase space. 

 

Apart from an overall scaling factor for the magnitude of the free energy, there 

are only two free parameters left. They describe the ratio of the lock-in energy to the 

energy cost of deviating from q set by the fourth term in Eq. 1, as well as the slope of the 

linear pressure dependence in the lock-in term. While (x) minimizes the free energy 

and determines Q at every P-T point, optimizing those two parameters results in the 

global behavior of Q(T, P) in Fig. 5. The qualitative agreement with experimental results 

in both the magnitude of Q variations, as well as the non-monotonic pressure 

dependence, is satisfying given the simplicity of approximations used.  

 

2kF instability at a quantum critical point   

 

In our current study, the CDW state in NbSe2 was tracked under pressure (Fig. 1, 

Fig. 6) up to the quantum phase boundary at Pc=4.6 GPa [5].  In addition to wave vector 

Q(T, P), x-ray diffraction also provides the CDW correlation length  in real space, with 

 = 600 Å for our samples at T = 3.5 K and ambient pressure (Fig. 6).  While the lattice 

correlation length remains long range to at least 1500 Å throughout our probed P-T 

space,  gradually decreases as it approaches both the thermal and quantum critical points 

[5], similar to thermal behavior in other SDW/CDWs [38, 42]. Near both thermal and 

quantum phase boundaries,  is about 26-50 Å in NbSe2 (Fig. 6), roughly 3-5 CDW wave 

lengths or 8-15 unit cell sizes.  
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The mechanism for destroying long-range CDW coherence, leading to a 

shortened , has been attributed to an increase in either fluctuation effects [5] or disorder 

pinning [36, 38, 42]. At T=3.5K, our observed CDW line shape is described by a 

Lorentzian-squared function (Figs. 3b, 6c), which is consistent with disorder pinning at a 

CDW domain boundary [5]. A strong pinning picture is unlikely to apply near the 

transition, since it necessarily introduces many higher harmonics of the CDW, by contrast 

to our observed temperature evolution (Fig. 4). Approaching both the thermal and 

quantum phase transitions, the line shape is best described by a Lorentzian form (Fig. 6a) 

[5, 42], which indicates that the CDW phase correlation is exponentially decaying in real 

space without experiencing abrupt changes. Although this seems qualitatively consistent 

with a weak-pinning picture that allows the CDW phase distortion to be distributed over a 

spatial range across a pinning site [36], the extremely short  of 8-15 unit cells in our 

observation is unlikely to host multiple disorder sites within a coherent volume, 

necessary to collectively anchor the phase-coherent CDW domain. We conclude that, 

(x) is not constrained by disorder, but has the freedom to adjust to the itinerant 

instability and the observed incommensurate CDW wave vector Q continuously evolves 

approaching both the thermal and quantum limits (Fig. 1). Similarly, CDWs remain 

incommensurate with very short correlation lengths in cuprates [3, 4], despite significant 

disorder from doping. Our observation of a sinusoidal, incommensurate density wave 

with a short correlation length signifies the importance of itinerant instability and 

fluctuation effects at both classical and quantum critical points.  

 

Our study examines 2kF density waves in solid-state materials from a top-down 

perspective. Pressure tuning helps to identify the itinerant instability as the dominant 

influence at a quantum critical point, even in the presence of spin, charge, orbital, and 

lattice degrees of freedom. The striking similarity between the SDW and CDW P-T 

behavior should motivate attempts to reconcile theories that describe charge and spin 

instabilities from very different points of view. In complementary experiments, Fermi 

surfaces with a nesting instability potentially could be manufactured from a bottom-up 

approach using cold atoms. Following the early idea of a commensurate nesting condition 

[43], recent developments in shaken optical lattices [44] have pointed to a method to 

produce customized band structures with incommensurate nesting. Since phonons are not 

naturally present in an optical lattice, the coupling between paired atoms instead comes 

from the short-range Van der Waals interaction, which is nearly q-independent in 

reciprocal space and could be tuned to be attractive. This is comparable to various 

interactions between itinerant pairs in solids that are not phonon-mediated, such as the 

screened Coulomb interaction in excitons [14, 19] or a Ruderman-Kittel-Kasuya-Yosida 

interaction mediated by locally ordered spins [29]. Alternatively, the electron-phonon 

interaction may be mirrored in a mixture of Fermionic and Bosonic atoms in a weak 

optical potential. A comparison of these different constructions in cold atom systems 

could shed additional light on itinerant instabilities at quantum critical points [15,17].   

 

Methods 

X-ray diffraction. Both ambient and high-pressure x-ray diffractions were performed at 

beamline 4-ID-D of the Advanced Photon Source. 18.85 keV x-rays were used, chosen to 
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lie below the Nb K-edge to avoid this fluorescence excitation. The x-ray beam was 

focused to a FWHM size of 250120 (HV) μm
2
 using Pd coated mirrors and further 

narrowed by motorized slits for high-pressure work. For high-resolution longitudinal 

scans, a vertical detector slit size of 0.1 or 0.2 mm was used, with a sample to slit 

distance of 1.25 m. Diffraction in the vertical plane thus had a maximal momentum-space 

resolution of about 1 10
-3

 Å
-1

. Both ambient and high-pressure diffraction were 

performed in the transmission geometry to the a-b plane of NbSe2 for bulk sensitivity. At 

ambient pressure, a Vortex® Si-drift detector was used to reject Se K-fluorescence. For 

the high-pressure study, a Cyberstar NaI x-ray detector was used for a higher counting 

efficiency, as the diamond anvils absorb the majority of the Se K-fluorescence.  Both x-

ray detectors only have coarse energy resolutions of 0.1-1 keV. However, the spanned 

solid angle of 1-3 10
-7

 sr by our detector slits effectively eliminated the detected intensity 

of inelastic scattering of dynamic CDW fluctuations. Thus our observed CDW diffraction 

near the quantum critical point represents the static order, in comparison to the quasi-

elastic nature of resonant x-ray scattering techniques [3].  

 

Sample and high-pressure environment. Single crystals of NbSe2 were used in as-

grown condition at ambient pressure. The thickness of ambient pressure samples, varying 

from 40 to 75 μm, matches well with one x-ray absorption length of our x-rays.  For 

high-pressure measurements, single crystals were prepared by blade dicing to a typical 

size of 808050 μm
3
.  More details can be found in Refs. [5, 25].  
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Figure captions 

Figure 1 | Pressure-temperature evolution of incommensurate wave vector Q. For (a) 

CDW in NbSe2 and (b) SDW in Cr, the ordering wave vector Q is plotted as a function of 

both temperature T and pressure P. For NbSe2, Q(T, P) with solid symbols are from the 

current study, while open symbols are from Refs. [27] and [35] with a shift of all Q by 

0.00095 r.l.u. to match our data at Q(0, 0). For Cr, Q(T, P) are collected from the 

literature (open symbols) [26] and our previous work (solid symbols) [2, 45]. (Insets) P-

T phase diagrams of NbSe2 [5, 30] and Cr [24] show similar monotonic trends in TDW(P). 

On the other hand, Q(P) of NbSe2 and Cr manifest a non-monotonic behavior in the low 

temperature limit. Arrows in phase diagrams mark our measurement trajectories for data 

plotted in main panels.  

 

Figure 2 | Temperature evolution of wave vector Q.  (a) Incommensurate Q(T) for 

CDWs and SDWs arranged by increasing TDW over one decade. (b) Q() are plotted for 

the CDW systems TTF-TCNQ and TaSe2, both of which manifest a lock-in transition to a 

commensurate state. Here, 0 at zero temperature is strong enough that Q() shows the 

full evolution between the two limits of /0=0 and 1; each end is dominated by 

individual terms of different powers of in the Hamiltonian of Eq. 1.  (c) Q() for 

CDWs which remain incommensurate at low temperature only evolves over part of the 

master curve in Fig. 3b. Q(T) of NbSe2 from the current study is compared to data from 

the literature: NbSe2 [35], GdSi [6, 29], NbSe3 [46, 47], Cr [45], TbTe3 [28], TaSe2 [35], 

TTF-TCNQ [34], and K0.3MoO3 [48]. The CDW amplitude  is converted from 

diffraction intensity I by I~  For K0.3MoO3, the experimental resolution was 

insufficient to determine whether or not a lock-in transition occurs. No first order 

discontinuity was observed in the temperature dependence of both the order parameter 

and the wave vector [48].  

 

Figure 3 | CDW harmonics in NbSe2. (a) Longitudinal (/2) scan in reciprocal lattice 

unit (r.l.u.) along the in-plane direction of (H, 0, 0) for NbSe2. Both the primary and 

second harmonics of CDW are clearly resolved over the background around mirroring 

mailto:yejun@anl.gov
mailto:tfr@caltech.edu
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(Q, 0, 0) and (1-Q, 0, 0) positions.  The plotted intensity is normalized to that of the (1, 0, 

0) lattice order. Vertical error bars represent 1s.d. of counting statistics. (b) A profile 

comparison between the experimental observed CDW for NbSe2 at (Q, 0, 0) (red points) 

and a simulated diffraction pattern of a discommensurate CDW with phase slips in the 

sharp limit (grey line) [39]. For comparison, both intensities are normalized to unity at 

the primary wave vector position. The fine longitudinal CDW scan in panel b was 

measured with our best instrument resolution (better by a factor of two than the long scan 

in Fig. 2a; Methods). The data is fit by the summation of two Lorentzian-squared 

functions for primary and second harmonics in addition to a constant background (red 

solid line). Positions of CDW harmonics are marked by black arrows on the horizontal 

axes in both panels a and b, with the separation between the primary incommensurate 

CDW and the commensurate (1/3, 0, 0) position (white circle) denoted as .  Harmonics 

from 4
th

 to 10
th

 orders are not observed even with a CDW signal-to-background ratio 

larger than 5000. The simulated diffraction profile for a discommensurate CDW with 

single-helicity -2/3 phase slips over a single unit-cell at a regular spacing of 70 unit-cell 

distance has strong harmonic peaks at all orders within our measurement range [40].   

 

Figure 4 | Temperature evolution of CDW harmonics in NbSe2.  (Main) 

Representative longitudinal scans of (1+Q, 0, 0) and (2-2Q, 0, 0) at four different 

temperatures below TCDW. (Inset) Temperature dependence of the intensity ratio between 

the second harmonic and the primary CDW, plotted for one single sample. The intensity 

ratio was fit (solid line) to a power law of I(2-2Q,0,0) I(1+Q,0,0) ~ (TCDW -T )2b  with 

=0.5±0.1, and TCDW= 36.8±3.3 K.  

 

Figure 5 | Theoretical modeling of Q(T, P).  The evolution of Q(T, P) is modeled by 

minimizing the free energy in Eq. 1 for the CDW in NbSe2 with optimally spaced and 

widened phase slips, with the global behavior controlled by two free parameters. 

Calculated Q(P) at several fixed temperatures (linked dots) are plotted in comparison 

with experimental data (grey crosses bound by grey dashed lines, from Fig. 1), capturing 

the overall size of variations in Q as well as its non-monotonic behavior as a function of 

pressure.    

 

Figure 6 | CDW fluctuations near the thermal and quantum critical points.  

Longitudinal x-ray diffraction scans are plotted for the CDW in NbSe2. At (a) (T~TCDW, 

P=0) and (b) (T0, P~Pc), the CDW line shapes are best fit with a Lorentzian form plus 

a linear background (red, panel a; light blue, panel b).  At (c) (T0, P=0), the fit to the 

CDW line shape instead requires the sum of two Lorentzian-squared functions and a 

constant background (blue, panel c). A Lorentzian-squared form with a linear background 

(black) is also used to fit data in panel a as a comparison. The vertical dashed lines mark 

the 1/3 commensurate position. Locations of all three (T, P) points are marked by 

asterisks of the same color on the grey P-T phase diagram in the background.  Near the 

phase boundary, the CDW profile represents a small CDW correlation length , which is 

~50 Å for (T~TCDW, P=0) and ~26 Å for (T0, P~Pc) in the basal plane. The shortened 

is inconsistent with pinning from disorder and is instead attributed to thermal 

fluctuations and quantum fluctuations [5] near their respective critical points.  
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