DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Young’s modulus of [111] germanium nanowires

Abstract

Our paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ~75%. Furthermore, with increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

Authors:
 [1];  [2];  [3];  [1];  [1]
  1. Virginia Commonwealth Univ., Richmond, VA (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1236212
Report Number(s):
SAND-20157594J
Journal ID: ISSN 2166-532X; AMPADS; 603560
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
APL Materials
Additional Journal Information:
Journal Volume: 3; Journal Issue: 11; Journal ID: ISSN 2166-532X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; germanium; elemental semiconductors; atomic force microscopy; fracture mechanics; oxide surface

Citation Formats

Maksud, M., Yoo, J., Harris, C. T., Palapati, N. K. R., and Subramanian, A. Young’s modulus of [111] germanium nanowires. United States: N. p., 2015. Web. doi:10.1063/1.4935060.
Maksud, M., Yoo, J., Harris, C. T., Palapati, N. K. R., & Subramanian, A. Young’s modulus of [111] germanium nanowires. United States. https://doi.org/10.1063/1.4935060
Maksud, M., Yoo, J., Harris, C. T., Palapati, N. K. R., and Subramanian, A. Mon . "Young’s modulus of [111] germanium nanowires". United States. https://doi.org/10.1063/1.4935060. https://www.osti.gov/servlets/purl/1236212.
@article{osti_1236212,
title = {Young’s modulus of [111] germanium nanowires},
author = {Maksud, M. and Yoo, J. and Harris, C. T. and Palapati, N. K. R. and Subramanian, A.},
abstractNote = {Our paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ~75%. Furthermore, with increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.},
doi = {10.1063/1.4935060},
journal = {APL Materials},
number = 11,
volume = 3,
place = {United States},
year = {Mon Nov 02 00:00:00 EST 2015},
month = {Mon Nov 02 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

High Capacity Li Ion Battery Anodes Using Ge Nanowires
journal, January 2008

  • Chan, Candace K.; Zhang, Xiao Feng; Cui, Yi
  • Nano Letters, Vol. 8, Issue 1, p. 307-309
  • DOI: 10.1021/nl0727157

Surface Chemistry and Electrical Properties of Germanium Nanowires
journal, September 2004

  • Wang, Dunwei; Chang, Ying-Lan; Wang, Qian
  • Journal of the American Chemical Society, Vol. 126, Issue 37
  • DOI: 10.1021/ja047435x

Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities
journal, January 2004

  • Graetz, J.; Ahn, C. C.; Yazami, R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 5
  • DOI: 10.1149/1.1697412

Fracture of crystalline germanium during electrochemical lithium insertion
journal, March 2015


Numerical Simulation of Stress Evolution in Lithium Manganese Dioxide Particles due to Coupled Phase Transition and Intercalation
journal, January 2011

  • Park, Jonghyun; Lu, Wei; Sastry, Ann Marie
  • Journal of The Electrochemical Society, Vol. 158, Issue 2
  • DOI: 10.1149/1.3526597

Young’s Modulus and Size-Dependent Mechanical Quality Factor of Nanoelectromechanical Germanium Nanowire Resonators
journal, June 2008

  • Smith, Damon A.; Holmberg, Vincent C.; Lee, Doh C.
  • The Journal of Physical Chemistry C, Vol. 112, Issue 29
  • DOI: 10.1021/jp8010487

Ultimate-Strength Germanium Nanowires
journal, December 2006

  • Ngo, Lien T.; Almécija, Dorothée; Sader, John E.
  • Nano Letters, Vol. 6, Issue 12
  • DOI: 10.1021/nl0619397

Structure-Mechanical Property of Individual Cobalt Oxide Nanowires
journal, October 2008

  • Varghese, Binni; Zhang, Yousheng; Dai, Ling
  • Nano Letters, Vol. 8, Issue 10
  • DOI: 10.1021/nl801555d

Elastic modulus of amorphous SiO2 nanowires
journal, January 2006

  • Ni, Hai; Li, Xiaodong; Gao, Hongsheng
  • Applied Physics Letters, Vol. 88, Issue 4
  • DOI: 10.1063/1.2165275

Mechanical Properties of ZnO Nanowires
journal, October 2008


Electrokinetic framework of dielectrophoretic deposition devices
journal, June 2010

  • Burg, Brian R.; Bianco, Vincenzo; Schneider, Julian
  • Journal of Applied Physics, Vol. 107, Issue 12
  • DOI: 10.1063/1.3448497

Local control of electric current driven shell etching of multiwalled carbon nanotubes
journal, June 2007


On-chip lithium cells for electrical and structural characterization of single nanowire electrodes
journal, June 2014


Single nanowire manipulation within dielectrophoretic force fields in the sub-crossover frequency regime
journal, January 2015

  • Palapati, N. K. R.; Pomerantseva, E.; Subramanian, A.
  • Nanoscale, Vol. 7, Issue 7
  • DOI: 10.1039/C4NR06303A

Calibration of rectangular atomic force microscope cantilevers
journal, October 1999

  • Sader, John E.; Chon, James W. M.; Mulvaney, Paul
  • Review of Scientific Instruments, Vol. 70, Issue 10
  • DOI: 10.1063/1.1150021

Electrostatic Actuation and Electromechanical Switching Behavior of One-Dimensional Nanostructures
journal, September 2009

  • Subramanian, Arunkumar; Alt, Andreas R.; Dong, Lixin
  • ACS Nano, Vol. 3, Issue 10
  • DOI: 10.1021/nn900436x

Elastic moduli of polycrystalline Si and Ge
journal, August 1988


Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium
journal, January 1965

  • Wortman, J. J.; Evans, R. A.
  • Journal of Applied Physics, Vol. 36, Issue 1, p. 153-156
  • DOI: 10.1063/1.1713863

Mechanical and electronic properties of strained Ge nanowires using ab initio real-space pseudopotentials
journal, September 2012


Size Dependence of Young’s Modulus in ZnO Nanowires
journal, February 2006


Temperature Dependence of Young's Modulus of Vitreous Germania and Silica
journal, August 1960

  • Spinner, S.; Cleek, G. W.
  • Journal of Applied Physics, Vol. 31, Issue 8
  • DOI: 10.1063/1.1735852

In situ cycling and mechanical testing of silicon nanowire anodes for lithium-ion battery applications
journal, June 2012

  • Boles, Steven T.; Sedlmayr, Andreas; Kraft, Oliver
  • Applied Physics Letters, Vol. 100, Issue 24
  • DOI: 10.1063/1.4729145

Measurement of the Bending Strength of Vapor−Liquid−Solid Grown Silicon Nanowires
journal, April 2006

  • Hoffmann, Samuel; Utke, Ivo; Moser, Benedikt
  • Nano Letters, Vol. 6, Issue 4
  • DOI: 10.1021/nl052223z

Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

Works referencing / citing this record:

Formation of Ge–GeS core–shell nanostructures via solid-state sulfurization of Ge nanowires
journal, January 2018

  • Keiser, Courtney; Sutter, Peter; Sutter, Eli
  • CrystEngComm, Vol. 20, Issue 15
  • DOI: 10.1039/c8ce00221e

Plastic recovery and self-healing in longitudinally twinned SiGe nanowires
journal, January 2019

  • Shikder, Md Ruhul Amin; Ramasubramanian, Ajaykrishna; Maksud, Mahjabin
  • Nanoscale, Vol. 11, Issue 18
  • DOI: 10.1039/c9nr02073j

The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries
journal, April 2016

  • Byles, B. W.; Palapati, N. K. R.; Subramanian, A.
  • APL Materials, Vol. 4, Issue 4
  • DOI: 10.1063/1.4948272

Tunable nanomechanical performance regimes in ceramic nanowires
journal, September 2019

  • Maksud, Mahjabin; Barua, Mathius; Shikder, Md Ruhul Amin
  • Nanotechnology, Vol. 30, Issue 47
  • DOI: 10.1088/1361-6528/ab3dcf

Plastic recovery and self-healing in longitudinally twinned SiGe nanowires
text, January 2021


Brittle fracture to recoverable plasticity: Polytypism-dependent nanomechanics in todorokite-like nanobelts
text, January 2021

  • Shikder, MR Amin; Maksud, M.; Vasudevamurthy, G.
  • University of Illinois at Chicago
  • DOI: 10.25417/uic.14910282

Brittle fracture to recoverable plasticity: Polytypism-dependent nanomechanics in todorokite-like nanobelts
text, January 2021