DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine learning bandgaps of double perovskites

Abstract

The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the most crucial and relevant predictors. As a result, the developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance.

Authors:
 [1];  [2];  [1];  [2];  [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Univ. of Connecticut, Storrs, CT (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1235935
Report Number(s):
LA-UR-15-23084
Journal ID: ISSN 2045-2322; srep19375
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; computational methods; electronic; properties and materials; statistics

Citation Formats

Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B. P., Ramprasad, R., Gubernatis, J. E., and Lookman, T. Machine learning bandgaps of double perovskites. United States: N. p., 2016. Web. doi:10.1038/srep19375.
Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B. P., Ramprasad, R., Gubernatis, J. E., & Lookman, T. Machine learning bandgaps of double perovskites. United States. https://doi.org/10.1038/srep19375
Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B. P., Ramprasad, R., Gubernatis, J. E., and Lookman, T. Tue . "Machine learning bandgaps of double perovskites". United States. https://doi.org/10.1038/srep19375. https://www.osti.gov/servlets/purl/1235935.
@article{osti_1235935,
title = {Machine learning bandgaps of double perovskites},
author = {Pilania, G. and Mannodi-Kanakkithodi, A. and Uberuaga, B. P. and Ramprasad, R. and Gubernatis, J. E. and Lookman, T.},
abstractNote = {The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the most crucial and relevant predictors. As a result, the developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance.},
doi = {10.1038/srep19375},
journal = {Scientific Reports},
number = ,
volume = 6,
place = {United States},
year = {Tue Jan 19 00:00:00 EST 2016},
month = {Tue Jan 19 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 274 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Modeling electronic quantum transport with machine learning
text, January 2014

  • Lopez-Bezanilla, Alejandro; Von Lilienfeld, O. Anatole
  • American Physical Society
  • DOI: 10.5451/unibas-ep53263

Crystal structure representations for machine learning models of formation energies
text, January 2015


High-Throughput Combinatorial Database of Electronic Band Structures for Inorganic Scintillator Materials
journal, June 2011

  • Setyawan, Wahyu; Gaume, Romain M.; Lam, Stephanie
  • ACS Combinatorial Science, Vol. 13, Issue 4
  • DOI: 10.1021/co200012w

An introduction to kernel-based learning algorithms
journal, March 2001

  • Muller, K. -R.; Mika, S.; Ratsch, G.
  • IEEE Transactions on Neural Networks, Vol. 12, Issue 2
  • DOI: 10.1109/72.914517

Transferable Atomic Multipole Machine Learning Models for Small Organic Molecules
text, January 2015

  • Bereau, Tristan; Andrienko, Denis; Von Lilienfeld, O. Anatole
  • American Chemical Society
  • DOI: 10.5451/unibas-ep43347

Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]
journal, June 2006

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 124, Issue 21
  • DOI: 10.1063/1.2204597

Adaptive machine learning framework to accelerate ab initio molecular dynamics
journal, December 2014

  • Botu, Venkatesh; Ramprasad, Rampi
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24836

Informatics guided discovery of surface structure-chemistry relationships in catalytic nanoparticles
journal, March 2014

  • Andriotis, Antonis N.; Mpourmpakis, Giannis; Broderick, Scott
  • The Journal of Chemical Physics, Vol. 140, Issue 9
  • DOI: 10.1063/1.4867010

Transferable Atomic Multipole Machine Learning Models for Small Organic Molecules
journal, June 2015

  • Bereau, Tristan; Andrienko, Denis; von Lilienfeld, O. Anatole
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 7
  • DOI: 10.1021/acs.jctc.5b00301

Recharging lithium battery research with first-principles methods
journal, March 2011


A2B′B″O6 perovskites: A review
journal, May 2015


Data mining for materials design: A computational study of single molecule magnet
journal, January 2014

  • Dam, Hieu Chi; Pham, Tien Lam; Ho, Tu Bao
  • The Journal of Chemical Physics, Vol. 140, Issue 4
  • DOI: 10.1063/1.4862156

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


The Information Content of 2D and 3D Structural Descriptors Relevant to Ligand-Receptor Binding
journal, January 1997

  • Brown, Robert D.; Martin, Yvonne C.
  • Journal of Chemical Information and Computer Sciences, Vol. 37, Issue 1
  • DOI: 10.1021/ci960373c

Accelerating materials property predictions using machine learning
journal, September 2013

  • Pilania, Ghanshyam; Wang, Chenchen; Jiang, Xun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02810

Crystal Structure Representations for Machine Learning Models of Formation Energies
preprint, January 2015


Materials Scientists Look to a Data-Intensive Future
journal, March 2012


Bandgap Engineering of Double Perovskites for One- and Two-photon Water Splitting
journal, January 2013

  • Castelli, Ivano E.; Thygesen, Kristian S.; Jacobsen, Karsten W.
  • MRS Proceedings, Vol. 1523
  • DOI: 10.1557/opl.2013.450

Big Data of Materials Science - Critical Role of the Descriptor
text, January 2014


Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies
journal, July 2013

  • Hansen, Katja; Montavon, Grégoire; Biegler, Franziska
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 8
  • DOI: 10.1021/ct400195d

Big Data of Materials Science: Critical Role of the Descriptor
journal, March 2015


Modeling Electronic Quantum Transport with Machine Learning
text, January 2014


Machine Learning Energies of 2 Million Elpasolite ( A B C 2 D 6 ) Crystals
journal, September 2016


Accelerated materials property predictions and design using motif-based fingerprints
text, January 2015


Materials Informatics
journal, April 2009

  • Rajan, Krishna; Mendez, Patricio
  • Statistical Analysis and Data Mining, Vol. 1, Issue 5
  • DOI: 10.1002/sam.10022

Classification of octet AB-type binary compounds using dynamical charges: A materials informatics perspective
journal, December 2015

  • Pilania, G.; Gubernatis, J. E.; Lookman, T.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep17504

Optimizing transition states via kernel-based machine learning
journal, May 2012

  • Pozun, Zachary D.; Hansen, Katja; Sheppard, Daniel
  • The Journal of Chemical Physics, Vol. 136, Issue 17
  • DOI: 10.1063/1.4707167

Machines that Think for Themselves
journal, June 2012


Finding Density Functionals with Machine Learning
journal, June 2012


Accelerated materials property predictions and design using motif-based fingerprints
journal, July 2015

  • Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Ramprasad, Rampi
  • Physical Review B, Vol. 92, Issue 1
  • DOI: 10.1103/PhysRevB.92.014106

Accelerated materials property predictions and design using motif-based fingerprints
text, January 2015


New Light-Harvesting Materials Using Accurate and Efficient Bandgap Calculations
journal, August 2014

  • Castelli, Ivano E.; Hüser, Falco; Pandey, Mohnish
  • Advanced Energy Materials, Vol. 5, Issue 2
  • DOI: 10.1002/aenm.201400915

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
text, January 2011


High-Throughput Combinatorial Database of Electronic Band Structures for Inorganic Scintillator Materials
journal, June 2011

  • Setyawan, Wahyu; Gaume, Romain M.; Lam, Stephanie
  • ACS Combinatorial Science, Vol. 13, Issue 4
  • DOI: 10.1021/co200012w

Informatics-aided bandgap engineering for solar materials
journal, February 2014


The high-throughput highway to computational materials design
journal, February 2013

  • Curtarolo, Stefano; Hart, Gus L. W.; Nardelli, Marco Buongiorno
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3568

How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
journal, May 2014


Computational screening of perovskite metal oxides for optimal solar light capture
journal, January 2012

  • Castelli, Ivano E.; Olsen, Thomas; Datta, Soumendu
  • Energy Environ. Sci., Vol. 5, Issue 2
  • DOI: 10.1039/C1EE02717D

Rational design of all organic polymer dielectrics
journal, September 2014

  • Sharma, Vinit; Wang, Chenchen; Lorenzini, Robert G.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5845

Real-space grid implementation of the projector augmented wave method
journal, January 2005


Time to automate identification
journal, September 2010

  • MacLeod, Norman; Benfield, Mark; Culverhouse, Phil
  • Nature, Vol. 467, Issue 7312
  • DOI: 10.1038/467154a

Atom-centered symmetry functions for constructing high-dimensional neural network potentials
journal, February 2011

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 134, Issue 7
  • DOI: 10.1063/1.3553717

Materials informatics
journal, April 2009


Accelerating materials property predictions using machine learning
journal, September 2013

  • Pilania, Ghanshyam; Wang, Chenchen; Jiang, Xun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02810

Compressive sensing as a paradigm for building physics models
journal, January 2013


Modeling electronic quantum transport with machine learning
journal, June 2014


Fast and accurate modeling of molecular atomization energies with machine learning
text, January 2012

  • Rupp, Matthias; Tkatchenko, Alexandre; Müller, Klaus-Robert
  • American Physical Society
  • DOI: 10.5451/unibas-ep43360

Kohn-Sham potential with discontinuity for band gap materials
text, January 2010


Modeling Electronic Quantum Transport with Machine Learning
text, January 2014


Crystal structure representations for machine learning models of formation energies
journal, April 2015

  • Faber, Felix; Lindmaa, Alexander; von Lilienfeld, O. Anatole
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24917

Classification of octet AB-type binary compounds using dynamical charges: A materials informatics perspective
journal, December 2015

  • Pilania, G.; Gubernatis, J. E.; Lookman, T.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep17504

Classification of AB O 3 perovskite solids: a machine learning study
journal, September 2015

  • Pilania, G.; Balachandran, P. V.; Gubernatis, J. E.
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 71, Issue 5
  • DOI: 10.1107/S2052520615013979

Informatics guided discovery of surface structure-chemistry relationships in catalytic nanoparticles
journal, March 2014

  • Andriotis, Antonis N.; Mpourmpakis, Giannis; Broderick, Scott
  • The Journal of Chemical Physics, Vol. 140, Issue 9
  • DOI: 10.1063/1.4867010

Self-consistent approximation to the Kohn-Sham exchange potential
journal, March 1995

  • Gritsenko, Oleg; van Leeuwen, Robert; van Lenthe, Erik
  • Physical Review A, Vol. 51, Issue 3
  • DOI: 10.1103/PhysRevA.51.1944

Optimized effective atomic central potential
journal, July 1976


Structure classification and melting temperature prediction in octet AB solids via machine learning
journal, June 2015


Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies
journal, July 2013

  • Hansen, Katja; Montavon, Grégoire; Biegler, Franziska
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 8
  • DOI: 10.1021/ct400195d

Time to automate identification
journal, September 2010

  • MacLeod, Norman; Benfield, Mark; Culverhouse, Phil
  • Nature, Vol. 467, Issue 7312
  • DOI: 10.1038/467154a

Atom-centered symmetry functions for constructing high-dimensional neural network potentials
journal, February 2011

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 134, Issue 7
  • DOI: 10.1063/1.3553717

AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
journal, June 2012


Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics
journal, January 2011

  • Olivares-Amaya, Roberto; Amador-Bedolla, Carlos; Hachmann, Johannes
  • Energy & Environmental Science, Vol. 4, Issue 12
  • DOI: 10.1039/c1ee02056k

Kohn-Sham potential with discontinuity for band gap materials
journal, September 2010


Quiz-playing computer system could revolutionize research
journal, February 2011


Combinatorial screening for new materials in unconstrained composition space with machine learning
journal, March 2014


Bandgap Engineering of Double Perovskites for One- and Two-photon Water Splitting
journal, January 2013

  • Castelli, Ivano E.; Thygesen, Kristian S.; Jacobsen, Karsten W.
  • MRS Proceedings, Vol. 1523
  • DOI: 10.1557/opl.2013.450

Electronic Structure
book, January 2004


The Elements of Statistical Learning
book, January 2009


Works referencing / citing this record:

Data-driven prediction of diamond-like infrared nonlinear optical crystals with targeting performances
journal, February 2020


A Statistical Learning Framework for Accelerated Bandgap Prediction of Inorganic Compounds
journal, November 2019

  • Chaube, Suryanaman; Khullar, Prerna; Goverapet Srinivasan, Sriram
  • Journal of Electronic Materials, Vol. 49, Issue 1
  • DOI: 10.1007/s11664-019-07779-2

Universal fragment descriptors for predicting properties of inorganic crystals
text, January 2017

  • Olexandr, Isayev,; Corey, Oses,; Eric, Gossett,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/b4g5-h357

Identifying an efficient, thermally robust inorganic phosphor host via machine learning
journal, October 2018


Machine learning assisted optimization of electrochemical properties for Ni-rich cathode materials
journal, October 2018


Stochastic replica voting machine prediction of stable cubic and double perovskite materials and binary alloys
journal, June 2019


Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
journal, August 2018


Machine learning modeling of superconducting critical temperature
text, January 2017


Empirical modeling of dopability in diamond-like semiconductors
journal, December 2018

  • Miller, Samuel A.; Dylla, Maxwell; Anand, Shashwat
  • npj Computational Materials, Vol. 4, Issue 1
  • DOI: 10.1038/s41524-018-0123-6

Predicting Superhard Materials via a Machine Learning Informed Evolutionary Structure Search
preprint, January 2019


Predictions and Strategies Learned from Machine Learning to Develop High‐Performing Perovskite Solar Cells
journal, October 2019

  • Li, Jinxin; Pradhan, Basudev; Gaur, Surya
  • Advanced Energy Materials, Vol. 9, Issue 46
  • DOI: 10.1002/aenm.201901891

Towards photoferroic materials by design: recent progress and perspectives
journal, November 2019

  • Castelli, Ivano E.; Olsen, Thomas; Chen, Yunzhong
  • Journal of Physics: Energy, Vol. 2, Issue 1
  • DOI: 10.1088/2515-7655/ab428c

Machine learning modeling of superconducting critical temperature
journal, June 2018


AFLOW-ML: A RESTful API for machine-learning predictions of materials properties
preprint, January 2017


From DFT to machine learning: recent approaches to materials science–a review
journal, May 2019

  • Schleder, Gabriel R.; Padilha, Antonio C. M.; Acosta, Carlos Mera
  • Journal of Physics: Materials, Vol. 2, Issue 3
  • DOI: 10.1088/2515-7639/ab084b

Low‐dimensional metal halide perovskites and related optoelectronic applications
journal, February 2020


Machine Learning and Materials Informatics: Recent Applications and Prospects
preprint, January 2017


Emerging role of machine learning in light-matter interaction
journal, September 2019


Universal fragment descriptors for predicting properties of inorganic crystals
journal, June 2017

  • Isayev, Olexandr; Oses, Corey; Toher, Cormac
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15679

Growing field of materials informatics: databases and artificial intelligence
journal, January 2020

  • Lopez-Bezanilla, Alejandro; Littlewood, Peter B.
  • MRS Communications, Vol. 10, Issue 1
  • DOI: 10.1557/mrc.2020.2

Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride
journal, February 2019


(C 3 H 9 NI) 4 AgBiI 8 : a direct-bandgap layered double perovskite based on a short-chain spacer cation for light absorption
journal, January 2020

  • Yao, Yunpeng; Kou, Bo; Peng, Yu
  • Chemical Communications, Vol. 56, Issue 21
  • DOI: 10.1039/c9cc07796k

Formation enthalpies for transition metal alloys using machine learning
journal, June 2017


Identifying an efficient, thermally robust inorganic phosphor host via machine learning
journal, October 2018


Machine learning modeling of superconducting critical temperature
journal, June 2018


Universal fragment descriptors for predicting properties of inorganic crystals
text, January 2017

  • Olexandr, Isayev,; Corey, Oses,; Eric, Gossett,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/b4g5-h357

Predicting the stability of ternary intermetallics with density functional theory and machine learning
journal, June 2018

  • Schmidt, Jonathan; Chen, Liming; Botti, Silvana
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5020223

Self-assembly as a key player for materials nanoarchitectonics
journal, January 2019

  • Ariga, Katsuhiko; Nishikawa, Michihiro; Mori, Taizo
  • Science and Technology of Advanced Materials, Vol. 20, Issue 1
  • DOI: 10.1080/14686996.2018.1553108

High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory
journal, July 2017


Novel stable structure of Li 3 PS 4 predicted by evolutionary algorithm under high-pressure
journal, January 2018

  • Iikubo, S.; Shimoyama, K.; Kawano, S.
  • AIP Advances, Vol. 8, Issue 1
  • DOI: 10.1063/1.5011401

Inverse design in search of materials with target functionalities
journal, March 2018


Machine Learning Augmented Discovery of Chalcogenide Double Perovskites for Photovoltaics
journal, November 2019

  • Agiorgousis, Michael L.; Sun*, Yi‐Yang; Choe, Duk‐Hyun
  • Advanced Theory and Simulations, Vol. 3, Issue 1
  • DOI: 10.1002/adts.201900200

Machine learning in materials science
journal, August 2019


Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning
journal, July 2018

  • O’Connor, Nolan J.; Jonayat, A. S. M.; Janik, Michael J.
  • Nature Catalysis, Vol. 1, Issue 7
  • DOI: 10.1038/s41929-018-0094-5

Machine learning in materials informatics: recent applications and prospects
journal, December 2017

  • Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam
  • npj Computational Materials, Vol. 3, Issue 1
  • DOI: 10.1038/s41524-017-0056-5

Representation of compounds for machine-learning prediction of physical properties
text, January 2016


Recent advances and applications of machine learning in solid-state materials science
journal, August 2019

  • Schmidt, Jonathan; Marques, Mário R. G.; Botti, Silvana
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0221-0

Reliable and explainable machine-learning methods for accelerated material discovery
journal, November 2019

  • Kailkhura, Bhavya; Gallagher, Brian; Kim, Sookyung
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0248-2

A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials
text, January 2016


Self-assembly as a key player for materials nanoarchitectonics
journal, January 2019

  • Ariga, Katsuhiko; Nishikawa, Michihiro; Mori, Taizo
  • Science and Technology of Advanced Materials, Vol. 20, Issue 1
  • DOI: 10.1080/14686996.2018.1553108

Machine learning properties of binary wurtzite superlattices
journal, January 2018


Physics-informed machine learning for inorganic scintillator discovery
journal, June 2018

  • Pilania, G.; McClellan, K. J.; Stanek, C. R.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5025819

Machine Learning Stability and Bandgaps of Lead‐Free Perovskites for Photovoltaics
journal, November 2019

  • Stanley, Jared C.; Mayr, Felix; Gagliardi, Alessio
  • Advanced Theory and Simulations, Vol. 3, Issue 1
  • DOI: 10.1002/adts.201900178

Statistical Analysis and Discovery of Heterogeneous Catalysts Based on Machine Learning from Diverse Published Data
journal, August 2019


Emerging role of machine learning in light-matter interaction
journal, September 2019


Classification of spatially resolved molecular fingerprints for machine learning applications and development of a codebase for their implementation
journal, January 2018

  • Reveil, Mardochee; Clancy, Paulette
  • Molecular Systems Design & Engineering, Vol. 3, Issue 3
  • DOI: 10.1039/c8me00003d

Process-Structure-Property Modeling for Severe Plastic Deformation Processes Using Orientation Imaging Microscopy and Data-Driven Techniques
journal, March 2019

  • Fernandez-Zelaia, Patxi; Melkote, Shreyes N.
  • Integrating Materials and Manufacturing Innovation, Vol. 8, Issue 1
  • DOI: 10.1007/s40192-019-00125-8

Data-driven materials science: status, challenges and perspectives
text, January 2019


Machine Learning Augmented Discovery of Chalcogenide Double Perovskites for Photovoltaics
journal, March 2019

  • L. Agiorgousis, Michael; Sun, Yi‐Yang; Choe, Duk‐Hyun
  • Advanced Theory and Simulations, Vol. 2, Issue 5
  • DOI: 10.1002/adts.201800173

Predicting superhard materials via a machine learning informed evolutionary structure search
journal, September 2019


Machine learning for renewable energy materials
journal, January 2019

  • Gu, Geun Ho; Noh, Juhwan; Kim, Inkyung
  • Journal of Materials Chemistry A, Vol. 7, Issue 29
  • DOI: 10.1039/c9ta02356a

Active learning for accelerated design of layered materials
journal, December 2018

  • Bassman, Lindsay; Rajak, Pankaj; Kalia, Rajiv K.
  • npj Computational Materials, Vol. 4, Issue 1
  • DOI: 10.1038/s41524-018-0129-0

Data Mining the C−C Cross‐Coupling Genome
journal, May 2019

  • Sawatlon, Boodsarin; Wodrich, Matthew D.; Meyer, Benjamin
  • ChemCatChem, Vol. 11, Issue 16
  • DOI: 10.1002/cctc.201900597

Data‐Driven Materials Science: Status, Challenges, and Perspectives
journal, November 2019

  • Himanen, Lauri; Geurts, Amber; Foster, Adam Stuart
  • Advanced Science, Vol. 7, Issue 2
  • DOI: 10.1002/advs.201903667

Data-enabled structure–property mappings for lanthanide-activated inorganic scintillators
journal, February 2019


Predicting superhard materials via a machine learning informed evolutionary structure search
journal, September 2019


A hybrid organic-inorganic perovskite dataset
journal, May 2017

  • Kim, Chiho; Huan, Tran Doan; Krishnan, Sridevi
  • Scientific Data, Vol. 4, Issue 1
  • DOI: 10.1038/sdata.2017.57

Graph Neural Network for Hamiltonian-Based Material Property Prediction
preprint, January 2020


A Critical Review of Machine Learning of Energy Materials
journal, January 2020


Reliable and Explainable Machine Learning Methods for Accelerated Material Discovery
text, January 2019


Deep Neural Networks for Accurate Predictions of Garnet Stability
text, January 2017


Crowd-sourcing materials-science challenges with the NOMAD 2018 Kaggle competition
journal, November 2019

  • Sutton, Christopher; Ghiringhelli, Luca M.; Yamamoto, Takenori
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0239-3

A general-purpose machine learning framework for predicting properties of inorganic materials
journal, August 2016


Data‐Driven Materials Science: Status, Challenges, and Perspectives
journal, September 2019

  • Himanen, Lauri; Geurts, Amber; Foster, Adam Stuart
  • Advanced Science, Vol. 6, Issue 21
  • DOI: 10.1002/advs.201900808

Thermodynamic Stability Landscape of Halide Double Perovskites via High-Throughput Computing and Machine Learning
journal, January 2019

  • Li, Zhenzhu; Xu, Qichen; Sun, Qingde
  • Advanced Functional Materials, Vol. 29, Issue 9
  • DOI: 10.1002/adfm.201807280

Finding New Perovskite Halides via Machine Learning
journal, April 2016

  • Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho
  • Frontiers in Materials, Vol. 3
  • DOI: 10.3389/fmats.2016.00019

Towards Photoferroic Materials by Design: Recent Progresses and Perspective
text, January 2019


Identifying Pb-free perovskites for solar cells by machine learning
journal, March 2019


Application of Computational Biology and Artificial Intelligence Technologies in Cancer Precision Drug Discovery
journal, November 2019

  • Nagarajan, Nagasundaram; Yapp, Edward K. Y.; Le, Nguyen Quoc Khanh
  • BioMed Research International, Vol. 2019
  • DOI: 10.1155/2019/8427042

Statistical Analysis and Discovery of Heterogeneous Catalysts Based on Machine Learning from Diverse Published Data
journal, August 2019


Deep Learning Spectroscopy: Neural Networks for Molecular Excitation Spectra
journal, January 2019

  • Ghosh, Kunal; Stuke, Annika; Todorović, Milica
  • Advanced Science, Vol. 6, Issue 9
  • DOI: 10.1002/advs.201801367

Data‐Driven Materials Science: Status, Challenges, and Perspectives
journal, September 2019

  • Himanen, Lauri; Geurts, Amber; Foster, Adam Stuart
  • Advanced Science, Vol. 6, Issue 21
  • DOI: 10.1002/advs.201900808

Solving the electronic structure problem with machine learning
journal, February 2019

  • Chandrasekaran, Anand; Kamal, Deepak; Batra, Rohit
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0162-7

Finding New Perovskite Halides via Machine Learning
journal, April 2016

  • Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho
  • Frontiers in Materials, Vol. 3
  • DOI: 10.3389/fmats.2016.00019

Investigation of structural, magneto-electronic, and thermoelectric response of ductile SnAlO 3 from high-throughput DFT calculations: KHANDY and GUPTA
journal, February 2017

  • Khandy, Shakeel Ahmad; Gupta, Dinesh C.
  • International Journal of Quantum Chemistry, Vol. 117, Issue 8
  • DOI: 10.1002/qua.25351

Application of Computational Biology and Artificial Intelligence Technologies in Cancer Precision Drug Discovery
journal, November 2019

  • Nagarajan, Nagasundaram; Yapp, Edward K. Y.; Le, Nguyen Quoc Khanh
  • BioMed Research International, Vol. 2019
  • DOI: 10.1155/2019/8427042

A strategy to apply machine learning to small datasets in materials science
journal, May 2018


Deep neural networks for accurate predictions of crystal stability
journal, September 2018