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Evaluation of Global Horizontal Irradiance to Plane
of Array Irradiance Models at Locations across the
United States

Matthew Lave, Member, IEEE, William Hayes, Andrew Pohl, and Clifford W. Hansen

Abstract—We report an evaluation of the accuracy of combi-
nations of models that estimate plane-of-array (POA) irradiance
from measured global horizontal irradiance (GHI). This estima-
tion involves two steps: (1) decomposition of GHI into direct and
diffuse horizontal components; and (2) transposition of direct
and diffuse horizontal irradiance to POA irradiance. Measured
GHI and coincident measured POA irradiance from a variety of
climates within the United States were used to evaluate combina-
tions of decomposition and transposition models. A few locations
also had diffuse horizontal irradiance (DHI) measurements,
allowing for decoupled analysis of either the decomposition or the
transposition models alone. Results suggest that decomposition
models had mean bias differences (modeled versus measured)
that vary with climate. Transposition model mean bias differences
depended more on the model than the location. When only GHI
measurements were available and combinations of decomposition
and transposition models were considered, the smallest mean bias
differences were typically found for combinations which included
the Hay/Davies transposition model.

I. INTRODUCTION

ODELS which estimate plane-of-array (POA) irradi-

ance from measured global horizontal irradiance (GHI)
are critical to PV performance analysis because often only
GHI measurements are available whereas the PV modules
being analyzed are tilted to maximize annual insolation. Mod-
eling POA irradiance from GHI involves two steps: (1) the
decomposition of GHI into its direct and diffuse components,
usually expressed as diffuse horizontal irradiance (DHI) and
direct normal irradiance (DNI), and (2) the transposition of
these components to POA of the modules. No combination
of decomposition and transposition models is widely accepted
as a standard for converting GHI to POA; various pairs of
decomposition plus transposition models are in use. This lack
of consistency leads to different predictions of POA irradiance,
even when using the same input GHI. For example, Fig. 1
shows that performance estimated using the program PVsyst
[1] can vary by over 1% simply by changing the transposition
model from Hay/Davies [2] to Perez [3].
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Fig. 1. Annual differences in POA irradiance and AC energy between the

Perez and Hay/Davies transposition models as implemented in PVsyst.

There are numerous previous works evaluating either de-
composition models (e.g., [4], [5]), transposition models (e.g.,
[6], [7], [8]), or combinations of both (e.g., [9]). However,
most of these evaluations compare models with data at a
single location (Ineichen [4] is a notable exception as 22
locations across the world were used to test decomposition
models), and most do not go beyond simple annual metrics
such as root mean squared difference (RMSD) or mean bias
difference (MBD). Here, we evaluate the performance of
decomposition models and transposition models separately,
as well as combinations of decomposition with transposition
models, at a variety of locations across the United States. Our
work builds upon previous studies because we analyze each
model’s performance over many different test climates and we
examine model performance in greater detail; for example, we
consider decomposition model errors as a function of clearness
index, the relationship between the bias in model combinations
and the biases in the separate decomposition and transposition
models, and the potential for redundant sensors to reduce the
effect of sensor bias on the analysis.

II. MODELS

Figure 2 shows how the transposition model, or the combi-
nation of a decomposition and a transposition model, are used
to estimate POA irradiance from available measurements. We
discuss the specific models we considered in our analysis in
the following subsections.
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Fig. 2. Flowchart showing how to model POA irradiance from measured GHI.

A. Decomposition Models

We consider the decomposition models listed in Table 1. All
models are empirical, in that their equations are not formally
derived from physical laws but rather involve coefficients that
were estimated from a fixed set of measured data at one or
a handful of locations. We refer the reader to the references
in Table I for detailed model descriptions. Note that Reindl
[10] proposes three different models of increasing complexity
(termed here Reindl 1, Reindl 2, and Reindl 3) depending on
the available input data. Additionally, the performance of the
Reindl models during times of high clearness index may be
improved by adjusting the bound between two of the clearness
index intervals [11]. The Reindl models with this adjusted
interval are referred to as the Reindl adjusted models. Specifi-
cally, in the Reindl adjusted models, the intervals in equations
2b, 3b, and 4b in [10] are changed to 0.3 < k; < 0.83 and the
intervals in equations 2c, 3c, and 4c are changed to 0.83 < k.

TABLE I

DECOMPOSITION MODELS.
Model Input variables Abbreviation
Orgill and
Hollands [12] 16 GHI OH
Erbs [13] Kt, GHI Er
Boland [14] Kt, GHI Bo
Reindl 1 [10] Kt, GHI R1
Reindl 1 adj Kt, GHI Rla
DISC [15] Kt, GHI, SunEl DIS
DIRINT [16] Kt, GHI, SunEl DIR

Reindl 2 [10]
Reindl 2 adj
Reindl 3 [10]
Reindl 3 adj
Posadillo [17]

Kt, GHI, SunFEl R2
Kt, GHI, SunEl R2a
Kt, GHI, SunEl, AmbT, RH R3
Kt, GHI, SunEl, AmbT, RH R3a
Kt, GHI, SunEl, MF Po

All decomposition models use at least the clearness index
Kt and GHI as inputs. Many models also account for the
solar elevation angle SunFl. The Reindl 3 models use the
ambient temperature AmbT" and the relative humidity RH,
while the Posadillo model uses a modulating function M F'
based on the 5-minute variability in GHI.

The explicit output of most decomposition models is DHI,

though some models produce DNI instead. Because DHI and
DNI are related by:
GHI - DHI
DNI] = ———— 1
sin(Sunkl) ’ M
all decomposition models effectively produce estimates of both
DHI and DNI.

B. Transposition Models

Table II lists the transposition models we evaluate. The
models determine total POA irradiance by estimating the
direct, ground reflected diffuse, and sky diffuse components
on the plane of array:

POA = POAdir + POAdiff,refl + POAdiff,sky' (2)

TABLE I
TRANSPOSITION MODELS.

Model
Isotropic [18]
Sandia (King) [19]

Input variables
SurfTilt, DHI
SurfTilt, DHI, GHI, SunEl

. SurfTilt, SurfAz, DHI, DNI,
Hay/Davies [2] HFEztra, SunFEl, SunAz
SurfTilt, SurfAz, DHI, DNI,

Perez [3] HExtra, SunFEl, SunAz, AM

The direct irradiance incident on the POA, PO Ag;,., can be
calculated directly from DNI through geometric relations:

POAg; = DNI x cos(AOI) 3)

where AOI is the angle of incidence of the sun beam on the
POA surface.

The ground reflected diffuse irradiance is typically estimated
as a simple function of GHI, ground albedo (p), and the surface
tilt from horizontal (53):

1 —cos(B)
2

All transposition models we consider, except for the Sandia
model, use Eqn. 4, and we assume p = 0.2 for all. The

POAdiff,refl =GHI x p X (4)
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Sandia transposition model uses an albedo equation that was
empirically fit to data from Albuquerque, NM.

The transposition models vary in their estimation of the
sky diffuse irradiance on the POA, POAg; ¢ iy The models
range from the simple assumption that diffuse POA irradiance
depends only on the amount of sky ‘seen’ by the surface (e.g.,
the isotropic and Sandia models) to complicated empirical
relationships with multiple look-up tables (e.g., the Perez
model).

III. DATA DESCRIPTION

Details about the data at each location are shown in
Table III, and the station locations are mapped in Fig. 3.
Data for stations 1-6 was contributed by First Solar, Inc.,
and GHI and POA measurements were taken using Kipp &
Zonen CMP 11 secondary standard pyranometers. Stations
3 and 4 also included DHI measurements using Irradiance,
Inc. Rotating Shadowband Radiometers which rely on Licor
first class pyranometers. Data for Station 9 was contributed
by Southern Company, and Licor first class pyranometers
were used to measure GHI and POA irradiance. (Note that
station numbering is not sequential due to the removal of
two stations which did not have sufficient periods of record.)
Station 10 is located in Golden, CO at NREL’s Solar Radiation
Research Laboratory [20]; the Global CM22 measurement
from a secondary standard Kipp & Zonen CM22 was used
for GHI, the Diffuse CM22 measurement also from a CM22
was used for DHI, and the Global 40-South PSP measurement
from a first class Eppley Precision Spectral Pyranometer (PSP)
was used for POA irradiance. Stations 11 (Livermore, CA)
and 12 (Albuquerque, NM) are operated by Sandia National
Laboratories. Station 11 uses Eppley PSPs for GHI and DHI
measurements, but does not have a POA measurement. Station
12 uses Eppley PSPs for both GHI and POA measurements.

Fig. 3. Map of station locations.

For all stations except Station 9, data were available for one
year or more. In these cases, we used only year-long periods
of data (e.g., 1-year, 2-years, etc.) even though longer periods
of record were available to ensure equal weighting of seasonal
effects. At Station 9, only 10 months of data were available.
We choose to include Station 9 in our analysis, but caution
that winter effects may not be fully captured. All data were
collected at a resolution of one minute. POA measurements

were collected at due south azimuth, which is consistent with
the majority of installed solar PV modules, but limits this
analysis to south-oriented fixed tilt systems. Stations 10 and
12 are at high altitude.

The stations equipped with DHI measurements (Stations
3, 4, 10, 11, 12) allowed for analysis of the decomposition
models separately. The stations with both DHI and POA
measurements (Stations 3, 4, 10, 12) allowed for separate
analysis of the transposition models.

IV. ANALYSIS

Three distinct analyses were undertaken: (A) decomposition
models alone using measured GHI as input and compared to
measured DHI, (B) transposition models alone using measured
DHI as input and compared to measured POA, and (C)
combinations of decomposition and transposition models using
measured GHI as input and compared to measured POA. In
this last case, DHI estimated from the decomposition models
was input to the transposition models.

We first summarize all measured data to hourly averages
because the considered models were designed to predict hourly
values of their output quantities. Since errors in measurements
may contribute to model errors in our analysis, we use the
term differences rather than errors when comparing modeled
to measured data. Measurement bias errors are difficult to
distinguish from model bias errors, and may influence our
analysis. We attempt to minimize the effect of measurement
bias on our conclusions by evaluating the performance of
the combined models using colocated pairs of GHI and POA
sensors in section IV-C.

Simple quality control metrics were applied to all data. All
GHI, DHI, and POA values less than 0 Wm™2 or greater than
2000 Wm2 were removed from the analysis, since these values
were likely erroneous measurements. Additionally, any DHI
measurement that exceeded the concurrent GHI measurement
was set equal to the GHI measurement because it is not physi-
cally possible for DHI to exceed GHI. In these few situations,
DHI only slightly exceeded GHI — the difference was not
large enough to warrant rejecting the DHI measurement as
erroneous. At the few times when POA measurements were
excessively greater than GHI measurements (e.g., the POA
measurement indicated clear-sky while the GHI measurement
indicated overcast conditions), data were removed because the
values were likely a result of data collection errors.

Specific quality control was needed at some of the locations.
At one location, shading was observed that occluded the GHI
sensor but not the POA sensor; times at which this shading
occurred were eliminated from the analysis. At Stations 3 and
4, inconsistencies were found between the CMP11 measured
GHI and the RSR/Licor measured GHI. We chose to use the
CMP11 instrument because it is a higher standard (secondary
standard), however, DHI measurements were only available
from the RSR/Licor. Thus, we computed the diffuse fraction

%ﬁiﬁ) using the RSR/Licor measurements, and then mul-
tiplied the CMP11-measured GHI by this diffuse fraction to
obtain the DHI at Stations 3 and 4.
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TABLE III
DATA LOCATIONS AND CLIMATES.

Station ~ Location Elevation [m]  Climate Zone Measured Data Time Period SurfTilt  SurfAz
1 Southeast CA 120 Arid Desert Hot (BWh) GHI, POA 172010 - 12/2012  25° 180°
2 Northeast NM 100 Arid Steppe Cold (BSk) GHI, POA 172012 - 12/2012  25° 180°
3 East MI 188 Snow; Fully humid; Warm summer (Dfb) GHI, DHI, POA  8/2012 - 7/2013 25° 180°
4 East MI 181 Snow; Fully humid; Warm summer (Dfb) GHI, DHI, POA  8/2012 - 7/2013 25° 180°
5 East MI 193 Snow; Fully humid; Warm summer (Dfb) GHI, POA 10/2010 - 9/2013  25° 180°
6 Southern NV 572 Arid Desert Hot (BWh) GHI, POA 1/2011 - 12/2012  25° 180°
9 Coastal MS 6 Warm temperate; Fully humid; Hot summer (Cfa)  GHI, POA 2/2013 - 11/2013 15° 180°
10 Central CO 1829 Arid Steppe Cold (BSk) GHI, DHI, POA  1/2013 -12/2013 40° 180°
11 Central CA 200 Warm temperate; dry, hot summer (CSa) GHI, DHI 1/2013 -12/2013 N/A N/A
12 Central NM 1657 Arid Steppe Cold (BSk) GHI, DHI, POA  1/2011 12/2011 35° 180°

A. Decomposition Models

Relative accuracy of the decomposition models (modeled
DHI compared to measured DHI) was evaluated for the 5
stations with DHI measurements (Stations 3, 4, 10, 11, and
12). Figure 4 shows the relative (% relative to GHI) Root
Mean Squared Difference (rRMSD) and the relative Mean
Bias Difference (rtMBD) for each decomposition model and
each station. These metrics quantify the average (over time)
differences between modeled and measured data: rRMSD
relates to the differences in hourly values and rMBD relates
to the annual difference.
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Fig. 4. Relative (to GHI) root mean squared (rRMSD) and mean bias (tMBD)
differences (modeled minus measured) for each of the 12 decomposition
models (x-axis) at each of the five stations with DHI measurements.

Model performance is similar across all stations for the
‘simple’ decomposition models which only use Kt and GHI
as inputs (Orgill and Hollands, Erbs, Boland, Reindl 1, and
Reindl 1a): these models have between 11-17% rRMSD. The
rMBDs do not show this same consistency, as they range from
-5% to +5% between stations, although at the same station
all simple models have similar performance. Both the relative

similarity of rRMSDs across locations and the variation of
rMBD by location is in agreement with the findings of [4].

The rMBD differences by location were at least partly due to
climate differences: the biases were negative for the cloudier
eastern Michigan stations and were positive for the clearer
Livermore and Albuquerque stations (again consistent with [4]
who generally found negative bias errors in DNI models at
clear locations). The simple decomposition models typically
under-predict DHI during cloudy periods and over-predict DHI
during clear periods.

Fig. 5 shows the errors in the Erbs model plotted as a
function of the measured clearness index and diffuse fraction,
and the rMBD as a function of clearness index. During partly
cloudy periods, the Erbs model underestimates the DHI (dark
colors in Fig. 5). The dominance of partly cloudy conditions
at Station 3 (i.e., points falling above the black dashed line in
Fig 5) causes a negative bias in the Erbs model. Conversely,
during clear periods the Erbs model overestimates DHI (light
colors in Fig. 5). At Station 11, the many clear periods
(i.e., the collection of points around measured clearness index
Kt = 0.75, measured diffuse fraction DF = 0.1) lead to a
positive bias in the Erbs model.

Nearly identical biases were observed in all simple decom-
position models. The more complicated decomposition models
showed the same overall trends — underestimating DHI in
cloudy locations and overestimating DHI in clear locations —
but bias analysis was more complicated due to the additional
input variables used by the models.

At all locations, the DIRINT model had the smallest (RMSD
and rMBD. However, the performance of the simple models
was not significantly worse. Consequently, we focused our
analysis of model combinations on those involving either the
DIRINT model, because it shows the best performance, or the
Erbs model, because it is representative of the simple models
and is the default decomposition model in PVyst.

B. Transposition Models

Using measured DHI values at stations 3, 4, 10, and 12
the relative accuracy of the different transposition models was
evaluated. Fig. 6 shows the rRMSDs and rMBDs.

With the exception of the Sandia model, the model biases
were relatively consistent across the different locations. The
isotropic model always produced the lowest POA estimates
since it does not add any enhanced diffuse irradiance in the
circumsolar region. The albedo correction that the Sandia
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Fig. 6. Relative (to POA) root mean squared (RMSD) and mean bias (MBD)
differences modeled versus measured for each of the 4 transposition models
at each of the 4 stations with DHI and POA measurements.

model applies to the isotropic model caused the Sandia model
to always have larger POA estimates than the isotropic model.
The Sandia model had the lowest rMBD at the Station 12,
as expected due to the model being calibrated using data at
this location. rRMSDs were larger for the isotropic and Sandia
models than for the Hay/Davies and Perez models.

Both the Hay/Davies and Perez models produced rMBDs
that were smaller than 1.5% at all locations. The Perez model

always estimated 1 to 2% more annual POA irradiance than
the Hay/Davies model, consistent with the analysis run in
PVsyst shown in Fig. 1. The Perez transposition model has the
smallest IRMSD at all locations, indicating it may be the best
model choice when measured DHI is available. However, the
Hay/Davies model results in only slightly increased rRMSD.
For combination models, we will focus on the Hay/Davies and
Perez transposition models.

C. Combined Models

We focused our analysis on model combinations which
involved the two best performing decomposition (Erbs and
DIRINT) and transposition models (Hay/Davies and Perez),
resulting in four combined models. The rRMSDs and rMBDs
of these combined models are shown in Fig. 7. For compar-
ison, the transposition models run with measured DHI are
included as dots in Fig 7.

The same order of transposition model rMBD
(Perez > Hay/Davies) is observed. In the combined model
case, however, all combinations tend to overestimate annual
irradiance, meaning that combinations involving the Perez
transposition model are now even more positively biased
than noted in the transition model with measured DHI case.
The DIRINT plus Hay/Davies model combination typically
had the smallest rMBDs, though the Erbs plus Hay/Davies
combination had only slightly larger rMBDs. The rRMSDs
change more with changing station than with changing model.
Although the rMBDs are rather consistent across Stations 2-6
(~1% for combinations involving Hay/Davies and ~2% for
combinations involving Perez), the rRMSDs vary widely
across those locations (from <5% to over 10%).

This initial analysis of the combined models inspired two
further investigations: (1) how the individual decomposition
and transposition model biases related to the combined model
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models with measured DHI.

biases (2) how bias errors in measurements may be affecting
our combined model analysis results.

1) Relationship between Combined and Individual Model
Biases: In the results shown in Fig. 7, the rtMBDs at Stations
3 and 4 (cloudy locations) were more positive for the combined
models than for the transposition models with measured DHI.
This is expected since both the Erbs and DIRINT models
underestimated DHI (Fig. 4), and when the decomposition
models underestimate DHI, they inherently overestimate DNI
(since DNI and DHI are related by Eq. 1). A larger DNI
estimate then typically leads to a larger POA irradiance
estimate since the POA is usually chosen to maximize direct
(and hence annual) irradiance.

However, while both the Erbs and the DIRINT models had
positive errors at Station 12 (+2.4% and +1.5%, respectively),
suggesting a decrease in POA irradiance, the rMBD was
practically unchanged for the combined models from the
transposition model with measured case. The Erbs with Perez
model actually leads to an increase in the POA irradiance.

Fig. 8 shows the relationship between decomposition model
bias, transposition model bias, and combined model bias by
plotting these rMBDs for all model combinations at Stations
3,4, 10, and 12. It is expected that POA biases will increase
moving to the left (decreasing DHI and hence increasing
DNI estimates from decomposition models) and up (increasing

POA estimates from the transposition models) in Fig. 8, and,
indeed, for the most part this gradient was observed. However,
some notable exceptions occur. Almost all model combinations
involving the Perez transposition had positive biases, even
when the decomposition models had positive biases. The
isotropic model appears to be insensitive to small decomposi-
tion errors: model combinations including the isotropic model
and a decomposition model with rtMBD between -2% to +4%
consistently had combined model rMBDs of 2.5% to 4%.

Deviations from the expected gradient (increasing combined
model bias with decreasing decomposition model bias and
increasing transposition model bias) are likely due to hourly
deviations in the decomposition or transposition models which
are not fully resolved with the rMBD metric. Due to the
complicated dependencies of each model, biases in the de-
composition models may be either minimized or amplified
by the transposition models. Thus, biases in the individual
models may suggest but do not necessarily determine the
biases of the combined models. Based on the results shown in
Figs. 7 and 8, combined models involving Hay/Davies appear
to have less bias than combined models involving Perez, even
though Hay/Davies and Perez had similar biases when using
measured DHI.

combined rMBD
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Fig. 8. Scatter plot of combined model rMBD (colors) plotted against the
decomposition model and transposition model rMBDs. All 12 decomposition
models and all 4 transposition models evaluated at Stations 3, 4, 10, and 12
are included in this plot.

2) Influence of Measurement Biases on Combined Model
Findings: While it appears that model combinations involving
Hay/Davies are less biased, our results could be influenced
by measurement biases (e.g., a positive sensor bias may
incorrectly make the models appear biased negative). We
attempted to reduce the effect of sensor bias by looking at
multiple pairs of GHI and POA sensors at the same location.
For example, there were 6 GHI and 6 POA sensors at Station
5, so we evaluated the combined model biases using all 36
possible GHI-POA combinations. If all sensors considered had
some measurement bias, but the mean of all measurement
biases was close to zero, then this method will reduce the
impact of measurement bias.

A box plot describing the distribution of rMBDs of the
combined models using the 77 different GHI-POA pairs avail-
able at Stations 1-6 is shown in Fig. 9. The widths of the
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Fig. 9. Box plot of the combined model rMBD for 77 GHI-POA sensor pairs
located at Stations 1-6.

distributions are around 3%, which is consistent with expected
sensor uncertainties [21]. There may still be some biases that
are the same among all GHI-POA sensor pairs, such as tilt-
angle response, that were still affecting this analysis, but these
are expected to be small (e.g., tilt angle response < 0.2% for
CMP 11 [22]). Therefore, the median rMBD of all sensor pair
combinations was likely close to the true rMBD since sensor
biases were mostly removed.

The median tMBD was 0.5% for Erbs with Hay/Davies,
0.3% for DIRINT with Hay/Davies, 1.9% for Erbs with Perez,
and 1.6% for DIRINT with Perez. Thus, when sensor error
is minimized, the model combinations with the Hay/Davies
transposition model continue to appear to be the least biased.

V. CONCLUSION

GHI to POA models were evaluated at a variety of locations
across the United States. Decomposition models had different
biases based on location, consistent with previous findings
[4]. This was caused by the models often underestimating
the diffuse irradiance at cloudy locations and overestimating
the diffuse at clear locations. Transposition model perfor-
mance did not vary much by location; at all locations the
isotropic model produced the smallest POA estimate and
the Perez model the largest. Based on root mean squared
deviation, the Erbs and DIRINT decomposition models and the
Hay/Davies and Perez transposition models were chosen as the
best performing models and use for evaluation of combined
model performance. Little difference was observed in the
combined models whether DIRINT or Erbs was used for the
decomposition model, but a large difference was seen between
the model combinations involving the Hay/Davies versus the
Perez transposition models. Model combinations involving the
Hay/Davies transposition model appeared to have less bias
than combinations involving the Perez transposition model,
even though both Hay/Davies and Perez had similar bias
magnitudes when using measured diffuse irradiance. Further
analysis testing the impact of decomposition and transposition
model bias on combined model bias and minimizing the

effect of sensor error again suggested that combined models
involving the Hay/Davies model led to smaller bias.

While this analysis has suggested that it may be best
to use the Hay/Davies model when using a decomposition
model to estimate diffuse irradiance, it also indicates that
both decomposition and transposition models could be im-
proved. Decomposition models could be modified to remove
the locational dependence, possibly by using the clear-sky
index which, as opposed to the clearness index, accounts for
factors such as the atmospheric turbidity and station elevation.
Further study of the circumsolar and other sky regions could
enhance the transposition model performance. Additionally,
transposition models could be modified to be less sensitive to
deviations in diffuse irradiance, such that they have smaller
biases when combined with decomposition models. Finally,
transposition models were designed using fixed-tilt systems,
but could be optimized for single- or two-axis tracking systems
for broader application.
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