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Evaluation of Global Horizontal Irradiance to Plane
of Array Irradiance Models at Locations across the

United States
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Abstract—We report an evaluation of the accuracy of combi-1

nations of models that estimate plane-of-array (POA) irradiance2

from measured global horizontal irradiance (GHI). This estima-3

tion involves two steps: (1) decomposition of GHI into direct and4

diffuse horizontal components; and (2) transposition of direct5

and diffuse horizontal irradiance to POA irradiance. Measured6

GHI and coincident measured POA irradiance from a variety of7

climates within the United States were used to evaluate combina-8

tions of decomposition and transposition models. A few locations9

also had diffuse horizontal irradiance (DHI) measurements,10

allowing for decoupled analysis of either the decomposition or the11

transposition models alone. Results suggest that decomposition12

models had mean bias differences (modeled versus measured)13

that vary with climate. Transposition model mean bias differences14

depended more on the model than the location. When only GHI15

measurements were available and combinations of decomposition16

and transposition models were considered, the smallest mean bias17

differences were typically found for combinations which included18

the Hay/Davies transposition model.19

I. INTRODUCTION20

MODELS which estimate plane-of-array (POA) irradi-21

ance from measured global horizontal irradiance (GHI)22

are critical to PV performance analysis because often only23

GHI measurements are available whereas the PV modules24

being analyzed are tilted to maximize annual insolation. Mod-25

eling POA irradiance from GHI involves two steps: (1) the26

decomposition of GHI into its direct and diffuse components,27

usually expressed as diffuse horizontal irradiance (DHI) and28

direct normal irradiance (DNI), and (2) the transposition of29

these components to POA of the modules. No combination30

of decomposition and transposition models is widely accepted31

as a standard for converting GHI to POA; various pairs of32

decomposition plus transposition models are in use. This lack33

of consistency leads to different predictions of POA irradiance,34

even when using the same input GHI. For example, Fig. 135

shows that performance estimated using the program PVsyst36

[1] can vary by over 1% simply by changing the transposition37

model from Hay/Davies [2] to Perez [3].38
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Fig. 1. Annual differences in POA irradiance and AC energy between the
Perez and Hay/Davies transposition models as implemented in PVsyst.

There are numerous previous works evaluating either de- 39

composition models (e.g., [4], [5]), transposition models (e.g., 40

[6], [7], [8]), or combinations of both (e.g., [9]). However, 41

most of these evaluations compare models with data at a 42

single location (Ineichen [4] is a notable exception as 22 43

locations across the world were used to test decomposition 44

models), and most do not go beyond simple annual metrics 45

such as root mean squared difference (RMSD) or mean bias 46

difference (MBD). Here, we evaluate the performance of 47

decomposition models and transposition models separately, 48

as well as combinations of decomposition with transposition 49

models, at a variety of locations across the United States. Our 50

work builds upon previous studies because we analyze each 51

model’s performance over many different test climates and we 52

examine model performance in greater detail; for example, we 53

consider decomposition model errors as a function of clearness 54

index, the relationship between the bias in model combinations 55

and the biases in the separate decomposition and transposition 56

models, and the potential for redundant sensors to reduce the 57

effect of sensor bias on the analysis. 58

II. MODELS 59

Figure 2 shows how the transposition model, or the combi- 60

nation of a decomposition and a transposition model, are used 61

to estimate POA irradiance from available measurements. We 62

discuss the specific models we considered in our analysis in 63

the following subsections. 64

adphill
Typewritten Text
SAND2014-16367J



2

Fig. 2. Flowchart showing how to model POA irradiance from measured GHI.

A. Decomposition Models65

We consider the decomposition models listed in Table I. All66

models are empirical, in that their equations are not formally67

derived from physical laws but rather involve coefficients that68

were estimated from a fixed set of measured data at one or69

a handful of locations. We refer the reader to the references70

in Table I for detailed model descriptions. Note that Reindl71

[10] proposes three different models of increasing complexity72

(termed here Reindl 1, Reindl 2, and Reindl 3) depending on73

the available input data. Additionally, the performance of the74

Reindl models during times of high clearness index may be75

improved by adjusting the bound between two of the clearness76

index intervals [11]. The Reindl models with this adjusted77

interval are referred to as the Reindl adjusted models. Specifi-78

cally, in the Reindl adjusted models, the intervals in equations79

2b, 3b, and 4b in [10] are changed to 0.3 < kt < 0.83 and the80

intervals in equations 2c, 3c, and 4c are changed to 0.83 < kt.81

TABLE I
DECOMPOSITION MODELS.

Model Input variables Abbreviation
Orgill and
Hollands [12] Kt, GHI OH

Erbs [13] Kt, GHI Er
Boland [14] Kt, GHI Bo
Reindl 1 [10] Kt, GHI R1
Reindl 1 adj Kt, GHI R1a
DISC [15] Kt, GHI , SunEl DIS
DIRINT [16] Kt, GHI , SunEl DIR
Reindl 2 [10] Kt, GHI , SunEl R2
Reindl 2 adj Kt, GHI , SunEl R2a
Reindl 3 [10] Kt, GHI , SunEl, AmbT , RH R3
Reindl 3 adj Kt, GHI , SunEl, AmbT , RH R3a
Posadillo [17] Kt, GHI , SunEl, MF Po

All decomposition models use at least the clearness index82

Kt and GHI as inputs. Many models also account for the83

solar elevation angle SunEl. The Reindl 3 models use the84

ambient temperature AmbT and the relative humidity RH ,85

while the Posadillo model uses a modulating function MF86

based on the 5-minute variability in GHI.87

The explicit output of most decomposition models is DHI,88

though some models produce DNI instead. Because DHI and 89

DNI are related by: 90

DNI =
GHI −DHI

sin(SunEl)
, (1)

all decomposition models effectively produce estimates of both 91

DHI and DNI. 92

B. Transposition Models 93

Table II lists the transposition models we evaluate. The 94

models determine total POA irradiance by estimating the 95

direct, ground reflected diffuse, and sky diffuse components 96

on the plane of array: 97

POA = POAdir + POAdiff,refl + POAdiff,sky. (2)

TABLE II
TRANSPOSITION MODELS.

Model Input variables
Isotropic [18] SurfT ilt, DHI
Sandia (King) [19] SurfT ilt, DHI , GHI , SunEl

Hay/Davies [2] SurfT ilt, SurfAz, DHI , DNI ,
HExtra, SunEl, SunAz

Perez [3] SurfT ilt, SurfAz, DHI , DNI ,
HExtra, SunEl, SunAz, AM

The direct irradiance incident on the POA, POAdir, can be 98

calculated directly from DNI through geometric relations: 99

POAdir = DNI × cos(AOI) (3)

where AOI is the angle of incidence of the sun beam on the 100

POA surface. 101

The ground reflected diffuse irradiance is typically estimated 102

as a simple function of GHI, ground albedo (ρ), and the surface 103

tilt from horizontal (β): 104

POAdiff,refl = GHI × ρ× 1− cos(β)

2
(4)

All transposition models we consider, except for the Sandia 105

model, use Eqn. 4, and we assume ρ = 0.2 for all. The 106
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Sandia transposition model uses an albedo equation that was107

empirically fit to data from Albuquerque, NM.108

The transposition models vary in their estimation of the109

sky diffuse irradiance on the POA, POAdiff,sky. The models110

range from the simple assumption that diffuse POA irradiance111

depends only on the amount of sky ‘seen’ by the surface (e.g.,112

the isotropic and Sandia models) to complicated empirical113

relationships with multiple look-up tables (e.g., the Perez114

model).115

III. DATA DESCRIPTION116

Details about the data at each location are shown in117

Table III, and the station locations are mapped in Fig. 3.118

Data for stations 1-6 was contributed by First Solar, Inc.,119

and GHI and POA measurements were taken using Kipp &120

Zonen CMP 11 secondary standard pyranometers. Stations121

3 and 4 also included DHI measurements using Irradiance,122

Inc. Rotating Shadowband Radiometers which rely on Licor123

first class pyranometers. Data for Station 9 was contributed124

by Southern Company, and Licor first class pyranometers125

were used to measure GHI and POA irradiance. (Note that126

station numbering is not sequential due to the removal of127

two stations which did not have sufficient periods of record.)128

Station 10 is located in Golden, CO at NREL’s Solar Radiation129

Research Laboratory [20]; the Global CM22 measurement130

from a secondary standard Kipp & Zonen CM22 was used131

for GHI, the Diffuse CM22 measurement also from a CM22132

was used for DHI, and the Global 40-South PSP measurement133

from a first class Eppley Precision Spectral Pyranometer (PSP)134

was used for POA irradiance. Stations 11 (Livermore, CA)135

and 12 (Albuquerque, NM) are operated by Sandia National136

Laboratories. Station 11 uses Eppley PSPs for GHI and DHI137

measurements, but does not have a POA measurement. Station138

12 uses Eppley PSPs for both GHI and POA measurements.139

Fig. 3. Map of station locations.

For all stations except Station 9, data were available for one140

year or more. In these cases, we used only year-long periods141

of data (e.g., 1-year, 2-years, etc.) even though longer periods142

of record were available to ensure equal weighting of seasonal143

effects. At Station 9, only 10 months of data were available.144

We choose to include Station 9 in our analysis, but caution145

that winter effects may not be fully captured. All data were146

collected at a resolution of one minute. POA measurements147

were collected at due south azimuth, which is consistent with 148

the majority of installed solar PV modules, but limits this 149

analysis to south-oriented fixed tilt systems. Stations 10 and 150

12 are at high altitude. 151

The stations equipped with DHI measurements (Stations 152

3, 4, 10, 11, 12) allowed for analysis of the decomposition 153

models separately. The stations with both DHI and POA 154

measurements (Stations 3, 4, 10, 12) allowed for separate 155

analysis of the transposition models. 156

IV. ANALYSIS 157

Three distinct analyses were undertaken: (A) decomposition 158

models alone using measured GHI as input and compared to 159

measured DHI, (B) transposition models alone using measured 160

DHI as input and compared to measured POA, and (C) 161

combinations of decomposition and transposition models using 162

measured GHI as input and compared to measured POA. In 163

this last case, DHI estimated from the decomposition models 164

was input to the transposition models. 165

We first summarize all measured data to hourly averages 166

because the considered models were designed to predict hourly 167

values of their output quantities. Since errors in measurements 168

may contribute to model errors in our analysis, we use the 169

term differences rather than errors when comparing modeled 170

to measured data. Measurement bias errors are difficult to 171

distinguish from model bias errors, and may influence our 172

analysis. We attempt to minimize the effect of measurement 173

bias on our conclusions by evaluating the performance of 174

the combined models using colocated pairs of GHI and POA 175

sensors in section IV-C. 176

Simple quality control metrics were applied to all data. All 177

GHI, DHI, and POA values less than 0 Wm-2 or greater than 178

2000 Wm-2 were removed from the analysis, since these values 179

were likely erroneous measurements. Additionally, any DHI 180

measurement that exceeded the concurrent GHI measurement 181

was set equal to the GHI measurement because it is not physi- 182

cally possible for DHI to exceed GHI. In these few situations, 183

DHI only slightly exceeded GHI – the difference was not 184

large enough to warrant rejecting the DHI measurement as 185

erroneous. At the few times when POA measurements were 186

excessively greater than GHI measurements (e.g., the POA 187

measurement indicated clear-sky while the GHI measurement 188

indicated overcast conditions), data were removed because the 189

values were likely a result of data collection errors. 190

Specific quality control was needed at some of the locations. 191

At one location, shading was observed that occluded the GHI 192

sensor but not the POA sensor; times at which this shading 193

occurred were eliminated from the analysis. At Stations 3 and 194

4, inconsistencies were found between the CMP11 measured 195

GHI and the RSR/Licor measured GHI. We chose to use the 196

CMP11 instrument because it is a higher standard (secondary 197

standard), however, DHI measurements were only available 198

from the RSR/Licor. Thus, we computed the diffuse fraction 199

(DHIRSR

GHIRSR
) using the RSR/Licor measurements, and then mul- 200

tiplied the CMP11-measured GHI by this diffuse fraction to 201

obtain the DHI at Stations 3 and 4. 202
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TABLE III
DATA LOCATIONS AND CLIMATES.

Station Location Elevation [m] Climate Zone Measured Data Time Period SurfTilt SurfAz
1 Southeast CA 120 Arid Desert Hot (BWh) GHI, POA 1/2010 - 12/2012 25◦ 180◦
2 Northeast NM 100 Arid Steppe Cold (BSk) GHI, POA 1/2012 - 12/2012 25◦ 180◦
3 East MI 188 Snow; Fully humid; Warm summer (Dfb) GHI, DHI, POA 8/2012 - 7/2013 25◦ 180◦
4 East MI 181 Snow; Fully humid; Warm summer (Dfb) GHI, DHI, POA 8/2012 - 7/2013 25◦ 180◦
5 East MI 193 Snow; Fully humid; Warm summer (Dfb) GHI, POA 10/2010 - 9/2013 25◦ 180◦
6 Southern NV 572 Arid Desert Hot (BWh) GHI, POA 1/2011 - 12/2012 25◦ 180◦
9 Coastal MS 6 Warm temperate; Fully humid; Hot summer (Cfa) GHI, POA 2/2013 - 11/2013 15◦ 180◦
10 Central CO 1829 Arid Steppe Cold (BSk) GHI, DHI, POA 1/2013 -12/2013 40◦ 180◦
11 Central CA 200 Warm temperate; dry, hot summer (CSa) GHI, DHI 1/2013 -12/2013 N/A N/A
12 Central NM 1657 Arid Steppe Cold (BSk) GHI, DHI, POA 1/2011 12/2011 35◦ 180◦

A. Decomposition Models203

Relative accuracy of the decomposition models (modeled204

DHI compared to measured DHI) was evaluated for the 5205

stations with DHI measurements (Stations 3, 4, 10, 11, and206

12). Figure 4 shows the relative (% relative to GHI) Root207

Mean Squared Difference (rRMSD) and the relative Mean208

Bias Difference (rMBD) for each decomposition model and209

each station. These metrics quantify the average (over time)210

differences between modeled and measured data: rRMSD211

relates to the differences in hourly values and rMBD relates212

to the annual difference.213
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Fig. 4. Relative (to GHI) root mean squared (rRMSD) and mean bias (rMBD)
differences (modeled minus measured) for each of the 12 decomposition
models (x-axis) at each of the five stations with DHI measurements.

Model performance is similar across all stations for the214

‘simple’ decomposition models which only use Kt and GHI215

as inputs (Orgill and Hollands, Erbs, Boland, Reindl 1, and216

Reindl 1a): these models have between 11-17% rRMSD. The217

rMBDs do not show this same consistency, as they range from218

-5% to +5% between stations, although at the same station219

all simple models have similar performance. Both the relative220

similarity of rRMSDs across locations and the variation of 221

rMBD by location is in agreement with the findings of [4]. 222

The rMBD differences by location were at least partly due to 223

climate differences: the biases were negative for the cloudier 224

eastern Michigan stations and were positive for the clearer 225

Livermore and Albuquerque stations (again consistent with [4] 226

who generally found negative bias errors in DNI models at 227

clear locations). The simple decomposition models typically 228

under-predict DHI during cloudy periods and over-predict DHI 229

during clear periods. 230

Fig. 5 shows the errors in the Erbs model plotted as a 231

function of the measured clearness index and diffuse fraction, 232

and the rMBD as a function of clearness index. During partly 233

cloudy periods, the Erbs model underestimates the DHI (dark 234

colors in Fig. 5). The dominance of partly cloudy conditions 235

at Station 3 (i.e., points falling above the black dashed line in 236

Fig 5) causes a negative bias in the Erbs model. Conversely, 237

during clear periods the Erbs model overestimates DHI (light 238

colors in Fig. 5). At Station 11, the many clear periods 239

(i.e., the collection of points around measured clearness index 240

Kt = 0.75, measured diffuse fraction DF = 0.1) lead to a 241

positive bias in the Erbs model. 242

Nearly identical biases were observed in all simple decom- 243

position models. The more complicated decomposition models 244

showed the same overall trends — underestimating DHI in 245

cloudy locations and overestimating DHI in clear locations — 246

but bias analysis was more complicated due to the additional 247

input variables used by the models. 248

At all locations, the DIRINT model had the smallest rRMSD 249

and rMBD. However, the performance of the simple models 250

was not significantly worse. Consequently, we focused our 251

analysis of model combinations on those involving either the 252

DIRINT model, because it shows the best performance, or the 253

Erbs model, because it is representative of the simple models 254

and is the default decomposition model in PVyst. 255

B. Transposition Models 256

Using measured DHI values at stations 3, 4, 10, and 12 257

the relative accuracy of the different transposition models was 258

evaluated. Fig. 6 shows the rRMSDs and rMBDs. 259

With the exception of the Sandia model, the model biases 260

were relatively consistent across the different locations. The 261

isotropic model always produced the lowest POA estimates 262

since it does not add any enhanced diffuse irradiance in the 263

circumsolar region. The albedo correction that the Sandia 264
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Fig. 5. [Top plots] Hourly differences (colors) in Erbs modeled minus measured DHI, plotted as a function of measured clearness index (x-axis) and measured
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Fig. 6. Relative (to POA) root mean squared (RMSD) and mean bias (MBD)
differences modeled versus measured for each of the 4 transposition models
at each of the 4 stations with DHI and POA measurements.

model applies to the isotropic model caused the Sandia model265

to always have larger POA estimates than the isotropic model.266

The Sandia model had the lowest rMBD at the Station 12,267

as expected due to the model being calibrated using data at268

this location. rRMSDs were larger for the isotropic and Sandia269

models than for the Hay/Davies and Perez models.270

Both the Hay/Davies and Perez models produced rMBDs271

that were smaller than 1.5% at all locations. The Perez model272

always estimated 1 to 2% more annual POA irradiance than 273

the Hay/Davies model, consistent with the analysis run in 274

PVsyst shown in Fig. 1. The Perez transposition model has the 275

smallest rRMSD at all locations, indicating it may be the best 276

model choice when measured DHI is available. However, the 277

Hay/Davies model results in only slightly increased rRMSD. 278

For combination models, we will focus on the Hay/Davies and 279

Perez transposition models. 280

C. Combined Models 281

We focused our analysis on model combinations which 282

involved the two best performing decomposition (Erbs and 283

DIRINT) and transposition models (Hay/Davies and Perez), 284

resulting in four combined models. The rRMSDs and rMBDs 285

of these combined models are shown in Fig. 7. For compar- 286

ison, the transposition models run with measured DHI are 287

included as dots in Fig 7. 288

The same order of transposition model rMBD 289

(Perez > Hay/Davies) is observed. In the combined model 290

case, however, all combinations tend to overestimate annual 291

irradiance, meaning that combinations involving the Perez 292

transposition model are now even more positively biased 293

than noted in the transition model with measured DHI case. 294

The DIRINT plus Hay/Davies model combination typically 295

had the smallest rMBDs, though the Erbs plus Hay/Davies 296

combination had only slightly larger rMBDs. The rRMSDs 297

change more with changing station than with changing model. 298

Although the rMBDs are rather consistent across Stations 2-6 299

(∼1% for combinations involving Hay/Davies and ∼2% for 300

combinations involving Perez), the rRMSDs vary widely 301

across those locations (from <5% to over 10%). 302

This initial analysis of the combined models inspired two 303

further investigations: (1) how the individual decomposition 304

and transposition model biases related to the combined model 305
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Fig. 7. Relative (to POA) root mean squared (rRMSD) and mean bias differ-
ences (rMBD) for combinations of decomposition and transposition models.
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models with measured DHI.

biases (2) how bias errors in measurements may be affecting306

our combined model analysis results.307

1) Relationship between Combined and Individual Model308

Biases: In the results shown in Fig. 7, the rMBDs at Stations309

3 and 4 (cloudy locations) were more positive for the combined310

models than for the transposition models with measured DHI.311

This is expected since both the Erbs and DIRINT models312

underestimated DHI (Fig. 4), and when the decomposition313

models underestimate DHI, they inherently overestimate DNI314

(since DNI and DHI are related by Eq. 1). A larger DNI315

estimate then typically leads to a larger POA irradiance316

estimate since the POA is usually chosen to maximize direct317

(and hence annual) irradiance.318

However, while both the Erbs and the DIRINT models had319

positive errors at Station 12 (+2.4% and +1.5%, respectively),320

suggesting a decrease in POA irradiance, the rMBD was321

practically unchanged for the combined models from the322

transposition model with measured case. The Erbs with Perez323

model actually leads to an increase in the POA irradiance.324

Fig. 8 shows the relationship between decomposition model325

bias, transposition model bias, and combined model bias by326

plotting these rMBDs for all model combinations at Stations327

3, 4, 10, and 12. It is expected that POA biases will increase328

moving to the left (decreasing DHI and hence increasing329

DNI estimates from decomposition models) and up (increasing330

POA estimates from the transposition models) in Fig. 8, and, 331

indeed, for the most part this gradient was observed. However, 332

some notable exceptions occur. Almost all model combinations 333

involving the Perez transposition had positive biases, even 334

when the decomposition models had positive biases. The 335

isotropic model appears to be insensitive to small decomposi- 336

tion errors: model combinations including the isotropic model 337

and a decomposition model with rMBD between -2% to +4% 338

consistently had combined model rMBDs of 2.5% to 4%. 339

Deviations from the expected gradient (increasing combined 340

model bias with decreasing decomposition model bias and 341

increasing transposition model bias) are likely due to hourly 342

deviations in the decomposition or transposition models which 343

are not fully resolved with the rMBD metric. Due to the 344

complicated dependencies of each model, biases in the de- 345

composition models may be either minimized or amplified 346

by the transposition models. Thus, biases in the individual 347

models may suggest but do not necessarily determine the 348

biases of the combined models. Based on the results shown in 349

Figs. 7 and 8, combined models involving Hay/Davies appear 350

to have less bias than combined models involving Perez, even 351

though Hay/Davies and Perez had similar biases when using 352

measured DHI. 353
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Fig. 8. Scatter plot of combined model rMBD (colors) plotted against the
decomposition model and transposition model rMBDs. All 12 decomposition
models and all 4 transposition models evaluated at Stations 3, 4, 10, and 12
are included in this plot.

2) Influence of Measurement Biases on Combined Model 354

Findings: While it appears that model combinations involving 355

Hay/Davies are less biased, our results could be influenced 356

by measurement biases (e.g., a positive sensor bias may 357

incorrectly make the models appear biased negative). We 358

attempted to reduce the effect of sensor bias by looking at 359

multiple pairs of GHI and POA sensors at the same location. 360

For example, there were 6 GHI and 6 POA sensors at Station 361

5, so we evaluated the combined model biases using all 36 362

possible GHI-POA combinations. If all sensors considered had 363

some measurement bias, but the mean of all measurement 364

biases was close to zero, then this method will reduce the 365

impact of measurement bias. 366

A box plot describing the distribution of rMBDs of the 367

combined models using the 77 different GHI-POA pairs avail- 368

able at Stations 1-6 is shown in Fig. 9. The widths of the 369
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Fig. 9. Box plot of the combined model rMBD for 77 GHI-POA sensor pairs
located at Stations 1-6.

distributions are around 3%, which is consistent with expected370

sensor uncertainties [21]. There may still be some biases that371

are the same among all GHI-POA sensor pairs, such as tilt-372

angle response, that were still affecting this analysis, but these373

are expected to be small (e.g., tilt angle response < 0.2% for374

CMP 11 [22]). Therefore, the median rMBD of all sensor pair375

combinations was likely close to the true rMBD since sensor376

biases were mostly removed.377

The median rMBD was 0.5% for Erbs with Hay/Davies,378

0.3% for DIRINT with Hay/Davies, 1.9% for Erbs with Perez,379

and 1.6% for DIRINT with Perez. Thus, when sensor error380

is minimized, the model combinations with the Hay/Davies381

transposition model continue to appear to be the least biased.382

V. CONCLUSION383

GHI to POA models were evaluated at a variety of locations384

across the United States. Decomposition models had different385

biases based on location, consistent with previous findings386

[4]. This was caused by the models often underestimating387

the diffuse irradiance at cloudy locations and overestimating388

the diffuse at clear locations. Transposition model perfor-389

mance did not vary much by location; at all locations the390

isotropic model produced the smallest POA estimate and391

the Perez model the largest. Based on root mean squared392

deviation, the Erbs and DIRINT decomposition models and the393

Hay/Davies and Perez transposition models were chosen as the394

best performing models and use for evaluation of combined395

model performance. Little difference was observed in the396

combined models whether DIRINT or Erbs was used for the397

decomposition model, but a large difference was seen between398

the model combinations involving the Hay/Davies versus the399

Perez transposition models. Model combinations involving the400

Hay/Davies transposition model appeared to have less bias401

than combinations involving the Perez transposition model,402

even though both Hay/Davies and Perez had similar bias403

magnitudes when using measured diffuse irradiance. Further404

analysis testing the impact of decomposition and transposition405

model bias on combined model bias and minimizing the406

effect of sensor error again suggested that combined models 407

involving the Hay/Davies model led to smaller bias. 408

While this analysis has suggested that it may be best 409

to use the Hay/Davies model when using a decomposition 410

model to estimate diffuse irradiance, it also indicates that 411

both decomposition and transposition models could be im- 412

proved. Decomposition models could be modified to remove 413

the locational dependence, possibly by using the clear-sky 414

index which, as opposed to the clearness index, accounts for 415

factors such as the atmospheric turbidity and station elevation. 416

Further study of the circumsolar and other sky regions could 417

enhance the transposition model performance. Additionally, 418

transposition models could be modified to be less sensitive to 419

deviations in diffuse irradiance, such that they have smaller 420

biases when combined with decomposition models. Finally, 421

transposition models were designed using fixed-tilt systems, 422

but could be optimized for single- or two-axis tracking systems 423

for broader application. 424
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