DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanostructured metal carbides for aprotic Li-O2 batteries. New insights into interfacial reactions and cathode stability

Abstract

The development of nonaqueous Li–oxygen batteries, which relies on the reversible reaction of Li + O2 to give lithium peroxide (Li2O2), is challenged by several factors, not the least being the high charging voltage that results when carbon is typically employed as the cathode host. We report here on the remarkably low 3.2 V potential for Li2O2 oxidation on a passivated nanostructured metallic carbide (Mo2C), carbon-free cathode host. Furthermore, online mass spectrometry coupled with X-ray photoelectron spectroscopy unequivocally demonstrates that lithium peroxide is simultaneously oxidized together with the LixMoO3-passivated conductive interface formed on the carbide, owing to their close redox potentials. We found that the process rejuvenates the surface on each cycle upon electrochemical charge by releasing LixMoO3 into the electrolyte, explaining the low charging potential.

Authors:
 [1];  [1];  [1];  [2];  [2];  [1]
  1. Univ. of Waterloo, ON (Canada)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1235282
Report Number(s):
SAND-2015-4343J
Journal ID: ISSN 1948-7185; 590459
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry Letters
Additional Journal Information:
Journal Volume: 6; Journal Issue: 12; Journal ID: ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium-air; oxygen reduction; aprotic medial online mass spectrometry

Citation Formats

Kundu, Dipan, Black, Robert, Adams, Brian, Harrison, Katharine, Zavadil, Kevin R., and Nazar, Linda F. Nanostructured metal carbides for aprotic Li-O2 batteries. New insights into interfacial reactions and cathode stability. United States: N. p., 2015. Web. doi:10.1021/acs.jpclett.5b00721.
Kundu, Dipan, Black, Robert, Adams, Brian, Harrison, Katharine, Zavadil, Kevin R., & Nazar, Linda F. Nanostructured metal carbides for aprotic Li-O2 batteries. New insights into interfacial reactions and cathode stability. United States. https://doi.org/10.1021/acs.jpclett.5b00721
Kundu, Dipan, Black, Robert, Adams, Brian, Harrison, Katharine, Zavadil, Kevin R., and Nazar, Linda F. Fri . "Nanostructured metal carbides for aprotic Li-O2 batteries. New insights into interfacial reactions and cathode stability". United States. https://doi.org/10.1021/acs.jpclett.5b00721. https://www.osti.gov/servlets/purl/1235282.
@article{osti_1235282,
title = {Nanostructured metal carbides for aprotic Li-O2 batteries. New insights into interfacial reactions and cathode stability},
author = {Kundu, Dipan and Black, Robert and Adams, Brian and Harrison, Katharine and Zavadil, Kevin R. and Nazar, Linda F.},
abstractNote = {The development of nonaqueous Li–oxygen batteries, which relies on the reversible reaction of Li + O2 to give lithium peroxide (Li2O2), is challenged by several factors, not the least being the high charging voltage that results when carbon is typically employed as the cathode host. We report here on the remarkably low 3.2 V potential for Li2O2 oxidation on a passivated nanostructured metallic carbide (Mo2C), carbon-free cathode host. Furthermore, online mass spectrometry coupled with X-ray photoelectron spectroscopy unequivocally demonstrates that lithium peroxide is simultaneously oxidized together with the LixMoO3-passivated conductive interface formed on the carbide, owing to their close redox potentials. We found that the process rejuvenates the surface on each cycle upon electrochemical charge by releasing LixMoO3 into the electrolyte, explaining the low charging potential.},
doi = {10.1021/acs.jpclett.5b00721},
journal = {Journal of Physical Chemistry Letters},
number = 12,
volume = 6,
place = {United States},
year = {Fri May 01 00:00:00 EDT 2015},
month = {Fri May 01 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 96 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Non-Aqueous and Hybrid Li-O2 Batteries
journal, May 2012

  • Black, Robert; Adams, Brian; Nazar, L. F.
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201200001

Equilibrium voltage and overpotential variation of nonaqueous Li–O 2 batteries using the galvanostatic intermittent titration technique
journal, January 2015

  • Cui, Z. H.; Guo, X. X.; Li, H.
  • Energy & Environmental Science, Vol. 8, Issue 1
  • DOI: 10.1039/C4EE01777C

Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li–O 2 Batteries
journal, December 2012

  • Lu, Yi-Chun; Shao-Horn, Yang
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 1
  • DOI: 10.1021/jz3018368

The Role of Catalysts and Peroxide Oxidation in Lithium-Oxygen Batteries
journal, November 2012

  • Black, Robert; Lee, Jin-Hyon; Adams, Brian
  • Angewandte Chemie International Edition, Vol. 52, Issue 1, p. 392-396
  • DOI: 10.1002/anie.201205354

The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries
journal, January 2010

  • Lu, Yi-Chun; Gasteiger, Hubert A.; Parent, Michael C.
  • Electrochemical and Solid-State Letters, Vol. 13, Issue 6, p. A69-A72
  • DOI: 10.1149/1.3363047

Challenges of non-aqueous Li–O2 batteries: electrolytes, catalysts, and anodes
journal, January 2013

  • Li, Fujun; Zhang, Tao; Zhou, Haoshen
  • Energy & Environmental Science, Vol. 6, Issue 4
  • DOI: 10.1039/c3ee00053b

Reactivity of Carbon in Lithium–Oxygen Battery Positive Electrodes
journal, September 2013

  • Itkis, Daniil M.; Semenenko, Dmitry A.; Kataev, Elmar Yu.
  • Nano Letters, Vol. 13, Issue 10
  • DOI: 10.1021/nl4021649

Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O 2 Batteries
journal, March 2012

  • McCloskey, B. D.; Speidel, A.; Scheffler, R.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300243r

The Carbon Electrode in Nonaqueous Li–O2 Cells
journal, December 2012

  • Ottakam Thotiyl, Muhammed M.; Freunberger, Stefan A.; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 135, Issue 1, p. 494-500
  • DOI: 10.1021/ja310258x

A Reversible and Higher-Rate Li-O2 Battery
journal, July 2012


A free-standing-type design for cathodes of rechargeable Li–O2 batteries
journal, January 2011

  • Cui, Yanming; Wen, Zhaoyin; Liu, Yu
  • Energy & Environmental Science, Vol. 4, Issue 11
  • DOI: 10.1039/c1ee02365a

Carbon-free cobalt oxide cathodes with tunable nanoarchitectures for rechargeable lithium–oxygen batteries
journal, January 2013

  • Riaz, Ahmer; Jung, Kyu-Nam; Chang, Wonyoung
  • Chemical Communications, Vol. 49, Issue 53
  • DOI: 10.1039/c3cc42794c

In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions
journal, October 2012

  • Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00715

A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries
journal, August 2013

  • Lu, Jun; Lei, Yu; Lau, Kah Chun
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3383

A stable cathode for the aprotic Li–O2 battery
journal, September 2013

  • Ottakam Thotiyl, Muhammed M.; Freunberger, Stefan A.; Peng, Zhangquan
  • Nature Materials, Vol. 12, Issue 11
  • DOI: 10.1038/nmat3737

Nonaqueous Li–Air Batteries: A Status Report
journal, October 2014

  • Luntz, Alan C.; McCloskey, Bryan D.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500054y

The Importance of Nanometric Passivating Films on Cathodes for Li–Air Batteries
journal, November 2014

  • Adams, Brian D.; Black, Robert; Radtke, Claudio
  • ACS Nano, Vol. 8, Issue 12
  • DOI: 10.1021/nn505337p

A highly active nanostructured metallic oxide cathode for aprotic Li–O 2 batteries
journal, January 2015

  • Kundu, Dipan; Black, Robert; Berg, Erik Jämstorp
  • Energy & Environmental Science, Vol. 8, Issue 4
  • DOI: 10.1039/C4EE02587C

Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction
journal, May 2014

  • Wan, Cheng; Regmi, Yagya N.; Leonard, Brian M.
  • Angewandte Chemie International Edition, Vol. 53, Issue 25
  • DOI: 10.1002/anie.201402998

Crystal-phase control of molybdenum carbide nanobelts for dehydrogenation of benzyl alcohol
journal, January 2014

  • Li, Zhongcheng; Chen, Chunhui; Zhan, Ensheng
  • Chemical Communications, Vol. 50, Issue 34
  • DOI: 10.1039/c4cc00242c

Selective Hydrodeoxygenation of Biomass-Derived Oxygenates to Unsaturated Hydrocarbons using Molybdenum Carbide Catalysts
journal, April 2013


Molybdenum Carbide as Alternative Catalysts to Precious Metals for Highly Selective Reduction of CO 2 to CO
journal, May 2014

  • Porosoff, Marc D.; Yang, Xiaofang; Boscoboinik, J. Anibal
  • Angewandte Chemie International Edition, Vol. 53, Issue 26
  • DOI: 10.1002/anie.201404109

A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction
journal, January 2014

  • Liao, Lei; Wang, Sinong; Xiao, Jingjing
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42441C

In situ monitoring of bare and K-doped Mo2C catalysts surface depassivation based on emission of electrons and K+ ions
journal, April 2006


Investigation on Molybdenum and Its Conductive Oxides as p-Type Metal Gate Candidates
journal, January 2008

  • Li, Zilan; Schram, Tom; Witters, Thomas
  • Journal of The Electrochemical Society, Vol. 155, Issue 7
  • DOI: 10.1149/1.2908818

The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries
journal, November 2014

  • Johnson, Lee; Li, Chunmei; Liu, Zheng
  • Nature Chemistry, Vol. 6, Issue 12
  • DOI: 10.1038/nchem.2101

Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry
journal, May 2011

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 10, p. 1161-1166
  • DOI: 10.1021/jz200352v

The Cathode Surface Composition of a Cycled Li–O 2 Battery: A Photoelectron Spectroscopy Study
journal, September 2012

  • Younesi, Reza; Urbonaite, Sigita; Edström, Kristina
  • The Journal of Physical Chemistry C, Vol. 116, Issue 39
  • DOI: 10.1021/jp302168h

Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications
journal, November 2009

  • Laoire, Cormac O.; Mukerjee, Sanjeev; Abraham, K. M.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 46, p. 20127-20134
  • DOI: 10.1021/jp908090s

Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge
journal, January 2013

  • Adams, Brian D.; Radtke, Claudio; Black, Robert
  • Energy & Environmental Science, Vol. 6, Issue 6
  • DOI: 10.1039/c3ee40697k

The Lithium-Oxygen Battery with Ether-Based Electrolytes
journal, July 2011

  • Freunberger, Stefan A.; Chen, Yuhui; Drewett, Nicholas E.
  • Angewandte Chemie International Edition, Vol. 50, Issue 37, p. 8609-8613
  • DOI: 10.1002/anie.201102357

Electrochemical lithium insertion in β-MoO3: novel Li x MoO3 bronzes
journal, May 2003

  • Juárez Ramírez, I.; Martínez-de la Cruz, A.
  • Journal of Solid State Electrochemistry, Vol. 7, Issue 5
  • DOI: 10.1007/s10008-002-0326-z

Structural evolution of the MoO3(010) surface during lithium intercalation
journal, June 2003


A Novel On-Line Mass Spectrometer Design for the Study of Multiple Charging Cycles of a Li-O 2 Battery
journal, January 2013

  • Tsiouvaras, N.; Meini, S.; Buchberger, I.
  • Journal of The Electrochemical Society, Vol. 160, Issue 3
  • DOI: 10.1149/2.042303jes

Works referencing / citing this record:

Catalysts in metal–air batteries
journal, April 2018


Fe 2 O 3 Nanoparticle Seed Catalysts Enhance Cyclability on Deep (Dis)charge in Aprotic LiO 2 Batteries
journal, March 2018

  • Li, Zhaolong; Ganapathy, Swapna; Xu, Yaolin
  • Advanced Energy Materials, Vol. 8, Issue 18
  • DOI: 10.1002/aenm.201703513

Structure and Catalyst Effects on the Electrochemical Performance of Air Electrodes in Lithium‐Oxygen Batteries
journal, September 2018


Hierarchical Ru- and RuO 2 -foams as high performance electrocatalysts for rechargeable lithium–oxygen batteries
journal, January 2016

  • Kwak, Kyung-Hwan; Kim, Dong Wook; Kang, Yongku
  • Journal of Materials Chemistry A, Vol. 4, Issue 42
  • DOI: 10.1039/c6ta05077h

Dual Heteroatom-Doped Carbon Nanofoam-Wrapped Iron Monosulfide Nanoparticles: An Efficient Cathode Catalyst for Li-O 2 Batteries
journal, March 2017

  • Ramakrishnan, Prakash; Shanmugam, Sangaraju; Kim, Jae Hyun
  • ChemSusChem, Vol. 10, Issue 7
  • DOI: 10.1002/cssc.201601810

Stable Voltage Cutoff Cycle Cathode with Tunable and Ordered Porous Structure for Li-O 2 Batteries
journal, October 2018


A Li–O 2 battery cathode with vertical mass/charge transfer pathways
journal, January 2019

  • Huang, Zhaoming; Deng, Zhe; Shen, Yue
  • Journal of Materials Chemistry A, Vol. 7, Issue 7
  • DOI: 10.1039/c9ta00017h

Fundamental Understanding of Water‐Induced Mechanisms in Li–O 2 Batteries: Recent Developments and Perspectives
journal, November 2018


Advances in understanding mechanisms underpinning lithium–air batteries
journal, September 2016


Fundamental Understanding and Material Challenges in Rechargeable Nonaqueous Li-O 2 Batteries: Recent Progress and Perspective
journal, May 2018

  • Ma, Lu; Yu, Tongwen; Tzoganakis, Evangelos
  • Advanced Energy Materials, Vol. 8, Issue 22
  • DOI: 10.1002/aenm.201800348

Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries
journal, May 2018


Mo 2 C/CNT: An Efficient Catalyst for Rechargeable Li-CO 2 Batteries
journal, May 2017

  • Hou, Yuyang; Wang, Jiazhao; Liu, Lili
  • Advanced Functional Materials, Vol. 27, Issue 27
  • DOI: 10.1002/adfm.201700564

Graphene Oxide Sieving Membrane for Improved Cycle Life in High-Efficiency Redox-Mediated Li-O 2 batteries
journal, July 2018


Highly Surface‐Wrinkled and N‐Doped CNTs Anchored on Metal Wire: A Novel Fiber‐Shaped Cathode toward High‐Performance Flexible Li–CO 2 Batteries
journal, January 2019

  • Li, Yinchuan; Zhou, Jingwen; Zhang, Tingbo
  • Advanced Functional Materials, Vol. 29, Issue 12
  • DOI: 10.1002/adfm.201808117

Experimental Studies of Carbon Electrodes With Various Surface Area for Li–O2 Batteries
journal, April 2019

  • Wang, Fangzhou; Kahol, P. K.; Gupta, Ram
  • Journal of Electrochemical Energy Conversion and Storage, Vol. 16, Issue 4
  • DOI: 10.1115/1.4043229

Enhanced Cycling Stability of Rechargeable Li-O 2 Batteries Using High-Concentration Electrolytes
journal, December 2015


A free standing Ru–TiC nanowire array/carbon textile cathode with enhanced stability for Li–O 2 batteries
journal, January 2018

  • Liu, Chenjuan; Qiu, Zhen; Brant, Willian R.
  • Journal of Materials Chemistry A, Vol. 6, Issue 46
  • DOI: 10.1039/c7ta10930j