DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intensity- and temperature- dependent carrier recombination in InAs/In(As1-xSbx) type-II superlattices

Abstract

Our time-resolved measurements for carrier recombination are reported as a midwave infrared InAs/InAs0.66Sb0.34 type-II superlattice (T2SL) function of pump intensity and sample temperature. By including the T2SL doping level in the analysis, the Shockley-Read-Hall (SRH), radiative, and Auger recombination components of the carrier lifetime are uniquely distinguished at each temperature. SRH is the limiting recombination mechanism for excess carrier densities less than the doping level (the low-injection regime) and temperatures less than 175 K. A SRH defect energy of 95 meV, either below the T2SL conduction-band edge or above the T2SL valence-band edge, is identified. Auger recombination limits the carrier lifetimes for excess carrier densities greater than the doping level (the high-injection regime) for all temperatures tested. Additionally, at temperatures greater than 225 K, Auger recombination also limits the low-injection carrier lifetime due to the onset of the intrinsic temperature range and large intrinsic carrier densities. Radiative recombination is found to not have a significant contribution to the total lifetime for all temperatures and injection regimes, with the data implying a photon recycling factor of 15. Using the measured lifetime data, diffusion currents are calculated and compared to calculated Hg1-xCdxTe dark current, indicating that the T2SL can have a lowermore » dark current with mitigation of the SRH defect states. Our results illustrate the potential for InAs/InAs1-xSbx T2SLs as absorbers in infrared photodetectors.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Univ. of Iowa, Iowa City, IA (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1235266
Report Number(s):
SAND-2015-0613J
Journal ID: ISSN 2331-7019; 562489
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Applied
Additional Journal Information:
Journal Volume: 03; Journal Issue: 04; Journal ID: ISSN 2331-7019
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Olson, Benjamin Varberg, Kadlec, Emil Andrew, Kim, Jin K., Klem, John F., Hawkins, Samuel D., Shaner, Eric A., and Flatte, Michael E. Intensity- and temperature- dependent carrier recombination in InAs/In(As1-xSbx) type-II superlattices. United States: N. p., 2015. Web. doi:10.1103/PhysRevApplied.3.044010.
Olson, Benjamin Varberg, Kadlec, Emil Andrew, Kim, Jin K., Klem, John F., Hawkins, Samuel D., Shaner, Eric A., & Flatte, Michael E. Intensity- and temperature- dependent carrier recombination in InAs/In(As1-xSbx) type-II superlattices. United States. https://doi.org/10.1103/PhysRevApplied.3.044010
Olson, Benjamin Varberg, Kadlec, Emil Andrew, Kim, Jin K., Klem, John F., Hawkins, Samuel D., Shaner, Eric A., and Flatte, Michael E. Fri . "Intensity- and temperature- dependent carrier recombination in InAs/In(As1-xSbx) type-II superlattices". United States. https://doi.org/10.1103/PhysRevApplied.3.044010. https://www.osti.gov/servlets/purl/1235266.
@article{osti_1235266,
title = {Intensity- and temperature- dependent carrier recombination in InAs/In(As1-xSbx) type-II superlattices},
author = {Olson, Benjamin Varberg and Kadlec, Emil Andrew and Kim, Jin K. and Klem, John F. and Hawkins, Samuel D. and Shaner, Eric A. and Flatte, Michael E.},
abstractNote = {Our time-resolved measurements for carrier recombination are reported as a midwave infrared InAs/InAs0.66Sb0.34 type-II superlattice (T2SL) function of pump intensity and sample temperature. By including the T2SL doping level in the analysis, the Shockley-Read-Hall (SRH), radiative, and Auger recombination components of the carrier lifetime are uniquely distinguished at each temperature. SRH is the limiting recombination mechanism for excess carrier densities less than the doping level (the low-injection regime) and temperatures less than 175 K. A SRH defect energy of 95 meV, either below the T2SL conduction-band edge or above the T2SL valence-band edge, is identified. Auger recombination limits the carrier lifetimes for excess carrier densities greater than the doping level (the high-injection regime) for all temperatures tested. Additionally, at temperatures greater than 225 K, Auger recombination also limits the low-injection carrier lifetime due to the onset of the intrinsic temperature range and large intrinsic carrier densities. Radiative recombination is found to not have a significant contribution to the total lifetime for all temperatures and injection regimes, with the data implying a photon recycling factor of 15. Using the measured lifetime data, diffusion currents are calculated and compared to calculated Hg1-xCdxTe dark current, indicating that the T2SL can have a lower dark current with mitigation of the SRH defect states. Our results illustrate the potential for InAs/InAs1-xSbx T2SLs as absorbers in infrared photodetectors.},
doi = {10.1103/PhysRevApplied.3.044010},
journal = {Physical Review Applied},
number = 04,
volume = 03,
place = {United States},
year = {Fri Apr 17 00:00:00 EDT 2015},
month = {Fri Apr 17 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 49 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Fundamental physics of infrared detector materials
journal, June 2000


Performance Comparison of Long-Wavelength Infrared Type II Superlattice Devices with HgCdTe
journal, May 2011


Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice
journal, August 2012

  • Olson, B. V.; Shaner, E. A.; Kim, J. K.
  • Applied Physics Letters, Vol. 101, Issue 9
  • DOI: 10.1063/1.4749842

Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb
journal, December 2011

  • Steenbergen, E. H.; Connelly, B. C.; Metcalfe, G. D.
  • Applied Physics Letters, Vol. 99, Issue 25
  • DOI: 10.1063/1.3671398

Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices
journal, November 2013

  • Höglund, L.; Ting, D. Z.; Khoshakhlagh, A.
  • Applied Physics Letters, Vol. 103, Issue 22
  • DOI: 10.1063/1.4835055

Minority carrier lifetime in type-2 InAs–GaSb strained-layer superlattices and bulk HgCdTe materials
journal, August 2010

  • Donetsky, Dmitry; Belenky, Gregory; Svensson, Stefan
  • Applied Physics Letters, Vol. 97, Issue 5
  • DOI: 10.1063/1.3476352

Direct minority carrier lifetime measurements and recombination mechanisms in long-wave infrared type II superlattices using time-resolved photoluminescence
journal, December 2010

  • Connelly, Blair C.; Metcalfe, Grace D.; Shen, Hongen
  • Applied Physics Letters, Vol. 97, Issue 25
  • DOI: 10.1063/1.3529458

Effects of growth rate variations on carrier lifetime and interface structure in InAs/GaSb superlattices
journal, January 2014


Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures
journal, November 2009

  • Donetsky, Dmitry; Svensson, Stefan P.; Vorobjev, Leonid E.
  • Applied Physics Letters, Vol. 95, Issue 21
  • DOI: 10.1063/1.3267103

Direct observation of minority carrier lifetime improvement in InAs/GaSb type-II superlattice photodiodes via interfacial layer control
journal, April 2013

  • Zuo, Daniel; Qiao, Pengfei; Wasserman, Daniel
  • Applied Physics Letters, Vol. 102, Issue 14
  • DOI: 10.1063/1.4801764

Carrier recombination lifetime characterization of molecular beam epitaxially grown HgCdTe
journal, November 2008

  • Chang, Y.; Grein, C. H.; Zhao, J.
  • Applied Physics Letters, Vol. 93, Issue 19
  • DOI: 10.1063/1.3001935

A high-performance long wavelength superlattice complementary barrier infrared detector
journal, July 2009

  • Ting, David Z. -Y.; Hill, Cory J.; Soibel, Alexander
  • Applied Physics Letters, Vol. 95, Issue 2
  • DOI: 10.1063/1.3177333

High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection
journal, June 2014

  • Hoang, A. M.; Chen, G.; Chevallier, R.
  • Applied Physics Letters, Vol. 104, Issue 25
  • DOI: 10.1063/1.4884947

Long-Wave InAs/GaSb Superlattice Detectors Based on nBn and Pin Designs
journal, June 2010

  • Khoshakhlagh, Arezou; Myers, Stephen
  • IEEE Journal of Quantum Electronics, Vol. 46, Issue 6
  • DOI: 10.1109/JQE.2010.2041635

Antimonide Type-II “W” Photodiodes with Long-Wave Infrared R 0 A Comparable to HgCdTe
journal, June 2007

  • Canedy, C. L.; Aifer, E. H.; Vurgaftman, I.
  • Journal of Electronic Materials, Vol. 36, Issue 8
  • DOI: 10.1007/s11664-007-0109-5

Strained and Unstrained Layer Superlattices for Infrared Detection
journal, March 2009


Minority carrier lifetimes in ideal InGaSb/InAs superlattices
journal, December 1992

  • Grein, C. H.; Young, P. M.; Ehrenreich, H.
  • Applied Physics Letters, Vol. 61, Issue 24
  • DOI: 10.1063/1.108480

Theory and modeling of type-II strained-layer superlattice detectors
conference, January 2009

  • Flatté, Michael E.; Grein, Christoph H.
  • SPIE OPTO: Integrated Optoelectronic Devices, SPIE Proceedings
  • DOI: 10.1117/12.814173

Growth of type II strained layer superlattice, bulk InAs and GaSb materials for minority lifetime characterization
journal, November 2011


Investigation of Trap States in Mid-Wavelength Infrared Type II Superlattices Using Time-Resolved Photoluminescence
journal, September 2013

  • Connelly, Blair C.; Metcalfe, Grace D.; Shen, Hongen
  • Journal of Electronic Materials, Vol. 42, Issue 11
  • DOI: 10.1007/s11664-013-2759-9

Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics
journal, September 1957


Identification of dominant recombination mechanisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys
journal, July 2013

  • Olson, B. V.; Shaner, E. A.; Kim, J. K.
  • Applied Physics Letters, Vol. 103, Issue 5
  • DOI: 10.1063/1.4817400

Multiphoton Sub-Band-Gap Photoconductivity and Critical Transition Temperature in Type-II GaSb Quantum-Dot Intermediate-Band Solar Cells
journal, June 2014


Temperature dependence of Auger recombination in a multilayer narrow-band-gap superlattice
journal, November 1998


Deep‐level transient spectroscopy: A new method to characterize traps in semiconductors
journal, July 1974


Characterization of multiple deep level systems in semiconductor junctions by admittance measurements
journal, February 1974


Below bandgap optical absorption in tellurium-doped GaSb
journal, July 2005


The study of charge carrier kinetics in semiconductors by microwave conductivity measurements
journal, November 1986

  • Kunst, M.; Beck, G.
  • Journal of Applied Physics, Vol. 60, Issue 10
  • DOI: 10.1063/1.337612

Intensity‐dependent minority‐carrier lifetime in III‐V semiconductors due to saturation of recombination centers
journal, July 1991

  • Ahrenkiel, R. K.; Keyes, B. M.; Dunlavy, D. J.
  • Journal of Applied Physics, Vol. 70, Issue 1
  • DOI: 10.1063/1.350315

Carrier lifetime studies in midwave infrared type-II InAs/GaSb strained layer superlattice
journal, March 2014

  • Klein, Brianna; Gautam, Nutan; Plis, Elena
  • Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 32, Issue 2
  • DOI: 10.1116/1.4862085

Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infrared InAs/InAsSb superlattices
journal, July 2014

  • Aytac, Y.; Olson, B. V.; Kim, J. K.
  • Applied Physics Letters, Vol. 105, Issue 2
  • DOI: 10.1063/1.4890578

Recombination processes in semiconductors
journal, May 1959

  • Hall, R. N.
  • Proceedings of the IEE - Part B: Electronic and Communication Engineering, Vol. 106, Issue 17S
  • DOI: 10.1049/pi-b-2.1959.0171

Quantum efficiency in InSb
journal, August 1962


Auger lifetime in InAs, InAsSb, and InAsSb‐InAlAsSb quantum wells
journal, November 1995

  • Lindle, J. R.; Meyer, J. R.; Hoffman, C. A.
  • Applied Physics Letters, Vol. 67, Issue 21
  • DOI: 10.1063/1.115146

Carrier recombination rates in narrow-gap I n A s / G a 1 x In x Sb -based superlattices
journal, February 1999


Auger recombination in narrow-gap semiconductor superlattices incorporating antimony
journal, December 2002

  • Grein, C. H.; Flatté, M. E.; Olesberg, J. T.
  • Journal of Applied Physics, Vol. 92, Issue 12
  • DOI: 10.1063/1.1521255

Measurement of the Auger recombination rate in p -type 0.54 eV GaInAsSb by time-resolved photoluminescence
journal, October 2003

  • Anikeev, S.; Donetsky, D.; Belenky, G.
  • Applied Physics Letters, Vol. 83, Issue 16
  • DOI: 10.1063/1.1621455

Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes
journal, December 1995

  • Grein, C. H.; Young, P. M.; Flatté, M. E.
  • Journal of Applied Physics, Vol. 78, Issue 12
  • DOI: 10.1063/1.360422

Auger recombination dynamics of Hg0.795Cd0.205Te in the high excitation regime
journal, July 1997

  • Ciesla, C. M.; Murdin, B. N.; Phillips, T. J.
  • Applied Physics Letters, Vol. 71, Issue 4
  • DOI: 10.1063/1.119588

Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy
journal, June 1990

  • Fang, Z. M.; Ma, K. Y.; Jaw, D. H.
  • Journal of Applied Physics, Vol. 67, Issue 11
  • DOI: 10.1063/1.345050

Design of Phosphorus-Containing MWIR Type-II Superlattices for Infrared Photon Detectors
journal, September 2013

  • Grein, C. H.; Flatte, M. E.; Evans, A. J.
  • IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, Issue 5
  • DOI: 10.1109/JSTQE.2012.2222358

Auger lifetime enhancement in InAs–Ga 1− x In x Sb superlattices
journal, June 1994

  • Youngdale, E. R.; Meyer, J. R.; Hoffman, C. A.
  • Applied Physics Letters, Vol. 64, Issue 23
  • DOI: 10.1063/1.111325

Semiconductors: Data Handbook
book, January 2004


Radiative lifetime in semiconductors for infrared detection
journal, May 1983


Radiative lifetime in semiconductors for infrared detection
journal, November 1986


Interpreting mid-wave infrared MWIR HgCdTe photodetectors
journal, March 2012


Energy gap versus alloy composition and temperature in Hg 1− x Cd x Te
journal, October 1982

  • Hansen, G. L.; Schmit, J. L.; Casselman, T. N.
  • Journal of Applied Physics, Vol. 53, Issue 10
  • DOI: 10.1063/1.330018

Semiconductors: Data Handbook
journal, August 2004


Auger effect in semiconductors
journal, January 1959


Energy gap versus alloy composition and temperature in Hg 1 x Cd x Te
journal, December 1983

  • Chu, Junhao; Xu, Shichou; Tang, Dingyuan
  • Applied Physics Letters, Vol. 43, Issue 11
  • DOI: 10.1063/1.94237

Auger Effect in Semiconductors
journal, May 1955


Works referencing / citing this record:

Carrier Transport in the Valence Band of nBn III–V Superlattice Infrared Detectors
journal, June 2019


Enhancement of radiation tolerance in GaAs/AlGaAs core–shell and InP nanowires
journal, April 2018


Photo-excited carrier relaxation dynamics in two-dimensional InSe flakes
journal, December 2019