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Abstract

Helmholtz free energies of the dominant binary crystalline solids found in the Cu-Zr system at
high temperatures close to the melting curve are calculated. Our theoretical approach combines
fundamental measure density functional theory (applied to the hard sphere reference system) and
a perturbative approach to include the attractive interactions. The studied crystalline solids are
Cu(fec), CusiZria(B), CuZr(B2),CuZry(C11b), Zr(hep) and Zr(bee). The calculated Helmholtz
free energies of crystalline solids are in good agreement with results from molecular dynamics (MD)
simulations. Using the same perturbation approach, the liquid phase free energies are calculated as
a function of composition and temperature, from which the melting curve of the entire composition
range of this system can be obtained. Phase diagrams are determined in this way for two leading
embedded atom method (EAM) potentials, and the results are compared with experimental data.
Theoretical melting temperatures are compared both with experimental values and with values

obtained directly from MD simulations at several compositions.
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I. INTRODUCTION

The discovery of bulk metallic glass (BMG) behavior in the Cu-Zr binary system [1, 2]
has generated great interest as BMG exists in very few binary systems and it has unique
tunable mechanical properties [3, 4]. However the formation of BMG in deeply cooled
melts and its structural order are still not well understood [4-7]. It is believed that this phe-
nomenon should mainly depend on the kinetics and thermodynamics of accessible phases in
the supercooled region. Currently molecular dynamics (MD) simulations and experimental
studies are widely used in glass formation studies. Alternatively a comprehensive theoret-
ical approach with the ability to consistently describe the liquid phase as well as the solid
phases would have the potential to provide a deeper understanding of the glass formation
process. In this paper we present a theoretical approach that can be used to predict the
thermodynamic properties of liquid phase and solid phases near the coexistence region of

the Cu-Zr system.

The fundamental measure density functional theory in combination with thermodynamic
perturbation theory is used to calculate Helmholtz free energies and hence the melting
curve of complex binary crystalline phases. Fundamental measure density functional theory
(FMT) is known to provide accurate values of the excess free energy of hard sphere (HS)
systems [8-13]. In the liquid region the functional yields the Mansoori-Carnahan-Starling-
Leland (MCSL) equation of state [14] of HS liquid mixtures in a wide range of densities.
For a realistic system, the attractive interaction can be captured using the perturbation
theory due to Weeks, Chandler, and Andersen (WCA) [15, 16]. It should be noted that
similar perturbation approaches in combination with a HS reference system have been used
before to calculate the free energies of liquid mixtures and binary alloys [17|. However,
these approaches are either based on different methodologies for each phase, rather than
on a single theoretical approach, or only for very simple crystalline structures [18]. The
approach presented in this paper computes the free energies of all solid and liquid phases
within a single theoretical framework, and hence, has the advantage of providing a consistent

description of solid and liquid phase coexistence.

Previously, WCA perturbation theory, as refined by Ree et al. [19], has been success-
fully applied to study melting behavior by calculating the free energy of liquids and simple

crystalline solids (fcc), interacting with Lennard-Jones potentials, or metallic systems, inter-
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acting with embedded-atom method (EAM) or Finnis-Sinclair (FS) potentials [18, 20-24]. In
Ref. [22]| the parameters of the reference HS system were taken from simulations as there is
no density functional that can provide reliable thermodynamic properties of HS bcc crystal,
whereas in Ref. [23, 24| the necessary properties of the HS system were obtained from FMT.
An application to the freezing of LJ mixtures [24] has been successful as the obtained spindle
and azeotropic-type solid-liquid phase diagrams of L.J mixtures are in good agreement with
simulations. A recent study of the freezing of Cu-Au alloys (fcc solid solutions) reproduced
experimental melting curves reasonably well using an EAM potential [18]. A self-contained
theoretical approach the does not require any input from simulations would have the poten-
tial to provide a broader understanding of the thermodynamics of multi-component systems

as simulations or experimental measurements are often not easily accessible.

In this paper we present an extension of the above theoretical approach to calculate the
Helmholtz free energy of complex crystalline metals in which the interatomic interactions
are given by EAM potentials. The studied crystalline structures are Cu-fce, Cus;Zri4(5),
CuZr(B2), CuZry(C11b), Zr-bee and Zr-hep. In this work we present results using two
different EAM potentials developed for the Cu-Zr system, namely a potential developed by
Mendelev et al. (MKOSYP) [25] and another potential by Sheng et al. (CMS) [26]. We show
that our theoretical approach has the potential to provide reasonably accurate results in a

wide range of temperatures and composition when compared to simulations and experiments

27].

The rest of the paper is organized as follows. After a concise presentation of the theoretical
framework in Sec. II, the calculated Helmholtz free energies are compared with available
simulation data [28] for the MKOSYP potential. We also discuss the phase stability of the
above-mentioned crystalline solids using both EAM potentials near the melting curve. The
calculated melting curves are compared with simulation results and the experimental phase
diagram. Some concluding remarks are provided to indicate the complimentary roles of the

current approach and molecular dynamics simulations.



II. THEORETICAL METHODOLOGY

In an EAM potential, the total potential energy of the system can be expressed as
e 1
Eot =Y Falpf) + 3 > bas(ri), (1)
( i,

where pf is the total electron density at the site ¢ due to the surrounding atoms, F|, is
the embedding energy of an atom in the host electron sea of the metal, and ¢,s(r;;) is the
interaction energy between an atom pair ¢ and j at a distance of r;;. The indices o and
[ refers to the species type of atoms ¢ and j. The host electron density of site ¢ can be
calculated using the electron density functions f using the relation pf = > ;i Jap (rij). Thus,
there are as many different values for the p{ as the number of asymmetric sites in the crystal.
To reduce the complexity of the notation we henceforth denote the nth asymmetric site of
the species a as «,.

In order to carry out perturbation calculations, we first convert the EAM potential to
an effective pair potential (s, 5(ri;)) by performing a Taylor expansion of the embedding
energy function around the host electron density of a given site (pf, ) [29]. The resulting

so-called effective pair potential can be expressed up to second order as

Yans(rij) = Gap(riy) + 2F,(p%) fas(riy) + Fo(p,.) fas(rij)*. (2)

It is noted that in general ¥, 5(7i;) # ¥3,a(ri;) when a # . The equality holds only when
the two sites have the same symmetry, hence a certain amount of chemical information due
to site-dependent electron density is included even at the pair interaction level. In Fig. 1,
the effective pair potential corresponding to the MKOSYP potential is plotted both for the
pure material and for the CuZr(B2) structure.

Solid lines represent the interactions in the CuZr(B2) structure, while dashed lines repre-
sent Cu-Cu interactions in pure Cu-fce and Zr-Zr interactions in pure Zr-bee. In the effective

pair potential approximation, the total potential energy can be written as,
e e "o e 1
EtOt = Z <F04(pozn) - poana<pan)> Lay, + 5 Z¢anﬁn (rij)7 (3)
an 2%

where z,, is the fraction of atoms of type «,. The summation over «,, is carried out only

over the asymmetric sites of both species in a unit cell.
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Figure 1. (Color online) Effective pair potentials for Cu-Cu, Cu-Zr and Zr-Zr interactions calculated
using the MKOSYP potential [25] The dashed lines represent the Cu-Cu interactions in fcc Cu
(black) and Zr-Zr interactions in bee Zr (blue). Solid lines represent the pair interactions in the

CuZr(B2) structure.

The next step in our calculation is the division of the effective pair potential into a
reference and a perturbative potential. We follow the Weeks-Chandler-Anderson (WCA)
approach [15, 16] to the perturbation theory with some modifications for solid phases. Ac-
cording to the WCA approach, the division point for the reference (¢}, ;) and the perturba-
tive (wgn B) potentials is set to 7 = A, 3, which is the minimum of the effective pair potential.

Thus we write

Qn - Yan S)\an
o) = Ya,p(r) = Panp(r) T 5 )

0 > )‘anﬁ

@anB(T) r S /\Oénﬂ
(1) = , (5)

Yonp(r) 7> Aavp

where ¢ = $(A) — (r = \)/(r)]x .

Next the reference potential is mapped to an additive HS system with appropriate HS



diameters. The HS potential is given by

+00, r < daB(T)

HS — )
¢aﬁ (7") 0, , Z daIB (T)

(6)
Effective temperature-dependent HS diameters (d.g(7")) in the liquid phase are calculated
by numerically solving [30]

Ios = / " Yo () (XDl () /5T) — explo 5 (r) JksT]) dr = 0, (7)

where y,s(r) are the cavity functions, kg is the Boltzmann constant, and 7" is the tempera-
ture. We follow the iterative method described in Ref. [24] instead of solving eq. 7 directly
for the HS diameters of the liquid phase.

For simple closed packed crystal structures (fcc and hep), it is reasonable to approximate
HS diameters as that of the corresponding liquid [24] owing to the similarities in their
structures. However, this is not the case when considering complex crystal structures. For
complex crystal structures, we found that a first order approximation to eq. 7 also yields an
excellent agreement with the simulation results of crystalline metals. Namely, HS diameters

in crystals can be approximated following Barker and Henderson [31] as

)‘@nﬂ
danﬁ = /0 (1 — e’%nﬁ(r)/kBT) dr. (8)

HS diameters of crystalline metals calculated in this manner depend on both temperature
and density. This is due to the underlying density dependence of the effective pair potential
derived from the EAM potential. An average HS diameter for each species (dcucy and dzz;)

is next obtained by averaging over the asymmetric sites of each species:

_ 1 NCu _ 1 NZr B
dCuCu ~ Ncu Z dCunCu’ erZr ~ Nz n=1 eran ? (9)

where Ng, and Nz are the number of asymmetric sites of Cu and Zr in a given unit cell.
The additive condition of HS diameters can be imposed by adjusting the parameters A,, g
(av # B) so that deuzr = dzrcu = (doucu + dzeze) /2 124, 30].

The resulting mapped HS system may then be treated by methods developed in the
context of classical density functional theory (DFT) ( see Appendix A). We compute the
excess Helmholtz free energy (Ff) using the white-bear version of the fundamental measure

theory (FMT) functional [11, 13]. For a given atomic packing fraction, Fjfs only depends
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on the diameter ratio defined by dcucu/dzize (< 1). The kinetic energy contribution to the

free energy of an HS system is accounted for by the ideal gas component:
PR = [ ar Y pr)ean(Adp(r)e) - 1) (10

where p(r) is the density of the solid, A, = h/v/2mm.kpT is the de Broglie wavelength of
species «, m is the mass. The integration is carried out over a unit cell of the crystalline

solid. The net free energy of the HS system can be written as
Fus = kT (Fis + Fi3) . (11)

The contribution of the perturbative potential to the free energy can be calculated using

the first order perturbative correction as follows:
Fpp = QWPZ xanxﬁ/ggfﬁ(r) Znﬂ(r) r? dr. (12)

an,f
Within a mean-field approximation, the two-particle distribution function may be written
as a product of single particle density functions, so that p(ry,r2) = p1(r1)p2(r2). With this
simplification, the radial distribution function of species 2 with respect to species 1 can be
expressed as

gralr) = ﬁ / a0 / 47,1 (72) pal s + 7). (13)
In this approximation, the first peak of the radial distribution function is known to overes-
timate its true value. Previous work has focused on correcting the pair correlation near the
contact radius in simple solids (fcc) [32] and binary solid solutions [33]. These corrections are
however limited to simple systems, and additional complications arise when implemented
in complex systems. Thus in this work we are limited to the mean field pair correlation
function. Moreover, we notice that the contribution of such an approximation to the free
energy is relatively small. This is due to the flatness of the perturbative potential (accord-
ing to the WCA) near the contact radius where the deviation of the first peak is larger.
Within the density functional formalism, the single particle density function is described as
a summation of Gaussians located at each atomic site, i.e. ps(r) = (05/m)3/? > R, e=os(F—Ri),
Assuming this density profile and fixing the location of the atom at site «,, it can be shown

that
70’@(7‘7Ri)2/2 _ 670’@(T‘+Ri)2/2

1 op\ /2 e

HS B

= — . 14
Gous ) Ampxgr (27?) Z R; (14)
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The net Helmholtz free energy of the crystalline solid is given by a summation of three
components as

F(T, p) = Fivoay + Frus + Fpr, (15)

where Fipoqy(p) = >0 (Falpl,) — 15, F,(p5 ) Za, is the one-body term which is the first
part in the right hand side of the equation (3).

III. RESULTS

The DFT calculation was carried out in dimensionless units in which the length is scaled
by the HS diameter of the larger species (in this case Zr) and the energy is measured in units
of kgT. Having mapped the reference potential into an HS system we can define atomic
packing fractions as n = 7/6 p(rcud,cy + Tzedy,y,) which is useful in distinguishing be-
tween the solid and liquid phases. We have previously used the FMT functional to calculate
the free energy of binary HS crystals [34]. The calculated excess free energy of AB;3, ABs
and AB-like structures are in good agreement with the results from simulations. For the
Cu-Zr system we studied the HS models of five binary crystals: Cu;Zr(C15;), CuszZria(f5),
CuyoZr7(¢), CuZr(B2) and CuZry (C11,). The fundamental measure functional gives well-
behaved minima for four HS crystal complexes in the two dimensional Gaussian space clearly
representing a solid phase. However, we noted that the FMT functional fails to give a stable
minimum for the structure CuygZry(¢). (More details on the HS calculation can be found
in our companion paper [34].) Therefore in this work we continue with perturbation calcu-
lations only for three binary crystals — namely, Cus;Zr14(3), CuZr(B2) and CuZry(C11,), as
these three binary crystals together with the pure Cu-fce and Zr-bee cover more than 90%
of the melting curve for this system.

For completeness, we also studied the pure Zr bce structure following our perturbative
approach. However, anomalous behavior of the HS bcc structure using the DFT prevents
us from obtaining Gaussian parameters or HS free energies, in contrast to previous reports
[35-37|. Therefore, in our calculations both the Gaussian parameters and the free energies
were obtained from simulation results [38].

Given a thermodynamically stable HS reference system, we can perform the perturbation
calculations. The Helmholtz free energy is a function of both temperature and the atomic

density (Eq. 15). At a given temperature, we minimized F(p,T) to obtain the relaxed
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Crystal |ps(Theory)|ns(Theory)| ps(Exp.) |T5, (Theory)|T,, (MD)|T,, (Exp.)

Cu(fec) 0.0840 0.548 0.0850 1260 K 1355 K | 1360 K

Cus1Zr14(8) | 0.0695 0.554  |0.0716[39] 810 K 1050 K | 1375 K

CuZr(B2) 0.0574 0.595 |0.0577[40]| 1204 K 1327 K | 1210 K

CuZry(C11b)|  0.0513 0.605 |0.0518[41]| 1060 K 1276 K
Zr(bec) 0.0430 0.560 1891 K | 2100 K | 2125 K
Zr(hep) 0.0435 0.568 2000 K | 2110 K

Table I. Optimized structure parameters and the predicted melting temperatures compared with
experimental data and molecular dynamics simulations. The number density ps (in units of A*3)
and packing fraction 7 are given for conditions that minimize F'(p,T") at 1200 K except for pure
Zr. Data for Zr-(bcc and hep) are taken at 1800 K. The theory and the MD simulation data in this

table were produced only using the MKOSYP potential.

structures. The minimization was carried out at finite temperatures by only permitting the
lattice constants (a, b and ¢) to vary; a full minimization of the structure was only done
at 0 K. All finite-temperature calculations are done so as to preserve the lattice symmetry
of the structures. For the CuZr, Cu-fcc, and Zr-bee structures, we set a = b = ¢. For the
other structures, aspect ratios were initially set to the following values: CusiZriyy, a = b
and c¢/a = 0.7355 ; CuZry, a = b and ¢/a = 3.472; Zr-hep, a = b and ¢/a = 1.6211. We
found that the optimal aspect ratios are very close to the above set values with negligible
correction to the free energy. With the above constraints the minimization is carried out
only as a function of the atomic number density p;, = N/V, where N is the number of
atoms in a unit cell and V' is the volume. In Fig. 2, the Helmholtz free energy is plotted
as a function of number density p, for all three binary crystals studied. The two curves for
each structure correspond to the two EAM potentials considered in this calculation. For
all structures, we observe a minimum slightly below the experimentally reported number
density (see Table I). In table I we tabulate the number densities of the relaxed structures
calculated at 7' = 1200 K using the MKOSYP potential. For pure Zr (hcp and bec) crystals

the densities were measured at 7' = 1800 K.

For all crystal structures the relaxed structure was determined at packing fractions n >

0.54 and at temperatures below the targeted melting values (see Table I). The variation of
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Figure 2. (Color online) The Helmholtz free energy F(T, p) plotted as a function of atomic number
density (p = N/V) for three binary crystals in the Cu-Zr system: (a) CusiZriq, (b) CuZr and
(¢) CuZry. The minimum of each curve corresponds to the relaxed structure at that temperature.
Connected blue circles represent results for the MKOSYP potential and connected red squares

represent the results for the CMS potential.

n with crystal composition of Zr shows a reciprocal effect to the number density toward the
glass forming region. More precisely, we observed that the atoms in CuZr and CuZrs, are
more closely packed compare to the other monatomic crystals and also the studied Cus;Zrq4
structure. This can be attributed to the contrast of the diameter ratio, about 0.79, for this
binary system.

In Fig. 3 the Helmholtz free energy is plotted as a function of temperature. The filled
symbols are calculated from the present theoretical approach using the MKOSYP potential
and open symbols are results obtained in ref. [28] from molecular dynamics simulations
using the same potential in which the Einstein crystal is taken as a reference system. For
one component crystals (Cu-fce and Zr-hep) the agreement between the two calculations is
excellent. For CuZr and CuZr, the difference between the results is about 1% and 0.5%,

respectively. However, inaccuracy on the order of 1% could be crucial when determining the
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Figure 3. (Color online) Comparison between the theoretically calculated Helmholtz free energy, F
(eV/atom), and MD simulation. The filled symbols connected by solid lines are from our perturba-
tion calculations using the MKOSYP potential. The open symbols connected by dashed lines refer

to MD simulation results using the same EAM potential [28].

melting temperature. The effect on the melting temperature can be minimized by treating
the liquid in the same theoretical framework. To do so, we utilize the empirical Mansoori-
Carnahan-Starling-Leland (MCSL) equation of state [14], which is the liquid limit of the
FMT functional, to treat HS liquid mixtures. The liquid phase calculation was carried out

in a similar manner as the procedure described in ref. [18, 24].

More insight into the free energy and its temperature dependence can be obtained by
analyzing the behavior of the three contributions to the excess free energy (see eq. 15).
Fig. 4 shows the relative contribution of HS reference system (circles), the perturbative
terms (triangles), and the one-body terms (squares) to the total free energy, as a function
of temperature. For the six crystal structures studied in this work, similar behavior was
observed in these three contributions as functions of the density and temperature. The one-
body term Fipoqy(p) comprises about 60% of the free energy and decreases with increasing
ps- The perturbative correction (Fpr) accounts for the second-largest contribution to the

free energy, and increases with increasing p,. The smallest contribution is associated with
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Figure 4. (Color online) Contributions to the Helmholtz free energy from the HS reference system
(dashed lines), the perturbative correction (solid lines) and the one body term (dotted dashed line)

determined by Eq. 15 as a function of temperature.

the HS reference system. For most of the structures studied, this contribution comprises
about 10% of the total, whereas that of Fpp is about 30%. Nonetheless, it is clear that the
contribution from the HS reference system contributes substantially to the overall tempera-
ture dependence, and therefore an accurate determination of this term is important. In the
context of the perturbation approach, the HS reference contribution provides the entropic
contribution to the free energy, and hence varies strongly with temperature.

The coexistence temperatures of single-species solids (Cu and Zr) with a liquid mixture
of Cu(_y)Zr;, can be determined by matching the chemical potentials in two phases at
zero pressure. The coexistence of binary crystals with a liquid mixture can be obtained by
imposing the following equilibrium condition:

Crystal

(1w + npze) /(L4 1) = G, (16)

where p& and pf are the chemical potential of Cu and Zr in a liquid of composition z;. We
carried out the matching graphically as illustrated in Fig. 5. The dashed line represents
the Gibbs free energy (right hand side of the eq. 16) of the CuZr(B2) structure. The solid

lines represent the left hand side of eq. 16 at different liquid compositions(z;). The crossing
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Figure 5. (Color online) Gibbs free energy at zero pressure for crystalline CuZr (B2) (dashed line)
and the left hand side of the eq.16 for liquid mixture(solid lines). The crossing points of the above

two lines gives the coexistence temperature at the corresponding x,,.

points of these two lines give the melting temperature. It should be noted that the slopes
of these two curves are so close that a small discrepancy of the free energy would results
in a considerable deviation of the melting temperatures. As a rough estimate, about 1%
discrepancy in the free energy would change the melting temperature by 10% of its predicted

value.

The above procedure was extended to other crystal structures to trace out the melting
curve as depicted in Fig. 6. Both potentials well reproduce the variation of the melting
curve for CuZr(B2) structure as a function of zz, . With increasing Zr concentration in the
liquid near xz, =~ 0.66 CuZry structure appears as a stable phase. However the melting curve
lies about 170 K below the experimental prediction. Upon further increasing x, above 0.74,
we notice that the Zr(bcc) phase stabilizes but with relatively low melting temperature.
This behavior qualitatively matches the high temperature variation of the melting curve of
the Cu-Zr system. On the Cu-rich side of the phase diagram, Cus;Zry4 is the dominant
structure, giving a peak at T'= 1390 K and xz, = 0.2154. However, both potentials provide

a low melting temperature for this structure (open left triangles connected by thin dashed
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Figure 6. (Color online) Melting curve (liquidus) predicted from the two EAM potentials (dashed
line) compared with the experiment (solid lines)[27|. The filled diamonds represent the melting

temperature obtained from the MD simulations.

line in Fig.6).

To gain further understanding of the melting curve, we carried out MD simulations with
the MKOSYP potential. For Cu-fcec and Zr-bece, melting temperatures are about 1355 K and
2100 K respectively. These are almost the same as the experimental values. The melting
temperature of CuZr(B2) determined from MD simulations is about 1330 K which over-
estimates the experimental value of 1200 K. In general the discrepancy of our theoretical
prediction is less than 10% below the simulated melting temperature on above three points.
In supporting our theoretical prediction, the simulated melting temperature of Cus;Zry,
1050 K is considerably lower than the experimental value (1390 K). The theoretical predic-
tion is about 810K at x4, = 0.2154.

IV. DISCUSSION AND CONCLUSIONS

Calculating the melting curve from simulations is a computationally intensive task. In
particular, to obtain the melting curve for a liquid composition that is different from the

solid one using simulations is especially challenging. Furthermore, simulations of supercooled
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liquid phases present additional challenges. For these situations applying a free energy route
based upon reliable theoretical methods to estimate the melting curve has several advantages.
In this work we demonstrate that the DFT approach using a recently developed FMT
functional in combination with perturbation theory can be successfully applied to binary
systems with complex solid phases. The calculated Helmholtz free energies and melting
curves of three dominating binary crystals: CugZryy, CuZr , CuZry and three monatomic

crystals: Cu(fcc), Zr(hep) and Zr(bcc), validate the current approach.

The agreement between simulation results and the experimental phase diagram is promis-
ing. The projected error in the free energy is less than 1% for binary crystals and negligible
for monatomic crystals (Cu-fcc and Zr-hep) when compared with simulations. Nonetheless,
even greater precision is required to estimate the melting temperature with precision. Given
the above uncertainty in the free energy calculations 10 — 20% discrepancy is possible be-
tween simulated and theoretical values for the melting temperature. Comparison between
theoretical melting points and values obtained directly from MD simulation confirms the

importance of greater precision needed for theoretical calculations of free energies.

The majority of the error in the free energy when computed following this approach is
likely associated with the one-body term (see eq. 15) since the one-body term comprises
about 60% of the total. Error in this contribution would probably arise as a result of the
procedure required to map the EAM potential to an effective pair potential. Error due to the
HS contribution would contribute disproportionately to the variation in the free energy with
temperature. In the case considered in this work, the contribution to the total free energy
is small (12%). The second largest contribution to the free energy, comprising about 30%
of the total, is associated with the perturbative correction. An improved approach to treat

the attractive interaction will be essential to improve the overall accuracy of this method.

The low melting temperature for Cus Zri4 obtained in this work could be an artifact
of the EAM potential. These potentials are developed to match experimental properties
only in a certain window around the glass forming compositions, with xz. ~ 0.5, and
Cus1Zry4 evidently falls outside of this window. However, the theoretical approach presented
here may equally well applies to interaction potentials based on direct quantum mechanical

computations, and this direction will be the subject of future research.
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Appendix A: Fundamental Measure Theory

The density functional theory for many body classical systems follows the Mermin theo-

rem. Given the grand canonical ensemble there exists a functional of single particle density
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distributions p;(7) such that,

Qlp1, pa, - o] = Flp1, pa, -+ ,pu] + Z/d37"pi(f) (Vi () = pa) (A1)

where V" (7) is the external potential and pu; is the chemical potential of species i. The
functional describing the Helmholtz free energy Flpy, pa,------ , pv] is independent of the
external potential. The equilibrium density distributions p?(7) and the grand potential can

be obtained by the variational principle,

0Q[p1, pa, -+ , Pv)
0pi (pi(P=0()

~0. (A2)

When studying a crystalline phase, the density profile is assumed to be of a Gaussian
form centered at each lattice site. The density profile of species ¢ in a multi-component

system can be expressed as,
3/2 (777
( ( > Z e~ (F—773 (A3)

where « is the Gaussian parameter and 7; is the location of species i. The summation
covers all the sites occupied by species 7. The system is scaled with respect to the diameter
of the largest species (d4) and the diameter ratio is defined as ¢ = dp/ds. Then the
minimization of the free energy functional is performed with respect to the dimensionless
Gaussian parameters, o;d%.

The Helmholtz free energy functional of a mixture of v species can be split into two parts:

)

BF[Ith% """ 7p1/] = Z/dsf(ln(pA_‘)AS) o 1) pl(f) + ﬁFew[plv P2y 7:01/]7 (A4)

where A; is the de-Broglie wavelength of species i and § = 1/kgT. The first part in the right
hand side of the above equation gives the contribution due to the non-interacting particles
and the later is the excess free energy.

In the fundamental measure theory, the hard sphere interaction contribution to the excess

free energy functional can be expressed in terms of weighted densities as[8, 9],

BE.[{pi}] = / Y @07, a7, (5, ), (A5)
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where the 2 scalar (;(7) and n;(7)), a vector (v;()) and a tensor (7;(7)) weighted densities|12,
13| are defined as the following:

n®=§;ﬁﬁ%wmeW—mx (AG)

=1
1
w() = g [ ETESER 7= 7 (AT
- _ 1 3 (A - (F_F)
() = o [ PR — [ ), (A%)
n (= 1 — — > =7 m =7 n
T 0 = o [ @R |7 = ) =Tl = (A9)

where 7" (7), (m,n = 1,2,3), are the tensor components. The function O(z) is the

Heavyside step function and d(x) is the Dirac’s delta function. The R; is the hard sphere

radius of species i. In the WB version of FMT the functional ®; are

Bilo) =~ [ @It =) 3 i) (A10)

ylp) = 2 Y RiR;(Ri + R)) / gl (1) = (). 55(F) (A11)
= (1 —=n(")
and ,
Balp) =122 3 RER [ o) fan(r), (A12)
i4,k=1
where
ik (T) = 0;.T;.0 — ;0.0 — Tr [T;T;Ti) + ny T [T T (A13)
and

2 U
fin) ((1_—77) Tl - n>> . (AL4)
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