

1 **Biotransformation of Furanic and Phenolic Compounds with Hydrogen Gas**
2 **Production in a Microbial Electrolysis Cell**

3 Xiaofei Zeng¹, Abhijeet P. Borole^{2,3}, and Spyros G. Pavlostathis^{1,*}

4 ¹ School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta,
5 Georgia 30332-0512, United States

6 ² Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United
7 States

8 ³ Bredesen Center for Interdisciplinary Research and Education, The University of Tennessee,
9 Knoxville, TN 37996, United States

10 *Corresponding author. Phone: 404-894-9367; fax: +404-894-8266;
11 E-mail address: syros.pavlostathis@ce.gatech.edu (S. G. Pavlostathis)

12 **ABSTRACT:** Furanic and phenolic compounds are problematic byproducts resulting from the
13 decomposition of lignocellulosic biomass during biofuel production. This study assessed the
14 capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H₂) using a mixture of
15 two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid,
16 SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the sole carbon and
17 energy source in the bioanode. The rate and extent of biotransformation of the five compounds,
18 efficiency of H₂ production, as well as the anode microbial community structure were
19 investigated. The five compounds were completely transformed within 7-day batch runs and
20 their biotransformation rate increased with increasing initial concentration. At an initial
21 concentration of 1,200 mg/L (8.7 mM) of the mixture of the five compounds, their
22 biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode coulombic efficiency was 44-
23 69%, which is comparable to wastewater-fed MECs. The H₂ yield varied from 0.26 to 0.42 g H₂-
24 COD/g COD removed in the anode, and the bioanode volume-normalized H₂ production rate was
25 0.07-0.1 L/L-d. The major identified fermentation products that did not transform further were
26 catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H₂
27 production were inhibited at an initial substrate concentration of 1,200 mg/L, resulting in acetate
28 accumulation at a much higher level than that measured in other batch runs conducted with a
29 lower initial concentration of the five compounds. The anode microbial community consisted of
30 exoelectrogens, putative degraders of the five compounds, and syntrophic partners of
31 exoelectrogens. The H₂ production route demonstrated in this study has proven to be an
32 alternative to the currently used process of reforming natural gas to supply H₂ needed to upgrade
33 bio-oils to stable hydrocarbon fuels.

34 **INTRODUCTION**

35 Lignocellulosic biomass is a promising feedstock for the production of biofuels using thermal,
36 chemical or biological processes. Decomposition of lignocellulosic biomass, regardless of the
37 process used, typically results in furanic and phenolic byproducts, which are inhibitory,
38 problematic compounds. For instance, furanic and phenolic compounds are highly inhibitory to
39 H_2 and ethanol producing, fermentative microorganisms at a concentration greater than 1 g/L.^{1,2}

40 In pyrolysis, a thermal process reforming biomass to bio-oil, the presence of polar and oxygen-
41 rich compounds (e.g., furan aldehydes and phenolic acids) makes the bio-oil acidic, unstable,
42 requiring H_2 in the downstream hydrogenation process to upgrade the bio-oil to a stable fuel.

43 Methods employed for the removal of furanic and phenolic byproducts include solvent
44 extraction, developing inhibitor-tolerant microorganisms, and improving microbial conversion of
45 the inhibitors to less toxic compounds.³ However, these methods have the trade-offs of lowering
46 biofuel yield and do not lessen the challenge of downstream wastewater treatment.³ Thus, a
47 process to directly utilize furanic and phenolic compounds to produce biofuels would be an
48 improvement over the existing methods.

49 Microbial electrolysis cell (MEC) technology is a bioelectrochemical process, which
50 produces H_2 . Exoelectrogenic bacteria in the anode oxidize organic substrates by transferring
51 electrons to the electrode and then to the cathode. With a voltage input (> 0.3 V), protons
52 transferred from the anode to the cathode via a cation exchange membrane are reduced to H_2 .⁴
53 Unlike other H_2 producing bioprocesses, the MEC produces H_2 through an abiotic half-reaction
54 in the cathode, with the supply of electrons from the microbially-assisted half-reaction in the
55 anode. This feature of MEC eliminates the need for H_2 -producing bacteria, which are highly
56 susceptible to furanic and phenolic compounds.^{1,5} Thus, the MEC is potentially able to convert

57 these problematic compounds to H₂, which in turn can be used in the hydrogenation process and
58 thus minimize the external H₂ supply currently generated by reforming natural gas.

59 Given the advantage of the MEC technology, this study investigated a MEC for H₂
60 production from two furanic and three phenolic compounds. This is the first attempt to utilize
61 specific inhibitory compounds to produce H₂ using bioelectrochemical technology. Although the
62 merit of bioelectrochemical systems has been demonstrated in terms of power generation,
63 nutrient recovery, and H₂ production from acetate and various wastewaters,⁶⁻⁸ the ability of a
64 MEC to use furanic and phenolic compounds as the sole carbon and energy source remains
65 unexplored. Acetate is a favorable organic substrate for exoelectrogens,^{9, 10} whereas furanic and
66 phenolic compounds are less biodegradable and have not been reported as direct substrates for
67 exoelectrogens. On the other hand, wastewater streams usually have poorly defined components,
68 and the contribution from individual components has not been delineated. Two previous studies
69 used furanic and phenolic compounds as the substrate in the anode of a microbial fuel cell
70 (MFC), but had mixed results. Catal et al. reported that, with the exception of HMF, the other
71 nine furanic and phenolic compounds were unable to generate voltage.¹¹ In contrast, Borole et al.
72 demonstrated that an anode microbial consortium was able to convert furfural, HMF, 4-
73 hydroxybezaldehyde, hydroxyacetophenone, and vanillic acid to electricity.¹² Thus, the question
74 remains whether a MEC anode microbial community can use furanic and phenolic compounds as
75 the sole energy and carbon source to produce H₂ in the cathode.

76 The objective of this study was to assess the capacity of a MEC to use furanic and
77 phenolic compounds for H₂ production. Biotransformation of five furanic and phenolic
78 compounds, formation of metabolites, production of current and H₂, as well as the structure of
79 the anode microbial community were investigated.

80 **MATERIALS AND METHODS**

81 **Chemicals.** Furfural (FF, 99%), 5-hydroxymethyl furfural (HMF, \geq 99%), syringic acid
82 (SA, \geq 95%) and 4-hydroxybenzoic acid (HBA, \geq 99%) were purchased from Sigma-Aldrich (St.
83 Louis, MO). Vanillic acid (VA, \geq 99%) was purchased from Alfa Aesar (Ward Hill, MA). The
84 five compounds are soluble in water ($1.5\text{-}7 \times 10^8$ g/L at 25°C), not volatile (Henry's law constant
85 = 10^{-14} - 10^{-6} atm·m³/mol), and have a low hydrophobicity ($\log K_{ow} = -0.09$ - 1.58) (Table S1).
86 The standard potential at pH 7.0 ($E^{0'}$) of the five compounds is from -0.388 to -0.303 V (Table
87 S2) compared to an $E^{0'}$ value of -0.414 V for proton reduction to H₂.

88 **Inoculum.** The bioanode inoculum was a piece of carbon felt with biofilm developed at
89 the Oak Ridge National Laboratory (Oak Ridge, TN), which had been enriched with
90 fermentation inhibitors in a MFC anode. The original inoculum was a sample collected from a
91 municipal anaerobic digester.¹³ The bioanode inoculum was further enriched in the present study
92 in a MFC anode, fed with a mixture of the five compounds, prior to being transferred to a MEC
93 anode.

94 **MFC Setup and Operation.** An air-cathode MFC was set up to enrich the inoculum.
95 The anode electrode was porous carbon felt (5 stripes, 1 cm \times 1 cm \times 10 cm each; Alfa Aesar,
96 Ward Hill, MA) tied to a stainless steel rod. The anode chamber was a modified square glass
97 bottle with an open channel on one side. The empty bed volume was 250 mL, and the liquid
98 volume was 200 mL due to electrode displacement. The cathode was a membrane-electrode
99 assembly with a surface area of 5.7 cm² purchased from Fuel Cells Etc (College Station, TX),
100 which was made of a cation exchange membrane and carbon cloth containing 0.5 mg/cm² Pt.
101 The cathode was clamped to the side channel extended from the anode chamber and exposed to
102 air on one side.

103 A piece of biofilm-attached carbon felt (approximately 1 cm ×1cm × 3 cm) was placed in
104 the center of the anode carbon felt electrode. The anode medium consisted of (in g/L): NH₄Cl,
105 0.31; KCl, 0.13; NaH₂PO₄·H₂O, 2.45; Na₂HPO₄, 4.58, along with trace metals and vitamins.¹⁴
106 The pH of the medium was 7.0. The anolyte was deoxygenated by bubbling N₂ through the
107 liquid phase prior to use, and was continuously mixed magnetically. The MFC was maintained at
108 room temperature (20-22°C). A mixture of the five compounds at equal electron equivalents
109 (each at 62.5 mg COD/L) and a total concentration of 200 mg/L (312 mg COD/L) was fed to the
110 MFC anode once a week (7-day fed-batch). During the first ten feeding cycles (~70 days),
111 glucose (200 mg/L) was fed along with the five compounds to enhance microbial growth. A
112 variable resistor was placed between the anode and cathode, and its resistance was gradually
113 reduced from 500 to 250 and then to 100 Ω, in order to promote the growth of exoelectrogenic
114 bacteria. The voltage was recorded by a potentiostat (Interface 1000TM, Gamry Instruments,
115 Warminster, PA) and enrichment lasted for 6 months. The MFC activity stabilized with a mean
116 maximum current of 1.25 mA, soluble COD (sCOD) removal of 50-60% and coulombic
117 efficiency (CE) of 40-60%, measured over 20 feeding cycles.

118 **MEC Setup and Operation.** An H-type MEC was developed with two square glass
119 bottles separated by a cation exchange membrane (Nafion 117, 5.7 cm²; Dupont, Wilmington,
120 DE). Both chambers and the anode electrode had the same configuration as the above-described
121 MFC anode. The cathode electrode was a carbon cloth containing 0.5 mg/cm² of Pt (5 cm × 6
122 cm; Fuel Cell Etc, College Station, TX). A gas collection burette using displacement of an acid
123 brine solution (10% NaCl w/v, 2% H₂SO₄ v/v) was connected to each chamber headspace for gas
124 volume measurement.

125 The inoculation procedure and anolyte of the MEC were the same as for the above-
126 described MFC. The MEC catholyte was a 100 mM phosphate buffer (pH 7.0), deoxygenated by
127 bubbling N₂ prior to use. Both the anolyte and catholyte were replaced at the beginning of each
128 feeding cycle. During the startup, the anode chamber was amended with 200 mg/L of the five
129 compounds mixture (same composition as the MFC feed). After the startup, which lasted for 9
130 weeks, the total initial concentration of the substrate mixture was increased from 200 to 400,
131 800, and then to 1,200 mg/L. A voltage of +0.6 V was set to the MEC anode relative to the
132 cathode, and the current was recorded every 4 hours by the potentiostat. The MEC was
133 maintained at room temperature (20-22°C). The duration of each feeding cycle was 6-7 days
134 until the current dropped below 0.2 mA. The anolyte and catholyte were continuously mixed
135 magnetically and the anode and cathode headspaces were initially filled with N₂.

136 Two controls were evaluated. Control 1 was used to investigate the stability of the five
137 compounds in the presence of the porous carbon felt and anolyte. Four serum bottles containing
138 100 mL anolyte and 200 mg/L compound mixture were kept under a N₂ headspace. Two of the
139 bottles contained carbon felt with equivalent quantity (v/v) as in the MEC anode and the
140 concentration of the five compounds was monitored for 7 days. Control 2, setup with a biomass-
141 free anode electrode in the MEC, was used to evaluate the potential contribution of the applied
142 voltage on current production and transformation of the five compounds in the absence of
143 microbial activity.

144 **Microbial Community Analysis.** Microbial community analysis of the MEC anode was
145 performed after 9 weeks (9 feedings) from the startup. A piece of anode electrode with attached
146 biofilm (approximately 1 cm × 1 cm × 3 cm) was washed several times with the anolyte and then
147 cut into small pieces (< 0.5 cm). The genomic DNA was extracted with the PowerSoil DNA

148 isolation Kit (MO BIO Laboratories, Carlsbad, CA), according to the manufacturer's
149 instructions. The concentration and purity of the DNA sample were determined with a ND-1000
150 spectrophotometer (NanoDrop Technologies, Wilmington, DE). The 16S rRNA gene was
151 sequenced using Illumina technology (LC Science, Houston, TX). Bacterial primers 319F and
152 806R were used to amplify the V3-V4 hypervariable regions of the 16S rRNA gene. The
153 obtained sequences were clustered into Operational Taxonomic Units (OTUs) with 97%
154 similarity. The longest read in each OTU was chosen as the representative sequence for
155 taxonomic classification using the RDP classifier Version 2.7. The sequence-based phylogenetic
156 tree of the abundant bacteria (>1% abundance) was constructed by applying the neighbor-joining
157 algorithm using the program MEGA 6.06. The tree topology was evaluated by bootstrap
158 resampling analysis of 1000 data sets. The representative sequences of the abundant species have
159 been submitted to the GenBank, National Center for Biotechnology Information (NCBI;
160 www.ncbi.nlm.nih.gov/) with sequence accession numbers from xxxx to xxxx (pending).

161 **Analytical Methods.** The furanic and phenolic compounds were quantified using a high
162 performance liquid chromatography (HPLC) unit equipped with a UV-Vis detector (Agilent
163 1100, Santa Clara, CA). An HPX-87H column (BioRad, Hercules, CA) was used with an eluent
164 of 15% acetonitrile in 5 mM H₂SO₄ (v/v) at a flow rate of 0.6 mL/min.¹² The wavelength of 280
165 nm and 210 nm was used for the furanic and phenolic compounds, respectively. Acetate and
166 other volatile fatty acids were quantified by the same HPLC method at the wavelength of 210
167 nm, except that the eluent was 5 mM H₂SO₄ without any organic solvent. Metabolites of the five
168 compounds were identified using an LC/MS/MS unit (Agilent 1260 Infinity LC system, 6410
169 Triple Quad MSD) equipped with a Kinetex biphenyl column (3×150 mm, 5 µm; Phenomenex,
170 Torrance, CA). The eluent consisted of (A) 5 mM ammonium acetate with 0.5% acetic acid in

171 acetonitrile (v/v) and (B) 5 mM ammonium acetate in 0.5% acetic acid (v/v) at a flow rate of 0.5
172 mL/min, using gradient elution as follows: eluent A was increased from 2% to 30% in 2.3 min
173 and to 90% in 1.2 min, and then was maintained at 90% for 2.5 min. The MS/MS was operated
174 in both positive and negative modes at 100 eV in an m/z range of 50-250. The product ions of the
175 same molecular weight as hypothesized metabolites were fragmented, and the fragmentation
176 patterns were compared with those of purchased pure chemicals. Soluble chemical oxygen
177 demand (sCOD) and pH were measured following procedures outlined in Standard Methods.¹⁵
178 Total gas production was measured by the acid brine solution displacement in the burettes,
179 equilibrated to 1 atm. Headspace gas composition (i.e., H₂, CO₂, and CH₄) was determined with
180 a gas chromatography unit equipped with two columns and two thermal conductivity detectors.¹⁶
181 **Calculations.** Coulombic efficiency and H₂ yield were calculated as previously described.¹⁷
182 Current density was normalized to either the empty bed volume of the anode chamber (250 mL)
183 for comparison with single-chamber MECs, or the projected surface area of the Nafion
184 membrane (5.7 cm²), assuming the membrane surface area was limiting, due to the narrow
185 channel of the H-type reactor.¹⁸

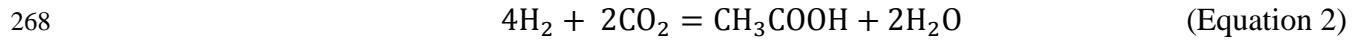
186 RESULTS AND DISCUSSION

187 **MEC Startup.** During the MEC startup period, fed-batch addition of 200 mg/L
188 compound mixture was conducted in repetitive 7-day feeding cycles. Stable maximum current
189 and H₂ production was observed by day 28 (Figure S1) and the startup period continued for
190 another 35 days (5 feeding cycles) to confirm stable performance. During the MEC operation,
191 the anolyte and catholyte pH was in the range of 6.7-7.0 and 7.0-7.3, respectively. The maximum
192 current density (I_{max}) was $0.16 \pm 0.04 \text{ mA/cm}^2$ or $3.6 \pm 0.9 \text{ A/m}^3$, cumulative H₂ production was
193 $19.3 \pm 1.2 \text{ mL}$ (20°C, 1 atm), and coulombic efficiency was $44 \pm 12\%$ over the last 5 feeding

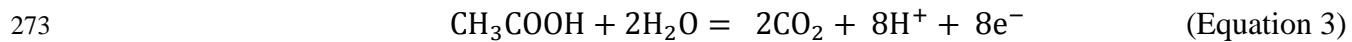
194 cycles. The five compounds were completely transformed, with sCOD removal of $57 \pm 10\%$
195 during each feeding cycle. An abiotic control experiment (Control 2), conducted under the same
196 MEC conditions, with the exception that the anode was not inoculated, resulted in negligible
197 current (<0.12 mA) and H₂ production (< 3 mL) over 7 days, confirming that the current and H₂
198 production in the inoculated MEC was due to the bioanode activity.

199 **Effect of Initial Substrate Concentration on Current and H₂ Production.** After
200 demonstrating H₂ production occurred during the MEC startup period, four consecutive feeding
201 cycles were carried out with increasing initial anode substrate concentrations, in order to assess
202 the capacity of the bioanode to transform the five compounds at higher concentrations, and any
203 potential inhibitory effect of these compounds or their transformation products on current and H₂
204 production (Figure 1). When the initial anode substrate concentration was increased from 200 to
205 400 mg/L, the I_{max} almost doubled from 1.36 mA to 2.36 mA. As a result, the maximum H₂
206 production rate increased from 18.3 to 26.5 mL/d. Electric current of 1 mA corresponds to a
207 maximum H₂ production rate of 11 mL/d (20°C, 1 atm) or 0.45 mmol/d, based on the fact that
208 production of 1 mole of H₂ requires at least 2 moles of electrons (2×96585 coulombs). The
209 current magnitude is also indicative of the rate of exoelectrogenesis. Thus, increasing the initial
210 substrate concentration from 200 to 400 mg/L allowed faster exoelectrogenesis, probably by
211 promoting the growth of the exoelectrogenic bacteria and/or enhancing the substrate mass
212 transfer from the bulk solution through the porous electrode to the biofilm. When the substrate
213 concentration was further increased to 800 mg/L, although the I_{max} did not increase, high current
214 was sustained for a longer time resulting in a higher cumulative H₂ production than in the 400
215 mg/L run (49 mL vs. 35 mL). However, when the initial substrate concentration was increased to
216 1,200 mg/L, both the current and H₂ production were severely inhibited (Figure 1). The 1,200

217 mg/L concentration is comparable to what has been reported for the inhibition of H₂ and ethanol
218 fermentation by mixed cultures, typically around 1,000 mg/L.¹⁻³ Previous studies also suggested
219 that a combination of inhibitors acted synergistically, resulting in higher inhibition.³ Little
220 information is available regarding the inhibitory effect of furanic and phenolic compounds on
221 exoelectrogens. Whether the parent compounds or transformation products are responsible for
222 the observed inhibition is currently under investigation. The anode pH was 6.7 on day 3, which
223 ruled out the possibility that low pH inhibited the bioanode activity. In order to determine
224 whether the observed inhibition was reversible or not, the anolyte was replaced with fresh
225 medium and the compound mixture at 200 mg/L was added. Both current and H₂ production
226 were restored to the previous levels within 2 days (Figure S2). Although inhibition was observed
227 at 1,200 mg/L total substrate concentration, the MEC in the present study demonstrated its
228 capacity to use furanic and phenolic compounds (up to 800 mg/L) as the sole carbon and energy
229 source to produce H₂. For comparison, a mixed fermentative culture produced only 0.58 mL/L of
230 H₂ from HMF and no H₂ from furfural at 10-1000 mg/L.¹⁹


231 **MEC Efficiency.** Efficiency parameters were calculated for the MEC feeding cycles
232 performed with 200-800 mg/L initial substrate concentrations (Table 1). Between 39 and 51% of
233 the electron equivalents (COD) in the feed remained by the end of the feeding cycles. Details of
234 the observed biotransformation products contributing to the residual COD are discussed below.
235 From the electron equivalents removed, 44-69% were converted to current (i.e., coulombic
236 efficiency), and 26-42% were captured as H₂ (H₂ yield). The H₂ yield in the MEC was higher
237 than reported values for dark fermentation of glucose using mixed cultures (~2 mol H₂/mol
238 glucose or 17% based on electron equivalence).^{20, 21} The H₂ yield, sCOD removal and coulombic
239 efficiency achieved in the present study were comparable to those achieved with wastewater-fed

240 MECs. However, the maximum H₂ production rate was lower than that of domestic wastewater-
241 fed MECs (0.1 vs. 0.3 L/L-d).²²⁻²⁴ To improve the H₂ production rate, the key is to achieve more
242 effective exoelectrogenesis, because the H₂ production rate is proportional to current density
243 (A/m³). In the present study, as discussed below, not all of the transformation products were used
244 by the exoelectrogens. Therefore, a robust anode microbial community needs to be further
245 developed to improve the H₂ production rate of the MEC.


246 Effective collection of H₂ was a challenge in the present study, which negatively
247 impacted the H₂ production rate. The cumulative H₂ volume declined noticeably during the latter
248 part of each batch run when anode bioactivity was lower (Figure 1). The difference between the
249 maximum cumulative H₂ on day 3 (day 2 for the 200 mg/L run) and the total H₂ collected at the
250 end of each run was considered to be the minimum H₂ loss. Thus, at least 3.5- 18.6 mL (15-35%)
251 of the produced H₂ was not captured during the 200-800 mg/L runs, and 93% was lost during the
252 1200 mg/L run, when overall H₂ production was very low. According to the Henry's law
253 constant of H₂ at 20°C (8.03×10^{-4} mol/L/atm)²⁵ and the maximum partial pressure of H₂ in the
254 cathode headspace (0.34 atm on day 3 in the 800 mg/L run), the dissolved H₂ in 250 mL
255 catholyte at equilibrium was 0.017 mL at 20°C. The displacement solution of acid brine should
256 have even less dissolved H₂ than the catholyte. Therefore, H₂ dissolution was negligible in the
257 cathode.

258 Cathode H₂ diffusion through the cation exchange membrane to the anode has been
259 widely acknowledged in previous studies,^{26,27} as in the present study. A control experiment
260 revealed that 6% of H₂ added to the cathode headspace diffused through the cation exchange
261 membrane to the anode headspace of an un-inoculated MEC with an open circuit tested for 7
262 days (Figure S3). Under MEC conditions with an active bioanode and in the absence of external

263 electron acceptors (e.g., O₂, NO₃⁻, etc.), the H₂ diffused to the anode can readily be used by
264 exoelectrogens as an electron donor (Equation 1) or by homoacetogens to form acetate^{9, 28, 29}
265 (Equation 2). Thus, the loss of H₂ from the cathode due to diffusion to the anode could be higher
266 than 6% during the normal 7-day MEC operation.

269 Another effect caused by H₂ diffusion and utilization in the anode can be pseudo-current
270 production by recycling H₂ between cathode and anode. In addition to the current generation,
271 according to Equation 1, acetate generated as shown in Equation 2 can also be used as electron
272 donor by exoelectrogens^{9, 28} (Equation 3).

274 Adding Equation 2 and 3 results in Equation 1. Therefore, regardless of the pathways (direct
275 exoelectrogenesis using H₂ or homoacetogenesis), every 1 mole of H₂ utilized in the anode will
276 contribute at most 2 moles of e⁻ to the current. Taking this effect into consideration, the corrected
277 coulombic efficiency was 35-52%, about 10% lower than the values reported in Table 1.

278 **Biotransformation of the Furanic and Phenolic Compounds.** The concentration of the
279 five compounds was monitored during the MEC feeding cycles with increased initial substrate
280 concentration from 200 to 1,200 mg/L (Figure 2). All five compounds were completely
281 transformed within 7 days at all initial concentrations tested. The results from Control 1 (biomass
282 free, non-electrochemical condition) showed no detectable adsorption of the five compounds to
283 the carbon felt (Figure S4), which was expected because the five compounds have log K_{ow} < 2.0
284 (Table S1). In addition, analysis of the catholyte showed no detectable compounds, confirming
285 the selectivity of the cation exchange membrane. Thus, the disappearance of the five compounds

286 was attributed to electrochemical reactions and/or microbial metabolism in the anode. To
287 distinguish the possible contribution of each of these two mechanisms, Control 2 was conducted
288 under the same operating conditions as the MEC, except that the anode was biomass-free (i.e.,
289 un-inoculated carbon felt). Within 7 days, the concentration of the phenolic compounds
290 decreased by about 20% (Figure 2). It is not clear what products were formed, but none of the
291 identified biotransformation products from the three phenolic compounds (discussed below) was
292 detected. The two furanic compounds were completely transformed in Control 2. Furoic acid
293 (FA) and 2,5-Bis(hydroxymethyl)furan (HMF-OH) were observed as the oxidized product of
294 furfural and reduced product of HMF, respectively. It has been reported that a mixture of
295 products could be generated from electrolysis of furfural and 5-HMF, including oxidized and
296 reduced furan derivatives, open-ring products, and dimers, depending upon the type of electrode
297 and electrolysis condition.^{30,31} However, it is important to note that the transformation rate of all
298 five compounds substantially increased with a bioactive anode (Figure 2).

299 There was a clear trend for the transformation rate of the five compounds, which
300 increased with increasing initial substrate concentrations from 200 to 1,200 mg/L (Figure 2;
301 Table S3). Increasing the initial concentration of the substrate mixture from 200 to 1,200 mg/L
302 resulted in the following range of volumetric transformation rates (mM/d): 0.333-2.343 for FF;
303 0.197-1.029 for HMF; 0.047-0.917 for SA; 0.052-0.854 for VA; and 0.085-0.965 for HBA. The
304 increase of the transformation rates, with increasing initial substrate concentration, implies that
305 the five compounds were not inhibitory to the initial biotransformation step(s) even at the 1,200
306 mg/L run. In contrast, as discussed above, the current and H₂ production during the 1,200 mg/L
307 run were severely inhibited (Figure 1). The observation that the transformation rate of the five
308 compounds increased, while current and H₂ production decreased, indicates that the five

309 compounds were not the direct substrates for exoelectrogens and current generation. Previous
310 studies have suggested that electricity generation was carried out primarily via fermentation
311 products, like acetate and H₂, when fermentable substrates were used in bioelectrochemical
312 systems.^{9, 29} Because there was no external electron acceptor available in the anode medium in
313 the present study, the initial biotransformation process of the five compounds in the MEC
314 bioanode is assumed to be fermentation.

315 Transformation products identified using LC/MS/MS include furoic acid (FA), 2,5-
316 Bis(hydroxymethyl)furan (HMF-OH), 3,4-dihydroxybenzoic acid (diHBA), catechol, phenol and
317 acetate. These identified transformation products accounted for ca. 50% of the residual sCOD
318 measured during the four feeding cycles. Thus, half of the transformation products on the basis
319 of electron equivalence have not been identified, which is also indicated by the unknown peaks
320 in the UV and TIC chromatograms at the end of the four feeding cycles (Figure S5).
321 Nevertheless, ethanol, pyruvate, lactate and propionate were not detected at the end of the batch
322 runs. Among the identified transformation products, catechol and phenol accumulated during all
323 feeding cycles (Figure 3). Acetate accumulated only during the 1,200 mg/L run (maximum
324 acetate at 326 mg/L), while other compounds were transient (Figure S6). The transformation
325 products detected in Control 2 (biomass-free anode) include HMF-OH and FA, but no phenolic
326 products (Figure 3 and Figure S6). Thus, FA and HMF-OH could be produced from
327 electrochemical reactions in the absence of bioactivity, whereas the formation of the detected
328 phenolic products (catechol, phenol and diHBA) was the result of biotransformation.

329 It has been widely accepted that fermentation is an important metabolic process, in
330 addition to exoelectrogenesis, when fermentable substrates are used in bioanodes. Fermentation
331 first transforms relatively complex substrates to lower molecular weight molecules (e.g., acetate

332 and H₂) which are then used as electron donors for exoelectrogenesis.^{9, 10, 29} This syntrophic
333 interaction was also observed in the present study, in which fermentable substrates were applied.
334 Acetate accumulated at 326 mg/L (5.4 mM) in the 1,200 mg/L run, but was not detected in the
335 200-800 mg/L runs. In the 1,200 mg/L run, fast transformation of the five parent compounds
336 resulted in fast production of acetate, but exoelectrogenesis was inhibited by either the five
337 compounds or their transformation products (as discussed above), and thus contributed to a very
338 low acetate utilization (Figure 1 and 2). In contrast, in the 200-800 mg/L runs, active
339 exoelectrogenesis occurred (Figure 1), resulting in rapid consumption of acetate produced by
340 fermentation.

341 Stoichiometrically, 1,200 mg/L of the five compounds could result in a maximum acetate
342 level of 29.3 mM. It is possible that the acetate was partially produced by homoacetogenesis
343 using CO₂ resulting from fermentation and H₂ diffused from the cathode. Yet, as discussed
344 above, homoacetogenesis could contribute 2 mM acetate at the most, if the current production
345 during the 1,200 mg/L was fully converted to H₂ (reverse of Equation 1) and then to acetate
346 (Equation 2). In addition, the accumulated acetate at the end of the 1200 mg/L run could have
347 resulted in the production of 105 mL of H₂ (1 mol Acetate = 4 mol H₂)⁴ if inhibition did not
348 occur. Compared to the cumulative H₂ production during the 200, 400 and 800 mg/L runs (21, 35
349 and 49 mL, respectively), 105 mL would have been proportional to the initial substrate
350 concentration. Therefore, acetate is considered to be the direct substrate for exoelectrogenesis in
351 the present study.

352 Other significant fermentation products detected and accumulated were catechol and
353 phenol. These two compounds are both reduced alcohols, with higher electron equivalents (0.24
354 and 0.30 eeq/g) than the five parent compounds (0.18-0.21 eeq/g; Table S1). Therefore, catechol

355 and phenol could be electron sinks of fermentation as opposed to the oxidized products resulting
356 from exoelectrogenesis. Previous studies have reported catechol and phenol as biotransformation
357 products from phenolic compounds under fermentative, anaerobic conditions.^{32, 33} To understand
358 how catechol and phenol were not rapidly transformed, as was the case of the other identified
359 intermediates (i.e., FA, HMF-OH and diHBA), the thermodynamics of putative fermentation
360 reactions were analyzed. It is assumed that catechol and phenol undergo fermentation, instead of
361 exoelectrogenesis, because they have not been reported as suitable electron donors for
362 exoelectrogens. The standard Gibbs free energy ($\Delta G^0'$) values of catechol and phenol
363 fermentation are -69.12 and 8.46 kJ/mol, much more positive than those of FA, HMF-OH and
364 diHBA (-763.66, -215.76, and -257.66 kJ/mol, respectively), as shown in Table S4. Thus,
365 fermentation of phenol and catechol is expected to be less favorable than that of the other
366 detected transformation products.

367 **Anode Microbial Community.** The 16S rRNA gene sequencing analysis revealed that
368 after 9 weeks of MEC operation, the anode microbial community was dominated by
369 *Proteobacteria* phylum, representing 68% of the population (Figure S7). The abundant genera
370 belonging to this phylum were *Desulfovibrio* (39% of the total 16S rRNA gene sequences),
371 *Pleomorphomonas* (11%), and *Geobacter* (5%). The second abundant phylum was *Bacteroidetes*
372 (17%), comprised of *Petrimonas* (10%) and *Dysgonomonas* (7%) genera, followed by
373 *Firmicutes* (12%) with the major genera of *Anaerovorax* (3%), *Phascolarctobacterium* (3%), and
374 *Clostridium XIVa* (3%). Other phyla present with abundance less than 2% were *Synergistetes* and
375 *Actinobacteria*. At the phylum level, the structure of the anode microbial community in the
376 present study was similar to that of the original inoculum.¹³

377 The phylogenetic relationships of the abundant microorganisms (>1% abundance)
378 detected in the MEC bioanode are summarized in Table S5 and the positions of the phylotypes in
379 the phylogenetic tree are shown in Figure 4. The detected species in the bioanode are mainly
380 related to exoelectrogens, putative degraders of the furanic and phenolic compounds, and
381 potential syntrophic partners with exoelectrogens. *Desulfovibrio desulfuricans* is a sulfate-
382 reducing bacterium, which is able to perform exoelectrogenesis through cytochrome c.³⁴ In
383 addition, the major known degraders of furfural and 5-HMF under anaerobic conditions belong
384 to *Desulfovibrio* genus.³⁵ *Geobacter* spp. are well studied exoelectrogens, using acetate and H₂ as
385 primary electron donors.^{28, 36} *Eubacterium limosum* is known to grow on methoxylated aromatic
386 compounds, such as syringic acid and vanillic acid.³⁷ *E. limosum* is also a homoacetogen, which
387 could consume H₂ formed during fermentation and produce acetate for exoelectrogens.³⁸
388 *Pelobacter propionicus* is not known to perform exoelectrogenesis or to use acetate as the
389 electron donor, but is thought to be involved in syntrophic interactions with exoelectrogens
390 fermenting initial substrates to acetate.^{10, 39} *Clostridium populeti* and *Clostridium*
391 *aminobutyricum* are known mixed-acids fermenters, and the latter has been reported in acetate-
392 or glucose-fed MFC anodes.^{40, 41} *Phascolarctobacterium faecium* can convert succinate to
393 propionate.⁴² Therefore, *E. limosum*, *P. propionicus*, *P. faecium* and the *Clostridium* spp. could be
394 syntrophic partners with exoelectrogens by converting the furanic and phenolic compounds or
395 their biotransformation products to readily available substrate (e.g., acetate) for
396 exoelectrogenesis. Several detected species are closely related to bacteria, which have been
397 reported in bioelectrochemical systems, but with unclear functions, such as *Dysgonomonas*
398 spp.,¹³ *Pleomorphomonas oryzae*,⁴³ and the uncultured bacterium clones (JX462549.1 and
399 GU083415.1).^{39, 44} The other related species have been reported in anaerobic sludge digesters,

400 such as *Cloacibacillus evryensis*, an amino-acid degrading bacterium,⁴⁵ and the bacterium
401 isolated from cellulose and xylan-pectin enrichments of cow feces.⁴⁶ These species may have
402 been carried over from the original inoculum, which came from a municipal anaerobic digester.

403 The present study demonstrated the potential of MEC as a waste-to-resource process to
404 convert the problematic components in lignocellulosic hydrolysate and pyrolysate to H₂, which
405 can be used for the hydrogenation of bio-oils, thus eliminating the need to reform natural gas to
406 H₂. The effective conversion of the furanic and phenolic compounds also demonstrates the
407 advantage of MEC as a bioprocess for H₂ production, utilizing compounds which are known
408 inhibitors in the dark fermentation process. However, the H₂ production rate achieved in this
409 study needs to be further improved. The observed inhibition of exoelectrogenesis at 1,200 mg/L
410 must also be addressed. On-going research is investigating continuous-flow MEC operation to
411 find the means to mitigate the observed inhibitory effect during the batch MEC operation as well
412 as increase the H₂ production rate and yield.

413 **ASSOCIATED CONTENT**

414 **Supporting Information**

415 Tables S1–S5, and Figures S1–S7 are available free of charge via the Internet at
416 <http://pubs.acs.org>.

417 **ACKNOWLEDGEMENT**

418 We acknowledge funding for this work from the Department of Energy, BioEnergy
419 Technologies Office under the Carbon, Hydrogen and Separations Efficiency (CHASE) in Bio-
420 Oil Conversion Pathways program, DE-FOA-0000812. The manuscript has been co-authored by
421 UT-Battelle, LLC, under Contract No. DEAC05-00OR22725 with the U.S. Department of
422 Energy.

423

424 **REFERENCES**

425 (1) Monlau, F.; Sambusiti, C.; Barakat, A.; Quéméneur, M.; Trably, E.; Steyer, J. P.; Carrère, H.,
426 Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit
427 anaerobic mixed cultures? A comprehensive review. *Biotechnology Advances* **2014**, *32*, (5), 934-
428 951.

429 (2) Klinke, H. B.; Thomsen, A. B.; Ahring, B. K., Inhibition of ethanol-producing yeast and
430 bacteria by degradation products produced during pre-treatment of biomass. *Applied
431 Microbiology Biotechnology* **2004**, *66*, (1), 10-26.

432 (3) Piotrowski, J. S.; Zhang, Y.; Sato, T.; Ong, I.; Keating, D.; Bates, D.; Landick, R., Death by a
433 thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors.
434 *Frontiers in Microbiology* **2014**, *5*, 1-8.

435 (4) Liu, H.; Grot, S.; Logan, B. E., Electrochemically assisted microbial production of hydrogen
436 from acetate. *Environmental Science & Technology* **2005**, *39*, (11), 4317-4320.

437 (5) Quéméneur, M.; Hamelin, J.; Barakat, A.; Steyer, J.-P.; Carrère, H.; Trably, E., Inhibition of
438 fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures.
439 *International Journal of Hydrogen Energy* **2012**, *37*, (4), 3150-3159.

440 (6) Kelly, P. T.; He, Z., Nutrients removal and recovery in bioelectrochemical systems: A
441 review. *Bioresource Technology* **2014**, *153*, 351-360.

442 (7) Zhang, Y.; Angelidaki, I., Microbial electrolysis cells turning to be versatile technology:
443 recent advances and future challenges. *Water Research* **2014**, *56*, 11-25.

444 (8) Li, W.-W.; Yu, H.-Q.; He, Z., Towards sustainable wastewater treatment by using microbial
445 fuel cells-centered technologies. *Energy & Environmental Science* **2014**, *7*, (3), 911-924.

446 (9) Freguia, S.; Rabaey, K.; Yuan, Z.; Keller, J., Syntrophic processes drive the conversion of
447 glucose in microbial fuel cell anodes. *Environmental Science & Technology* **2008**, *42*, (21),
448 7937-7943.

449 (10) Parameswaran, P.; Zhang, H.; Torres, C. I.; Rittmann, B. E.; Krajmalnik-Brown, R.,
450 Microbial community structure in a biofilm anode fed with a fermentable substrate: The
451 significance of hydrogen scavengers. *Biotechnology and Bioengineering* **2010**, *105*, (1), 69-78.

452 (11) Catal, T.; Fan, Y.; Li, K.; Bermek, H.; Liu, H., Effects of furan derivatives and phenolic
453 compounds on electricity generation in microbial fuel cells. *Journal of Power Sources* **2008**, *180*,
454 (1), 162-166.

455 (12) Borole, A. P.; Hamilton, C. Y.; Schell, D. J., Conversion of residual organics in corn stover-
456 derived biorefinery stream to bioenergy via a microbial fuel cell. *Environmental Science &*
457 *Technology* **2012**, *47*, (1), 642-648.

458 (13) Borole, A.; Mielenz, J.; Vishnivetskaya, T.; Hamilton, C., Controlling accumulation of
459 fermentation inhibitors in biorefinery recycle water using microbial fuel cells. *Biotechnology for*
460 *Biofuels* **2009**, *2*, (1), 1-14.

461 (14) Liu, H.; Logan, B. E., Electricity generation using an air-cathode single chamber microbial
462 fuel cell in the presence and absence of a proton exchange membrane. *Environmental Science &*
463 *Technology* **2004**, *38*, (14), 4040-4046.

464 (15) Rice, E. W.; Eaton, A. D.; Baird, R. B., *Standard Methods for the Examination of Water*
465 *and Wastewater* 22nd ed.; APHA, AWWA, WEF: Washington DC, USA, 2012.

466 (16) Okutman Tas, D.; Pavlostathis, S. G., Effect of nitrate reduction on the microbial reductive
467 transformation of pentachloronitrobenzene. *Environmental Science & Technology* **2008**, *42*, (9),
468 3234-3240.

469 (17) Logan, B. E.; Regan, J. M., Microbial fuel cells—challenges and applications.

470 *Environmental Science & Technology* **2006**, *40*, (17), 5172-5180.

471 (18) Logan, B. E., Essential data and techniques for conducting microbial fuel cell and other

472 types of bioelectrochemical system experiments. *ChemSusChem* **2012**, *5*, (6), 988-994.

473 (19) Liu, Z.; Zhang, C.; Wang, L.; He, J.; Li, B.; Zhang, Y.; Xing, X.-H., Effects of furan

474 derivatives on biohydrogen fermentation from wet steam-exploded cornstalk and its microbial

475 community. *Bioresource Technology* **2015**, *175*, 152-159.

476 (20) Lee, H.-S.; Vermaas, W. F. J.; Rittmann, B. E., Biological hydrogen production: prospects

477 and challenges. *Trends in Biotechnology* **2010**, *28*, (5), 262-271.

478 (21) Ren, N.; Wang, A.; Cao, G.; Xu, J.; Gao, L., Bioconversion of lignocellulosic biomass to

479 hydrogen: Potential and challenges. *Biotechnology Advances* **2009**, *27*, (6), 1051-1060.

480 (22) Cusick, R. D.; Kiely, P. D.; Logan, B. E., A monetary comparison of energy recovered from

481 microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters.

482 *International Journal of Hydrogen Energy* **2010**, *35*, (17), 8855-8861.

483 (23) Escapa, A.; Gil-Carrera, L.; García, V.; Morán, A., Performance of a continuous flow

484 microbial electrolysis cell (MEC) fed with domestic wastewater. *Bioresource Technology* **2012**,

485 *117*, 55-62.

486 (24) Ditzig, J.; Liu, H.; Logan, B. E., Production of hydrogen from domestic wastewater using a

487 bioelectrochemically assisted microbial reactor (BEAMR). *International Journal of Hydrogen*

488 *Energy* **2007**, *32*, (13), 2296-2304.

489 (25) Sander, R., Compilation of Henry's law constants, version 3.99. *Atmos. Chem. Phys.*

490 *Discuss. 2014*, *14*, (21), 29615-30521.

491 (26) Lee, H.-S.; Torres, C. I.; Parameswaran, P.; Rittmann, B. E., Fate of H₂ in an upflow single-
492 chamber microbial electrolysis cell using a metal-catalyst-free cathode. *Environmental Science
493 & Technology* **2009**, *43*, (20), 7971-7976.

494 (27) Rozendal, R. A.; Jeremiassse, A. W.; Hamelers, H. V. M.; Buisman, C. J. N., Hydrogen
495 production with a microbial biocathode. *Environmental Science & Technology* **2007**, *42*, (2),
496 629-634.

497 (28) Caccavo, F.; Lonergan, D. J.; Lovley, D. R.; Davis, M.; Stolz, J. F.; McInerney, M. J.,
498 *Geobacter sulfurreducens* sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-
499 reducing microorganism. *Applied and Environmental Microbiology* **1994**, *60*, (10), 3752-3759.

500 (29) Kiely, P. D.; Regan, J. M.; Logan, B. E., The electric picnic: synergistic requirements for
501 exoelectrogenic microbial communities. *Current Opinion in Biotechnology* **2011**, *22*, (3), 378-
502 385.

503 (30) Parpot, P.; Bettencourt, A. P.; Chamoulaud, G.; Kokoh, K. B.; Belgsir, E. M.,
504 Electrochemical investigations of the oxidation–reduction of furfural in aqueous medium:
505 Application to electrosynthesis. *Electrochimica Acta* **2004**, *49*, (3), 397-403.

506 (31) Vuuyuru, K. R.; Strasser, P., Oxidation of biomass derived 5-hydroxymethylfurfural using
507 heterogeneous and electrochemical catalysis. *Catalysis Today* **2012**, *195*, (1), 144-154.

508 (32) Evans, W. C.; Fuchs, G., Anaerobic degradation of aromatic compounds. *Annual Review of
509 Microbiology* **1988**, *42*, (1), 289-317.

510 (33) Phelps, C. D.; Young, L. Y., Microbial metabolism of the plant phenolic compounds ferulic
511 and syringic acids under three anaerobic conditions. *Microbial Ecology* **1997**, *33*, (3), 206-215.

512 (34) Kang, C. S.; Eaktasang, N.; Kwon, D. Y.; Kim, H. S., Enhanced current production by
513 *Desulfovibrio desulfuricans* biofilm in a mediator-less microbial fuel cell. *Bioresource*
514 *Technology* **2014**, *165*, 27-30.

515 (35) Wierckx, N.; Koopman, F.; Ruijssemaars, H.; Winde, J., Microbial degradation of furanic
516 compounds: biochemistry, genetics, and impact. *Applied Microbiology Biotechnology* **2011**, *92*,
517 (6), 1095-1105.

518 (36) Sun, D.; Wang, A.; Cheng, S.; Yates, M.; Logan, B. E., *Geobacter anodireducens* sp. nov.,
519 an exoelectrogenic microbe in bioelectrochemical systems. *International Journal of Systematic*
520 *and Evolutionary Microbiology* **2014**, *64*, (Pt 10), 3485-3491.

521 (37) Sharak Gentner, B. R.; Bryant, M. P., Additional characteristics of one-carbon-compound
522 utilization by *Eubacterium limosum* and *Acetobacterium woodii*. *Applied and Environmental*
523 *Microbiology* **1987**, *53*, (3), 471-476.

524 (38) Gentner, B. R.; Davis, C. L.; Bryant, M. P., Features of rumen and sewage sludge strains
525 of *Eubacterium limosum*, a methanol- and H₂-CO₂-utilizing species. *Applied and Environmental*
526 *Microbiology* **1981**, *42*, (1), 12-19.

527 (39) Kiely, P. D.; Rader, G.; Regan, J. M.; Logan, B. E., Long-term cathode performance and the
528 microbial communities that develop in microbial fuel cells fed different fermentation
529 endproducts. *Bioresource Technology* **2011**, *102*, (1), 361-366.

530 (40) Sleat, R.; Mah, R. A., *Clostridium populeti* sp. nov., a cellulolytic species from a woody-
531 biomass digestor. *International Journal of Systematic Bacteriology* **1985**, *35*, (2), 160-163.

532 (41) Xing, D.; Cheng, S.; Regan, J. M.; Logan, B. E., Change in microbial communities in
533 acetate- and glucose-fed microbial fuel cells in the presence of light. *Biosensors and*
534 *Bioelectronics* **2009**, *25*, (1), 105-111.

535 (42) Del Dot, T.; Osawa, R.; Stackebrandt, E., *Phascolarctobacterium faecium* gen. nov, spec.
536 nov., a novel taxon of the *Sporomusa* group of bacteria. *Systematic and Applied Microbiology*
537 **1993**, *16*, (3), 380-384.

538 (43) Yamamuro, A.; Kouzuma, A.; Abe, T.; Watanabe, K., Metagenomic analyses reveal the
539 involvement of syntrophic consortia in methanol/electricity conversion in microbial fuel cells.
540 *PLoS ONE* **2014**, *9*, (5), e98425.

541 (44) Kobayashi, H.; Saito, N.; Fu, Q.; Kawaguchi, H.; Vilcaez, J.; Wakayama, T.; Maeda, H.;
542 Sato, K., Bio-electrochemical property and phylogenetic diversity of microbial communities
543 associated with bioelectrodes of an electromethanogenic reactor. *Journal of Bioscience and*
544 *Bioengineering* **2013**, *116*, (1), 114-117.

545 (45) Ganesan, A.; Chaussonnerie, S.; Tarrade, A.; Dauga, C.; Bouchez, T.; Pelletier, E.; Le
546 Paslier, D.; Sghir, A., *Cloacibacillus evryensis* gen. nov., sp. nov., a novel asaccharolytic,
547 mesophilic, amino-acid-degrading bacterium within the phylum ‘*Synergistetes*’, isolated from an
548 anaerobic sludge digester. *International Journal of Systematic and Evolutionary Microbiology*
549 **2008**, *58*, (9), 2003-2012.

550 (46) Ziemer, C. J., Newly cultured bacteria with broad diversity isolated from eight-week
551 continuous culture enrichments of cow feces on complex polysaccharides. *Applied and*
552 *Environmental Microbiology* **2014**, *80*, (2), 574-585.

553

Table 1. Efficiency parameters of the MEC fed with the mixture of the five compounds.

Parameter	Initial substrate concentration (mg/L)		
	200	400	800
H ₂ yield			
(mol/mol) ^a	2.9	2.5	1.7
(%) ^b	38	42	26
sCOD removal (%)	49	49	61
CE (%)	58	69	44
H ₂ production rate (L/L-d) ^c	0.07	0.10	0.10

554

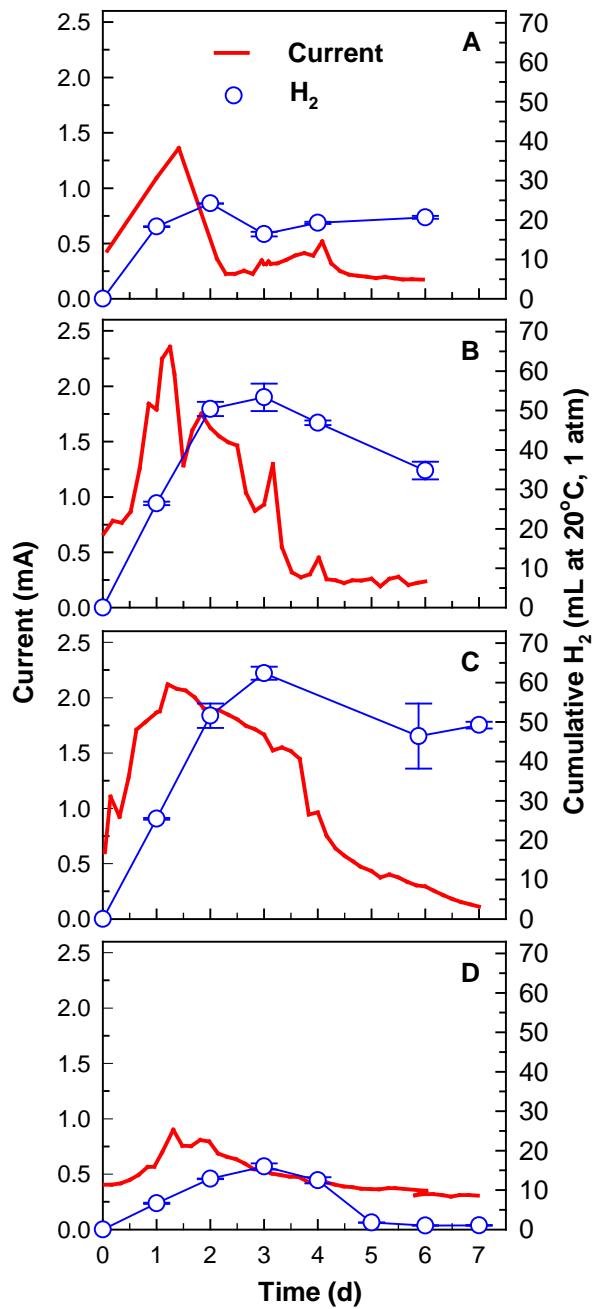
555 ^a Moles of H₂ collected per mole of the compound mixture transformed

556

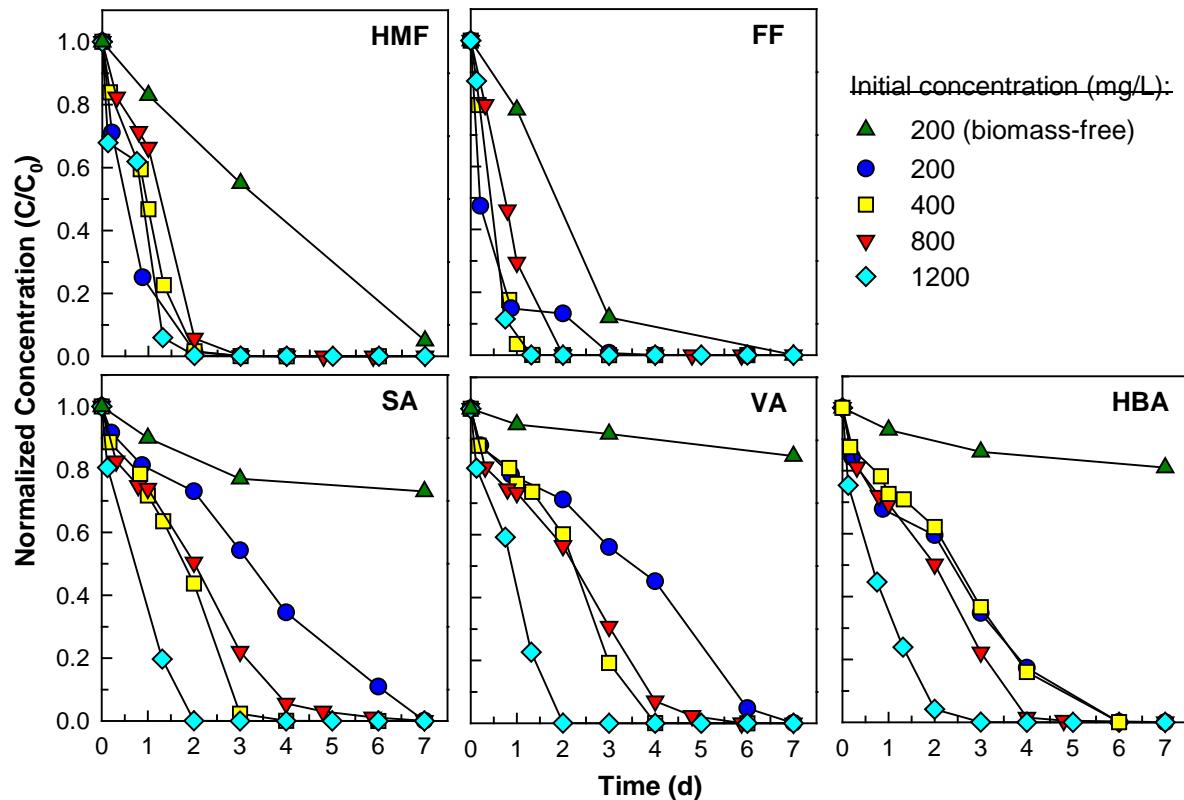
^b H₂ COD per COD removed during each batch run

557

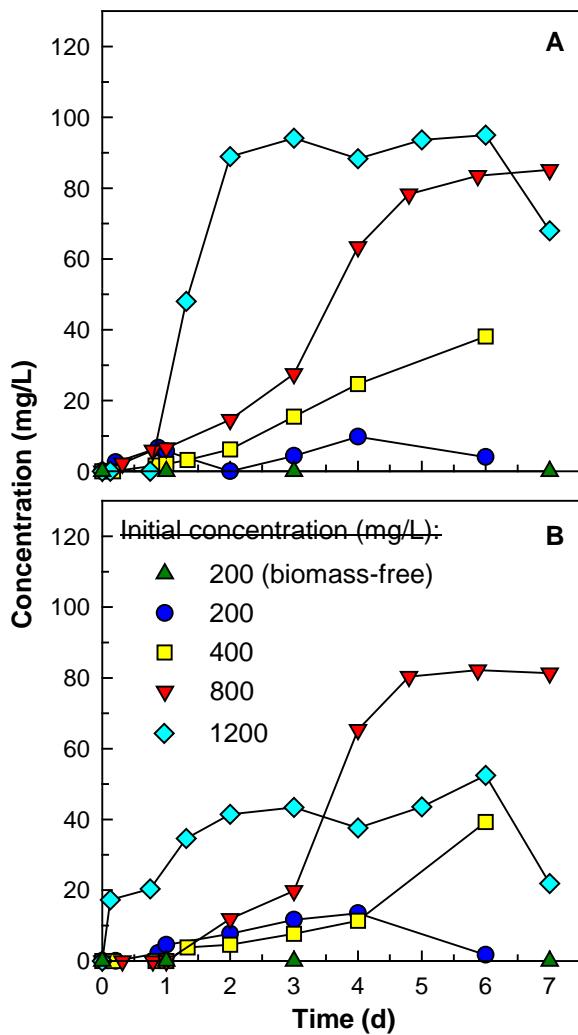
^c Maximum production rate, observed on day 1 during each feeding cycle (20°C and 1
558 atm) normalized to the empty bed volume of the anode chamber (0.25 L)


559 **LIST OF FIGURES**

560 **Figure 1.** Current and cumulative H₂ production during four feeding cycles conducted at
561 increased initial substrate concentrations in the MEC anode (A, 200 mg/L; B, 400 mg/L; C, 800
562 mg/L; D, 1,200 mg/L). Error bars represent mean values \pm one standard deviation, $n = 3$.


563 **Figure 2.** Normalized concentration profiles of the five compounds fed to the MEC anode at
564 various initial concentrations (200 to 1,200 mg/L total concentration).

565 **Figure 3.** Accumulation of catechol (A) and phenol (B) during the four feeding cycles at
566 increased initial substrate concentrations in the MEC anode (200-1,200 mg/L).


567 **Figure 4.** Phylogenetic tree of the dominant bacteria identified in the MEC anode. Fraction (%)
568 of bacterial population and GenBank accession numbers shown in parentheses. *Escherichia coli*
569 K12 was used as the outgroup.

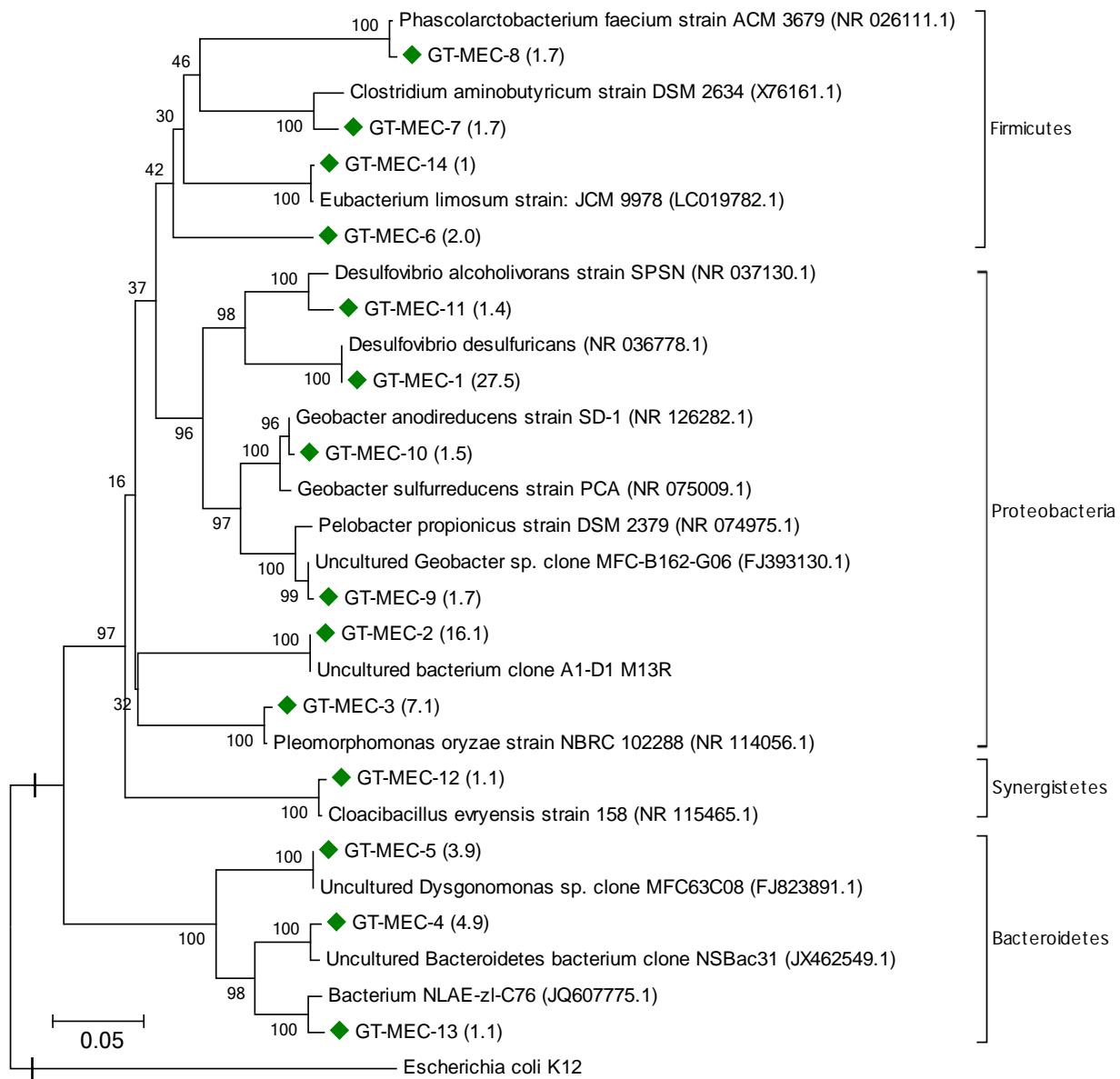

Figure 1. Current and cumulative H_2 production during four feeding cycles conducted at increased initial substrate concentrations in the MEC anode (A, 200 mg/L; B, 400 mg/L; C, 800 mg/L; D, 1,200 mg/L). Error bars represent mean values \pm one standard deviation, $n = 3$.

Figure 2. Normalized concentration profiles of the five compounds fed to the MEC anode at various initial concentrations (200 to 1,200 mg/L total concentration).

Figure 3. Accumulation of catechol (A) and phenol (B) during the four feeding cycles at increased initial substrate concentrations in the MEC anode (200-1,200 mg/L).

