DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America

Abstract

This study examines the changes of landfalling atmospheric rivers (ARs) over the west coast of North America in response to future warming using model outputs from the Coupled Model Intercomparison Project phase 5 (CMIP5). The result reveals a strikingly large magnitude of increase of AR days by the end of the 21st century in the RCP8.5 climate change scenario, with fractional increases ranging between ~50% and 600%, depending on the seasons and the landfall locations. These increases are predominantly controlled by the super-Clausius-Clapeyron rate of increase of atmospheric water vapor with warming, while changes of winds that transport moisture in the ARs, or dynamical effect, mostly counter the thermodynamical effect of increasing water vapor, limiting the increase of AR events in the future. Here, the consistent negative effect of wind changes on AR days during spring and fall can be further linked to the robust poleward shift of the subtropical jet in the North Pacific basin.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1224503
Alternate Identifier(s):
OSTI ID: 1402358
Report Number(s):
PNNL-SA-110116
Journal ID: ISSN 0094-8276; KP1703010
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 42; Journal Issue: 17; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; atmospheric rivers; climate change; thermodynamic effects; dynamical effects; increased moisture

Citation Formats

Gao, Yang, Lu, Jian, Leung, L. Ruby, Yang, Qing, Hagos, Samson M., and Qian, Yun. Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. United States: N. p., 2015. Web. doi:10.1002/2015GL065435.
Gao, Yang, Lu, Jian, Leung, L. Ruby, Yang, Qing, Hagos, Samson M., & Qian, Yun. Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. United States. https://doi.org/10.1002/2015GL065435
Gao, Yang, Lu, Jian, Leung, L. Ruby, Yang, Qing, Hagos, Samson M., and Qian, Yun. Mon . "Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America". United States. https://doi.org/10.1002/2015GL065435. https://www.osti.gov/servlets/purl/1224503.
@article{osti_1224503,
title = {Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America},
author = {Gao, Yang and Lu, Jian and Leung, L. Ruby and Yang, Qing and Hagos, Samson M. and Qian, Yun},
abstractNote = {This study examines the changes of landfalling atmospheric rivers (ARs) over the west coast of North America in response to future warming using model outputs from the Coupled Model Intercomparison Project phase 5 (CMIP5). The result reveals a strikingly large magnitude of increase of AR days by the end of the 21st century in the RCP8.5 climate change scenario, with fractional increases ranging between ~50% and 600%, depending on the seasons and the landfall locations. These increases are predominantly controlled by the super-Clausius-Clapeyron rate of increase of atmospheric water vapor with warming, while changes of winds that transport moisture in the ARs, or dynamical effect, mostly counter the thermodynamical effect of increasing water vapor, limiting the increase of AR events in the future. Here, the consistent negative effect of wind changes on AR days during spring and fall can be further linked to the robust poleward shift of the subtropical jet in the North Pacific basin.},
doi = {10.1002/2015GL065435},
journal = {Geophysical Research Letters},
number = 17,
volume = 42,
place = {United States},
year = {Mon Aug 24 00:00:00 EDT 2015},
month = {Mon Aug 24 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 123 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Historical and National Perspectives on Extreme West Coast Precipitation Associated with Atmospheric Rivers during December 2010
journal, June 2012

  • Ralph, F. M.; Dettinger, M. D.
  • Bulletin of the American Meteorological Society, Vol. 93, Issue 6
  • DOI: 10.1175/BAMS-D-11-00188.1

Satellite and CALJET Aircraft Observations of Atmospheric Rivers over the Eastern North Pacific Ocean during the Winter of 1997/98
journal, July 2004


CalWater 2015 targets atmospheric rivers off California
journal, January 2015


Flooding in Western Washington: The Connection to Atmospheric Rivers
journal, December 2011

  • Neiman, Paul J.; Schick, Lawrence J.; Ralph, F. Martin
  • Journal of Hydrometeorology, Vol. 12, Issue 6
  • DOI: 10.1175/2011JHM1358.1

A Diagnosis of the Seasonally and Longitudinally Varying Midlatitude Circulation Response to Global Warming*
journal, July 2014

  • Simpson, Isla R.; Shaw, Tiffany A.; Seager, Richard
  • Journal of the Atmospheric Sciences, Vol. 71, Issue 7
  • DOI: 10.1175/JAS-D-13-0325.1

Changes in Winter Atmospheric Rivers along the North American West Coast in CMIP5 Climate Models
journal, February 2015

  • Warner, Michael D.; Mass, Clifford F.; Salathé, Eric P.
  • Journal of Hydrometeorology, Vol. 16, Issue 1
  • DOI: 10.1175/JHM-D-14-0080.1

Future changes in atmospheric rivers and their implications for winter flooding in Britain
journal, July 2013

  • Lavers, David A.; Allan, Richard P.; Villarini, Gabriele
  • Environmental Research Letters, Vol. 8, Issue 3
  • DOI: 10.1088/1748-9326/8/3/034010

Resolution and Dynamical Core Dependence of Atmospheric River Frequency in Global Model Simulations
journal, April 2015


Intermediate frequency atmospheric disturbances: A dynamical bridge connecting western U.S. extreme precipitation with East Asian cold surges: Atmospheric Rivers and IF disturbances
journal, April 2014

  • Jiang, Tianyu; Evans, Katherine J.; Deng, Yi
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 7
  • DOI: 10.1002/2013JD021209

The next generation of scenarios for climate change research and assessment
journal, February 2010

  • Moss, Richard H.; Edmonds, Jae A.; Hibbard, Kathy A.
  • Nature, Vol. 463, Issue 7282
  • DOI: 10.1038/nature08823

Climatological Characteristics of Atmospheric Rivers and Their Inland Penetration over the Western United States
journal, February 2014

  • Rutz, Jonathan J.; Steenburgh, W. James; Ralph, F. Martin
  • Monthly Weather Review, Vol. 142, Issue 2
  • DOI: 10.1175/MWR-D-13-00168.1

The representative concentration pathways: an overview
journal, August 2011


Classification of atmospheric river events on the U.S. West Coast using a trajectory model: Classification of ARs in the western US
journal, April 2015

  • Ryoo, Ju-Mee; Waliser, Duane E.; Waugh, Darryn W.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 8
  • DOI: 10.1002/2014JD022023

A Proposed Algorithm for Moisture Fluxes from Atmospheric Rivers
journal, March 1998


How Do Atmospheric Rivers Form?
journal, August 2015

  • Dacre, H. F.; Clark, P. A.; Martinez-Alvarado, O.
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 8
  • DOI: 10.1175/BAMS-D-14-00031.1

Description and Validation of an Automated Objective Technique for Identification and Characterization of the Integrated Water Vapor Signature of Atmospheric Rivers
journal, April 2013

  • Wick, Gary A.; Neiman, Paul J.; Ralph, F. Martin
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, Issue 4
  • DOI: 10.1109/TGRS.2012.2211024

California Winter Precipitation Change under Global Warming in the Coupled Model Intercomparison Project Phase 5 Ensemble
journal, September 2013

  • Neelin, J. David; Langenbrunner, Baird; Meyerson, Joyce E.
  • Journal of Climate, Vol. 26, Issue 17
  • DOI: 10.1175/JCLI-D-12-00514.1

Response of the Midlatitude Jets, and of Their Variability, to Increased Greenhouse Gases in the CMIP5 Models
journal, September 2013


Robust spring drying in the southwestern U.S. and seasonal migration of wet/dry patterns in a warmer climate: FUTURE WATER AVAILABILITY CHANGES
journal, March 2014

  • Gao, Yang; Leung, L. Ruby; Lu, Jian
  • Geophysical Research Letters, Vol. 41, Issue 5
  • DOI: 10.1002/2014GL059562

Expansion of the Hadley cell under global warming
journal, January 2007

  • Lu, Jian; Vecchi, Gabriel A.; Reichler, Thomas
  • Geophysical Research Letters, Vol. 34, Issue 6
  • DOI: 10.1029/2006GL028443

Thermodynamic and Dynamic Mechanisms for Large-Scale Changes in the Hydrological Cycle in Response to Global Warming
journal, September 2010

  • Seager, Richard; Naik, Naomi; Vecchi, Gabriel A.
  • Journal of Climate, Vol. 23, Issue 17
  • DOI: 10.1175/2010JCLI3655.1

Robust Responses of the Hydrological Cycle to Global Warming
journal, November 2006

  • Held, Isaac M.; Soden, Brian J.
  • Journal of Climate, Vol. 19, Issue 21
  • DOI: 10.1175/JCLI3990.1

Observed Impacts of Duration and Seasonality of Atmospheric-River Landfalls on Soil Moisture and Runoff in Coastal Northern California
journal, April 2013

  • Ralph, F. M.; Coleman, T.; Neiman, P. J.
  • Journal of Hydrometeorology, Vol. 14, Issue 2
  • DOI: 10.1175/JHM-D-12-076.1

The nexus between atmospheric rivers and extreme precipitation across Europe: ARS AND EXTREME EUROPEAN PRECIPITATION
journal, June 2013

  • Lavers, David A.; Villarini, Gabriele
  • Geophysical Research Letters, Vol. 40, Issue 12
  • DOI: 10.1002/grl.50636

The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation: ARS AND BRITISH WINTER FLOODS
journal, October 2012

  • Lavers, David A.; Villarini, Gabriele; Allan, Richard P.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D20
  • DOI: 10.1029/2012JD018027

Flooding on California's Russian River: Role of atmospheric rivers
journal, January 2006

  • Ralph, F. Martin; Neiman, Paul J.; Wick, Gary A.
  • Geophysical Research Letters, Vol. 33, Issue 13
  • DOI: 10.1029/2006GL026689

Atmospheric circulation as a source of uncertainty in climate change projections
journal, September 2014

  • Shepherd, Theodore G.
  • Nature Geoscience, Vol. 7, Issue 10
  • DOI: 10.1038/ngeo2253

Winter floods in Britain are connected to atmospheric rivers: UK WINTER FLOODS AND ATMOSPHERIC RIVERS
journal, December 2011

  • Lavers, David A.; Allan, Richard P.; Wood, Eric F.
  • Geophysical Research Letters, Vol. 38, Issue 23
  • DOI: 10.1029/2011GL049783

Response of the Midlatitude Jets, and of Their Variability, to Increased Greenhouse Gases in the CMIP5 Models
text, January 2013

  • Barnes, Elizabeth A.; Polvani, Lorenzo M.
  • Columbia University
  • DOI: 10.7916/d8gq77x8

A Diagnosis of the Seasonally and Longitudinally Varying Midlatitude Circulation Response to Global Warming
text, January 2014

  • Simpson, Isla R.; Shaw, Tiffany Ann; Seager, Richard
  • Columbia University
  • DOI: 10.7916/d8-tcg7-dp06

Thermodynamic and Dynamic Mechanisms for Large-Scale Changes in the Hydrological Cycle in Response to Global Warming
text, January 2010

  • Seager, Richard; Naik, Naomi H.; Vecchi, Gabriel A.
  • Columbia University
  • DOI: 10.7916/d87w6nqq

Works referencing / citing this record:

Atmospheric river landfall-latitude changes in future climate simulations: FUTURE CHANGES TO AR LANDFALL LOCATION
journal, August 2016

  • Shields, Christine A.; Kiehl, Jeffrey T.
  • Geophysical Research Letters, Vol. 43, Issue 16
  • DOI: 10.1002/2016gl070470

Flood Runoff in Relation to Water Vapor Transport by Atmospheric Rivers Over the Western United States, 1949–2015
journal, November 2017

  • Konrad, Christopher P.; Dettinger, Michael D.
  • Geophysical Research Letters, Vol. 44, Issue 22
  • DOI: 10.1002/2017gl075399

Climate and rivers
journal, August 2019


Adapting Urban Water Systems to Manage Scarcity in the 21st Century: The Case of Los Angeles
journal, November 2018

  • Pincetl, Stephanie; Porse, Erik; Mika, Kathryn B.
  • Environmental Management, Vol. 63, Issue 3
  • DOI: 10.1007/s00267-018-1118-2

North American extreme precipitation events and related large-scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends
journal, September 2019


Atmospheric Rivers Increase Future Flood Risk in Western Canada's Largest Pacific River
journal, February 2019

  • Curry, C. L.; Islam, S. U.; Zwiers, F. W.
  • Geophysical Research Letters, Vol. 46, Issue 3
  • DOI: 10.1029/2018gl080720

Freezing Rain Events Related to Atmospheric Rivers and Associated Mechanisms for Western North America
journal, September 2019

  • Liang, J.; Sushama, L.
  • Geophysical Research Letters, Vol. 46, Issue 17-18
  • DOI: 10.1029/2019gl084647

Precipitation regime change in Western North America: The role of Atmospheric Rivers
journal, July 2019

  • Gershunov, Alexander; Shulgina, Tamara; Clemesha, Rachel E. S.
  • Scientific Reports, Vol. 9, Issue 1
  • DOI: 10.1038/s41598-019-46169-w

Enhanced hydrological extremes in the western United States under global warming through the lens of water vapor wave activity
journal, April 2018


Ocean warming pattern effects on future changes in East Asian atmospheric rivers
journal, May 2019

  • Kamae, Youichi; Mei, Wei; Xie, Shang-Ping
  • Environmental Research Letters, Vol. 14, Issue 5
  • DOI: 10.1088/1748-9326/ab128a

Trends in atmospheric patterns conducive to seasonal precipitation and temperature extremes in California
journal, April 2016

  • Swain, Daniel L.; Horton, Daniel E.; Singh, Deepti
  • Science Advances, Vol. 2, Issue 4
  • DOI: 10.1126/sciadv.1501344

Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem
journal, July 2019


Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design
journal, January 2018

  • Shields, Christine A.; Rutz, Jonathan J.; Leung, Lai-Yung
  • Geoscientific Model Development, Vol. 11, Issue 6
  • DOI: 10.5194/gmd-11-2455-2018

High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6
journal, January 2016

  • Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi
  • Geoscientific Model Development, Vol. 9, Issue 11
  • DOI: 10.5194/gmd-9-4185-2016