DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent

Abstract

Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m²/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burn-off of sucrose caramel over a wider temperature range. Thus, the obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.

Authors:
 [1];  [1];  [1];  [1];  [1];  [2];  [2];  [2];  [1]
  1. Oregon State Univ., Corvallis, OR (United States)
  2. Sharp Laboratories, Inc., Camas, WA (United States)
Publication Date:
Research Org.:
Oregon State Univ., Corvallis, OR (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1224082
Grant/Contract Number:  
AR0000297
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 7; Journal Issue: 4; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; hard carbon; Na-ion batteries; anode; low surface area; high first-cycle Coulombic efficiency

Citation Formats

Luo, Wei, Bommier, Clement, Jian, Zelang, Li, Xin, Carter, Rich, Vail, Sean, Lu, Yuhao, Lee, Jong -Jan, and Ji, Xiulei. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. United States: N. p., 2015. Web. doi:10.1021/am507679x.
Luo, Wei, Bommier, Clement, Jian, Zelang, Li, Xin, Carter, Rich, Vail, Sean, Lu, Yuhao, Lee, Jong -Jan, & Ji, Xiulei. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. United States. https://doi.org/10.1021/am507679x
Luo, Wei, Bommier, Clement, Jian, Zelang, Li, Xin, Carter, Rich, Vail, Sean, Lu, Yuhao, Lee, Jong -Jan, and Ji, Xiulei. Wed . "Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent". United States. https://doi.org/10.1021/am507679x. https://www.osti.gov/servlets/purl/1224082.
@article{osti_1224082,
title = {Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent},
author = {Luo, Wei and Bommier, Clement and Jian, Zelang and Li, Xin and Carter, Rich and Vail, Sean and Lu, Yuhao and Lee, Jong -Jan and Ji, Xiulei},
abstractNote = {Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m²/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burn-off of sucrose caramel over a wider temperature range. Thus, the obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.},
doi = {10.1021/am507679x},
journal = {ACS Applied Materials and Interfaces},
number = 4,
volume = 7,
place = {United States},
year = {Wed Feb 04 00:00:00 EST 2015},
month = {Wed Feb 04 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 187 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Where Do Batteries End and Supercapacitors Begin?
journal, March 2014


Molybdenum oxide nanowires: synthesis & properties
journal, July 2011


Development and challenges of LiFePO 4 cathode material for lithium-ion batteries
journal, January 2011

  • Yuan, Li-Xia; Wang, Zhao-Hui; Zhang, Wu-Xing
  • Energy Environ. Sci., Vol. 4, Issue 2
  • DOI: 10.1039/C0EE00029A

Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium
journal, December 2009


Sodium and sodium-ion energy storage batteries
journal, August 2012

  • Ellis, Brian L.; Nazar, Linda F.
  • Current Opinion in Solid State and Materials Science, Vol. 16, Issue 4, p. 168-177
  • DOI: 10.1016/j.cossms.2012.04.002

Sodium-Ion Batteries
journal, May 2012

  • Slater, Michael D.; Kim, Donghan; Lee, Eungje
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 947-958
  • DOI: 10.1002/adfm.201200691

Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
journal, January 2012

  • Palomares, Verónica; Serras, Paula; Villaluenga, Irune
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee02781j

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

Charge carriers in rechargeable batteries: Na ions vs. Li ions
journal, January 2013

  • Hong, Sung You; Kim, Youngjin; Park, Yuwon
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40811f

High-Capacity Anode Materials for Sodium-Ion Batteries
journal, August 2014

  • Kim, Youngjin; Ha, Kwang-Ho; Oh, Seung M.
  • Chemistry - A European Journal, Vol. 20, Issue 38
  • DOI: 10.1002/chem.201402511

Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life
journal, June 2011

  • Cao, Yuliang; Xiao, Lifen; Wang, Wei
  • Advanced Materials, Vol. 23, Issue 28, p. 3155-3160
  • DOI: 10.1002/adma.201100904

P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries
journal, April 2012

  • Yabuuchi, Naoaki; Kajiyama, Masataka; Iwatate, Junichi
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3309

Porous Amorphous FePO 4 Nanoparticles Connected by Single-Wall Carbon Nanotubes for Sodium Ion Battery Cathodes
journal, October 2012

  • Liu, Yonglin; Xu, Yunhua; Han, Xiaogang
  • Nano Letters, Vol. 12, Issue 11
  • DOI: 10.1021/nl302819f

Free-Standing Na 2/3 Fe 1/2 Mn 1/2 O 2 @Graphene Film for a Sodium-Ion Battery Cathode
journal, March 2014

  • Zhu, Hongli; Lee, Kang Taek; Hitz, Gregory Thomas
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 6
  • DOI: 10.1021/am405970s

A lamellar compound of sodium and graphite
journal, May 1959


Electrochemical intercalation of sodium in graphite
journal, September 1988


First-principles study of alkali metal-graphite intercalation compounds
journal, December 2013


Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena
journal, July 2014

  • Jache, Birte; Adelhelm, Philipp
  • Angewandte Chemie International Edition, Vol. 53, Issue 38
  • DOI: 10.1002/anie.201403734

High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries
journal, January 2012

  • Qian, Jiangfeng; Chen, Yao; Wu, Lin
  • Chemical Communications, Vol. 48, Issue 56
  • DOI: 10.1039/c2cc32730a

Electrospun Sb/C Fibers for a Stable and Fast Sodium-Ion Battery Anode
journal, June 2013

  • Zhu, Yujie; Han, Xiaogang; Xu, Yunhua
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn4025674

Tin-Coated Viral Nanoforests as Sodium-Ion Battery Anodes
journal, March 2013

  • Liu, Yihang; Xu, Yunhua; Zhu, Yujie
  • ACS Nano, Vol. 7, Issue 4
  • DOI: 10.1021/nn400601y

Anodes for Sodium Ion Batteries Based on Tin–Germanium–Antimony Alloys
journal, April 2014

  • Farbod, Behdokht; Cui, Kai; Kalisvaart, W. Peter
  • ACS Nano, Vol. 8, Issue 5
  • DOI: 10.1021/nn4063598

Tin Anode for Sodium-Ion Batteries Using Natural Wood Fiber as a Mechanical Buffer and Electrolyte Reservoir
journal, June 2013

  • Zhu, Hongli; Jia, Zheng; Chen, Yuchen
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl400998t

Amorphous TiO 2 Nanotube Anode for Rechargeable Sodium Ion Batteries
journal, September 2011

  • Xiong, Hui; Slater, Michael D.; Balasubramanian, Mahalingam
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 20
  • DOI: 10.1021/jz2012066

Fe 2 O 3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries
journal, January 2014

  • Jian, Zelang; Zhao, Bin; Liu, Pan
  • Chem. Commun., Vol. 50, Issue 10
  • DOI: 10.1039/C3CC47977C

SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance
journal, January 2013

  • Su, Dawei; Ahn, Hyo-Jun; Wang, Guoxiu
  • Chemical Communications, Vol. 49, Issue 30
  • DOI: 10.1039/c3cc40448j

High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries
journal, December 2013

  • Yu, Denis Y. W.; Prikhodchenko, Petr V.; Mason, Chad W.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3922

MoS 2 /Graphene Composite Paper for Sodium-Ion Battery Electrodes
journal, January 2014

  • David, Lamuel; Bhandavat, Romil; Singh, Gurpreet
  • ACS Nano, Vol. 8, Issue 2
  • DOI: 10.1021/nn406156b

Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon
journal, June 1993


Mechanisms for Lithium Insertion in Carbonaceous Materials
journal, October 1995


Electrochemical Insertion of Sodium into Carbon
journal, January 1993

  • Doeff, Marca M.
  • Journal of The Electrochemical Society, Vol. 140, Issue 12
  • DOI: 10.1149/1.2221153

High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries
journal, January 2000

  • Stevens, D. A.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393348

The Mechanisms of Lithium and Sodium Insertion in Carbon Materials
journal, January 2001

  • Stevens, D. A.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 148, Issue 8
  • DOI: 10.1149/1.1379565

Electrochemical insertion of sodium into hard carbons
journal, August 2002


Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies
journal, January 2011

  • Wenzel, Sebastian; Hara, Takeshi; Janek, Jürgen
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01744f

Hollow Carbon Nanospheres with Superior Rate Capability for Sodium-Based Batteries
journal, May 2012

  • Tang, Kun; Fu, Lijun; White, Robin J.
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201100691

Nitrogen-Doped Porous Carbon Nanosheets as Low-Cost, High-Performance Anode Material for Sodium-Ion Batteries
journal, December 2012


Graphites for Lithium-Ion Cells: The Correlation of the First-Cycle Charge Loss with the Brunauer-Emmett-Teller Surface Area
journal, January 1998

  • Winter, Martin
  • Journal of The Electrochemical Society, Vol. 145, Issue 2
  • DOI: 10.1149/1.1838281

Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements
journal, September 2014


Biomass derived hard carbon used as a high performance anode material for sodium ion batteries
journal, January 2014

  • Hong, Kun-lei; Qie, Long; Zeng, Rui
  • Journal of Materials Chemistry A, Vol. 2, Issue 32
  • DOI: 10.1039/C4TA02068E

A New Perspective on the Formation and Structure of the Solid Electrolyte Interface at the Graphite Anode of Li-Ion Cells
journal, January 1999

  • Ein-Eli, Yair
  • Electrochemical and Solid-State Letters, Vol. 2, Issue 5
  • DOI: 10.1149/1.1390787

Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells
journal, January 1990

  • Fong, Rosamaría
  • Journal of The Electrochemical Society, Vol. 137, Issue 7
  • DOI: 10.1149/1.2086855

Effects of post-treatments on the performance of hard carbons in lithium cells
journal, July 2001


Surface-Modified Graphite as an Improved Intercalating Anode for Lithium-Ion Batteries
journal, January 2003

  • Cao, Yuliang; Xiao, Lifen; Ai, Xinping
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 2
  • DOI: 10.1149/1.1534730

Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries
journal, January 2015

  • Li, Yunming; Xu, Shuyin; Wu, Xiaoyan
  • Journal of Materials Chemistry A, Vol. 3, Issue 1
  • DOI: 10.1039/C4TA05451B

Li-insertion in hard carbon anode materials for Li-ion batteries
journal, September 1999


Preparation and Properties of Resorcinol-Formaldehyde Organic and Carbon Gels
journal, January 2003

  • Al-Muhtaseb, S. A.; Ritter, J. A.
  • Advanced Materials, Vol. 15, Issue 2, p. 101-114
  • DOI: 10.1002/adma.200390020

Carbonization and activation of sol–gel derived carbon xerogels
journal, January 2000


Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes
journal, November 2013

  • Ding, Jia; Wang, Huanlei; Li, Zhi
  • ACS Nano, Vol. 7, Issue 12
  • DOI: 10.1021/nn404640c

High-Density Sodium and Lithium Ion Battery Anodes from Banana Peels
journal, June 2014

  • Lotfabad, Elmira Memarzadeh; Ding, Jia; Cui, Kai
  • ACS Nano, Vol. 8, Issue 7, p. 7115-7129
  • DOI: 10.1021/nn502045y

Preparation of Graphitic Oxide
journal, March 1958

  • Hummers, William S.; Offeman, Richard E.
  • Journal of the American Chemical Society, Vol. 80, Issue 6, p. 1339-1339
  • DOI: 10.1021/ja01539a017

Production of graphene by reduction using a magnesiothermic reaction
journal, January 2013

  • Luo, Wei; Wang, Bao; Wang, Xingfeng
  • Chemical Communications, Vol. 49, Issue 91
  • DOI: 10.1039/c3cc46368k

Graphene Oxide Assisted Hydrothermal Carbonization of Carbon Hydrates
journal, December 2013

  • Krishnan, Deepti; Raidongia, Kalyan; Shao, Jiaojing
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn404805p

Graphene and Graphene Oxide: Synthesis, Properties, and Applications
journal, June 2010

  • Zhu, Yanwu; Murali, Shanthi; Cai, Weiwei
  • Advanced Materials, Vol. 22, Issue 35, p. 3906-3924
  • DOI: 10.1002/adma.201001068

Works referencing / citing this record:

Low-Defect and Low-Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode
journal, March 2018

  • Xiao, Lifen; Lu, Haiyan; Fang, Yongjin
  • Advanced Energy Materials, Vol. 8, Issue 20
  • DOI: 10.1002/aenm.201703238

Insights into the Na + Storage Mechanism of Phosphorus-Functionalized Hard Carbon as Ultrahigh Capacity Anodes
journal, March 2018


Electrolytes, SEI Formation, and Binders: A Review of Nonelectrode Factors for Sodium-Ion Battery Anodes
journal, January 2018


Alkaline earth metal vanadates as sodium-ion battery anodes
journal, September 2017


Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries
journal, January 2017

  • Kaneti, Yusuf Valentino; Zhang, Jun; He, Yan-Bing
  • Journal of Materials Chemistry A, Vol. 5, Issue 29
  • DOI: 10.1039/c7ta03939e

Na-Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation
journal, July 2017

  • Muñoz-Márquez, Miguel Ángel; Saurel, Damien; Gómez-Cámer, Juan Luis
  • Advanced Energy Materials, Vol. 7, Issue 20
  • DOI: 10.1002/aenm.201700463

Sodium-Ion Batteries (a Review)
journal, February 2018

  • Skundin, A. M.; Kulova, T. L.; Yaroslavtsev, A. B.
  • Russian Journal of Electrochemistry, Vol. 54, Issue 2
  • DOI: 10.1134/s1023193518020076

Lignin-Derived Nitrogen-Doped Porous Carbon as a High-Rate Anode Material for Sodium Ion Batteries
journal, January 2019

  • Du, Leilei; Wu, Wei; Luo, Chao
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.1361902jes

Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries
journal, January 2019

  • Han, Haixia; Chen, Xiaoyang; Qian, Jiangfeng
  • Nanoscale, Vol. 11, Issue 45
  • DOI: 10.1039/c9nr07675a

An ion-conducting SnS–SnS 2 hybrid coating for commercial activated carbons enabling their use as high performance anodes for sodium-ion batteries
journal, January 2019

  • Zhang, Si-Wei; Lv, Wei; Qiu, Dong
  • Journal of Materials Chemistry A, Vol. 7, Issue 17
  • DOI: 10.1039/c9ta00599d

Electrode Materials for Sodium-Ion Batteries: Considerations on Crystal Structures and Sodium Storage Mechanisms
journal, June 2018

  • Wang, Tianyi; Su, Dawei; Shanmukaraj, Devaraj
  • Electrochemical Energy Reviews, Vol. 1, Issue 2
  • DOI: 10.1007/s41918-018-0009-9

Quantifying the factors limiting rate performance in battery electrodes
journal, April 2019


Advanced Nanostructured Anode Materials for Sodium-Ion Batteries
journal, September 2017


Review—Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries
journal, January 2015

  • Irisarri, E.; Ponrouch, A.; Palacin, M. R.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0091514jes

Revealing the Effect of Nanopores in Biomass‐Derived Carbon on its Sodium‐Ion Storage Behavior
journal, December 2019


Review—Practical Issues and Future Perspective for Na-Ion Batteries
journal, January 2015

  • Kubota, Kei; Komaba, Shinichi
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0151514jes

Hard carbon anode materials for sodium-ion batteries
journal, December 2018


Edge-Nitrogen-Rich Carbon Dots Pillared Graphene Blocks with Ultrahigh Volumetric/Gravimetric Capacities and Ultralong Life for Sodium-Ion Storage
journal, September 2018

  • Liu, Zheng; Zhang, Longhai; Sheng, Lizhi
  • Advanced Energy Materials, Vol. 8, Issue 30
  • DOI: 10.1002/aenm.201802042

Electrochemically induced crystallization of amorphous materials in molten MgCl 2 : boron nitride and hard carbon
journal, January 2020

  • Bagri, Prashant; P. Thapaliya, Bishnu; Yang, Zhenzhen
  • Chemical Communications, Vol. 56, Issue 18
  • DOI: 10.1039/c9cc08717f

Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices
journal, January 2017

  • Hao, Enchao; Liu, Wei; Liu, Shuang
  • Journal of Materials Chemistry A, Vol. 5, Issue 5
  • DOI: 10.1039/c6ta08169j

Hierarchically Porous, Ultrathick, “Breathable” Wood-Derived Cathode for Lithium-Oxygen Batteries
journal, September 2017


Deactivating Defects in Graphenes with Al 2 O 3 Nanoclusters to Produce Long-Life and High-Rate Sodium-Ion Batteries
journal, November 2018

  • Lin, Qiaowei; Zhang, Jun; Kong, Debin
  • Advanced Energy Materials, Vol. 9, Issue 1
  • DOI: 10.1002/aenm.201803078

Readiness Level of Sodium-Ion Battery Technology: A Materials Review
journal, January 2018

  • Chen, Lin; Fiore, Michele; Wang, Ji Eun
  • Advanced Sustainable Systems, Vol. 2, Issue 3
  • DOI: 10.1002/adsu.201700153

Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase
journal, January 2017

  • Zhang, Jun; Wang, Da-Wei; Lv, Wei
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/c6ee03367a

Hard Carbon as Sodium‐Ion Battery Anodes: Progress and Challenges
journal, November 2018


Sulfur-Doped Carbon with Enlarged Interlayer Distance as a High-Performance Anode Material for Sodium-Ion Batteries
journal, August 2015


Effect of Vapor Carbon Coating on the Surface Structure and Sodium Storage Performance of Hard Carbon Spheres
journal, September 2019


From Charge Storage Mechanism to Performance: A Roadmap toward High Specific Energy Sodium-Ion Batteries through Carbon Anode Optimization
journal, March 2018

  • Saurel, Damien; Orayech, Brahim; Xiao, Biwei
  • Advanced Energy Materials, Vol. 8, Issue 17
  • DOI: 10.1002/aenm.201703268

Optimizing the Crystallite Structure of Lignin‐Based Nanospheres by Resinification for High‐Performance Sodium‐Ion Battery Anodes
journal, September 2019


D-Glucose Derived Nanospheric Hard Carbon Electrodes for Room-Temperature Sodium-Ion Batteries
journal, January 2016

  • Väli, R.; Jänes, A.; Thomberg, T.
  • Journal of The Electrochemical Society, Vol. 163, Issue 8
  • DOI: 10.1149/2.0771608jes

Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping
journal, May 2017

  • Li, Zhifei; Bommier, Clement; Chong, Zhi Sen
  • Advanced Energy Materials, Vol. 7, Issue 18
  • DOI: 10.1002/aenm.201602894

Coral-like Ni x Co 1−x Se 2 for Na-ion battery with ultralong cycle life and ultrahigh rate capability
journal, January 2019

  • He, Yanyan; Luo, Ming; Dong, Caifu
  • Journal of Materials Chemistry A, Vol. 7, Issue 8
  • DOI: 10.1039/c8ta10114k

Hierarchical porous nitrogen-doped carbon material for high performance sodium ion batteries
journal, July 2018

  • Ou, Junke; Yang, Lin; Zhang, Zhen
  • Journal of Materials Science: Materials in Electronics, Vol. 29, Issue 19
  • DOI: 10.1007/s10854-018-9741-5

Recent advances in nanostructured carbon for sodium-ion batteries
journal, January 2020

  • Zhang, Huimin; Huang, Yongxin; Ming, Hai
  • Journal of Materials Chemistry A, Vol. 8, Issue 4
  • DOI: 10.1039/c9ta09984k

Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes
journal, March 2016

  • Oltean, Viorica-Alina; Renault, Stéven; Valvo, Mario
  • Materials, Vol. 9, Issue 3
  • DOI: 10.3390/ma9030142

Low-cost lignite-derived hard carbon for high-performance sodium-ion storage
journal, February 2020


Sodium ion battery anode properties of designed graphene-layers synthesized from polycyclic aromatic hydrocarbons
journal, January 2016

  • Hayakawa, Taichi; Ishii, Yosuke; Kawasaki, Shinji
  • RSC Advances, Vol. 6, Issue 26
  • DOI: 10.1039/c6ra00955g

Sulfur-Doped Carbon with Enlarged Interlayer Distance as a High-Performance Anode Material for Sodium-Ion Batteries
journal, August 2015


Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries
journal, November 2015


Electrochemical Na-Insertion/Extraction Property of Ni-Coated Black Phosphorus Prepared by an Electroless Deposition Method
journal, August 2017


Alkaline earth metal vanadates as sodium-ion battery anodes
journal, September 2017


Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries
journal, October 2016

  • Zheng, Peng; Liu, Ting; Guo, Shouwu
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep35620

Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes
journal, March 2016

  • Oltean, Viorica-Alina; Renault, Stéven; Valvo, Mario
  • Materials, Vol. 9, Issue 3
  • DOI: 10.3390/ma9030142

Quantifying the factors limiting rate-performance in battery electrodes
text, January 2018