DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode

Abstract

Using neutron reflectometry we have determined the thickness and chemistry of the solid-electrolyte interphase (SEI) layer grown on a silicon anode as a function of state of charge and during cycling. We show the chemistry of this SEI layer becomes more LiF like with increasing lithiation and more Li-C-O-F like with delithiation. More importantly the SEI layer thickness appears to increase (about 250 ) as the electrode becomes less lithiated and thins to 180 with increasing Li content (Li3.7Si). We attribute this breathing to the continual consumption of electrolyte with cycling.

Authors:
 [1];  [1];  [2];  [1];  [1];  [2];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1222554
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 119; Journal Issue: 35; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Veith, Gabriel M., Doucet, Mathieu, Baldwin, J. K., Sacci, Robert L., Fears, Tyler M., Wang, Yongqiang, and Browning, Jim. Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode. United States: N. p., 2015. Web. doi:10.1021/acs.jpcc.5b06817.
Veith, Gabriel M., Doucet, Mathieu, Baldwin, J. K., Sacci, Robert L., Fears, Tyler M., Wang, Yongqiang, & Browning, Jim. Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode. United States. https://doi.org/10.1021/acs.jpcc.5b06817
Veith, Gabriel M., Doucet, Mathieu, Baldwin, J. K., Sacci, Robert L., Fears, Tyler M., Wang, Yongqiang, and Browning, Jim. Mon . "Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode". United States. https://doi.org/10.1021/acs.jpcc.5b06817. https://www.osti.gov/servlets/purl/1222554.
@article{osti_1222554,
title = {Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode},
author = {Veith, Gabriel M. and Doucet, Mathieu and Baldwin, J. K. and Sacci, Robert L. and Fears, Tyler M. and Wang, Yongqiang and Browning, Jim},
abstractNote = {Using neutron reflectometry we have determined the thickness and chemistry of the solid-electrolyte interphase (SEI) layer grown on a silicon anode as a function of state of charge and during cycling. We show the chemistry of this SEI layer becomes more LiF like with increasing lithiation and more Li-C-O-F like with delithiation. More importantly the SEI layer thickness appears to increase (about 250 ) as the electrode becomes less lithiated and thins to 180 with increasing Li content (Li3.7Si). We attribute this breathing to the continual consumption of electrolyte with cycling.},
doi = {10.1021/acs.jpcc.5b06817},
journal = {Journal of Physical Chemistry. C},
number = 35,
volume = 119,
place = {United States},
year = {Mon Aug 17 00:00:00 EDT 2015},
month = {Mon Aug 17 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 104 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Interfacing electrolytes with electrodes in Li ion batteries
journal, January 2011

  • Xu, Kang; von Cresce, Arthur
  • Journal of Materials Chemistry, Vol. 21, Issue 27
  • DOI: 10.1039/c0jm04309e

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy
journal, February 2012

  • Philippe, Bertrand; Dedryvère, Rémi; Allouche, Joachim
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm2034195

Role of the LiPF 6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries – A Photoelectron Spectroscopy Study
journal, January 2013

  • Philippe, Bertrand; Dedryvère, Rémi; Gorgoi, Mihaela
  • Chemistry of Materials, Vol. 25, Issue 3
  • DOI: 10.1021/cm303399v

Improved Performances of Nanosilicon Electrodes Using the Salt LiFSI: A Photoelectron Spectroscopy Study
journal, June 2013

  • Philippe, Bertrand; Dedryvère, Rémi; Gorgoi, Mihaela
  • Journal of the American Chemical Society, Vol. 135, Issue 26
  • DOI: 10.1021/ja403082s

Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy
journal, June 2013

  • Nie, Mengyun; Abraham, Daniel P.; Chen, Yanjing
  • The Journal of Physical Chemistry C, Vol. 117, Issue 26
  • DOI: 10.1021/jp404155y

Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy
journal, January 2013

  • Nie, Mengyun; Chalasani, Dinesh; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 3, p. 1257-1267
  • DOI: 10.1021/jp3118055

Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes
journal, April 2009


The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into Li[sub x]MO[sub y] Host Materials (M = Ni, Mn)
journal, January 2000

  • Aurbach, Doron; Gamolsky, Kira; Markovsky, Boris
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393357

In Situ TEM Observation of Local Phase Transformation in a Rechargeable LiMn 2 O 4 Nanowire Battery
journal, November 2013

  • Lee, Soyeon; Oshima, Yoshifumi; Hosono, Eiji
  • The Journal of Physical Chemistry C, Vol. 117, Issue 46
  • DOI: 10.1021/jp409032r

In Situ TEM Observation of the Electrochemical Process of Individual CeO 2 /Graphene Anode for Lithium Ion Battery
journal, February 2013

  • Su, Qingmei; Chang, Ling; Zhang, Jun
  • The Journal of Physical Chemistry C, Vol. 117, Issue 8
  • DOI: 10.1021/jp312169j

Quantitative Electrochemical Measurements Using In Situ ec-S/TEM Devices
journal, March 2014

  • Unocic, Raymond R.; Sacci, Robert L.; Brown, Gilbert M.
  • Microscopy and Microanalysis, Vol. 20, Issue 2
  • DOI: 10.1017/S1431927614000166

In Situ TEM on the Reversibility of Nanosized Sn Anodes during the Electrochemical Reaction
journal, July 2014

  • Li, Qianqian; Wang, Peng; Feng, Qiong
  • Chemistry of Materials, Vol. 26, Issue 14
  • DOI: 10.1021/cm5009448

Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters
journal, February 2015

  • Sacci, Robert L.; Black, Jennifer M.; Balke, Nina
  • Nano Letters, Vol. 15, Issue 3
  • DOI: 10.1021/nl5048626

Electrode/Electrolyte Interface Studies in Lithium Batteries Using NMR
journal, January 2011

  • Dupre, N.; Cuisinier, M.; Guyomard, D.
  • Interface magazine, Vol. 20, Issue 3
  • DOI: 10.1149/2.F06113if

In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells
journal, June 2013

  • Blanc, Frédéric; Leskes, Michal; Grey, Clare P.
  • Accounts of Chemical Research, Vol. 46, Issue 9
  • DOI: 10.1021/ar400022u

7Li MRI of Li batteries reveals location of microstructural lithium
journal, February 2012

  • Chandrashekar, S.; Trease, Nicole M.; Chang, Hee Jung
  • Nature Materials, Vol. 11, Issue 4
  • DOI: 10.1038/nmat3246

In Situ and Quantitative Characterization of Solid Electrolyte Interphases
journal, February 2014

  • Cresce, Arthur v.; Russell, Selena M.; Baker, David R.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404471v

In Situ Observation of Solid Electrolyte Interphase Formation in Ordered Mesoporous Hard Carbon by Small-Angle Neutron Scattering
journal, March 2012

  • Bridges, Craig A.; Sun, Xiao-Guang; Zhao, Jinkui
  • The Journal of Physical Chemistry C, Vol. 116, Issue 14
  • DOI: 10.1021/jp3012393

Electrodes: Lithium Intercalation Behavior in Multilayer Silicon Electrodes (Adv. Energy Mater. 7/2014)
journal, May 2014

  • Fister, Tim T.; Esbenshade, Jennifer; Chen, Xiao
  • Advanced Energy Materials, Vol. 4, Issue 7
  • DOI: 10.1002/aenm.201470034

Volume Expansion during Lithiation of Amorphous Silicon Thin Film Electrodes Studied by In-Operando Neutron Reflectometry
journal, April 2014

  • Jerliu, B.; Hüger, E.; Dörrer, L.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 18
  • DOI: 10.1021/jp502261t

Nano-morphology of lithiated thin film TiO2 anatase probed with in situ neutron reflectometry
journal, August 2003


Surface Characterization of LiFePO4 Epitaxial Thin Films by X-ray/Neutron Reflectometry
journal, January 2010


Solid Electrolyte Interphase in Li-Ion Batteries: Evolving Structures Measured In situ by Neutron Reflectometry
journal, May 2012

  • Owejan, Jeanette E.; Owejan, Jon P.; DeCaluwe, Steven C.
  • Chemistry of Materials, Vol. 24, Issue 11
  • DOI: 10.1021/cm3006887

Direct measurement of the chemical reactivity of silicon electrodes with LiPF6-based battery electrolytes
journal, January 2014

  • Veith, Gabriel M.; Baggetto, Loïc; Sacci, Robert L.
  • Chemical Communications, Vol. 50, Issue 23
  • DOI: 10.1039/c3cc49269a

Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries
journal, January 2013

  • Jerliu, B.; Dörrer, L.; Hüger, E.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 20
  • DOI: 10.1039/c3cp44438d

In Situ Determination of the Liquid/Solid Interface Thickness and Composition for the Li Ion Cathode LiMn 1.5 Ni 0.5 O 4
journal, October 2014

  • Browning, James F.; Baggetto, Loïc; Jungjohann, Katherine L.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 21
  • DOI: 10.1021/am5032055

Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review
journal, October 2013


Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes
journal, June 2009

  • Ruffo, Riccardo; Hong, Seung Sae; Chan, Candace K.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 26, p. 11390-11398
  • DOI: 10.1021/jp901594g

Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries
journal, October 2012


Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT
journal, March 2006


Mantid—Data analysis and visualization package for neutron scattering and μ SR experiments
journal, November 2014

  • Arnold, O.; Bilheux, J. C.; Borreguero, J. M.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 764
  • DOI: 10.1016/j.nima.2014.07.029

First Principles Model of Amorphous Silicon Lithiation
journal, January 2009

  • Chevrier, V. L.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 156, Issue 6
  • DOI: 10.1149/1.3111037

Toward High Cycle Efficiency of Silicon-Based Negative Electrodes by Designing the Solid Electrolyte Interphase
journal, November 2014

  • Zhang, Qinglin; Xiao, Xingcheng; Zhou, Weidong
  • Advanced Energy Materials, Vol. 5, Issue 5
  • DOI: 10.1002/aenm.201401398

Chemistry, Impedance, and Morphology Evolution in Solid Electrolyte Interphase Films during Formation in Lithium Ion Batteries
journal, December 2013

  • Lu, Peng; Li, Chen; Schneider, Eric W.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 2
  • DOI: 10.1021/jp4111019

Works referencing / citing this record:

The Atomic Scale Electrochemical Lithiation and Delithiation Process of Silicon
journal, September 2017

  • Cao, Chuntian; Steinrück, Hans-Georg; Shyam, Badri
  • Advanced Materials Interfaces, Vol. 4, Issue 22
  • DOI: 10.1002/admi.201700771

Investigation of the Influence of Nanostructured LiNi 0.33 Co 0.33 Mn 0.33 O 2 Lithium-Ion Battery Electrodes on Performance and Aging
journal, January 2018

  • Dreizler, Andreas M.; Bohn, Nicole; Geßwein, Holger
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.1061802jes

In situ analytical techniques for battery interface analysis
journal, January 2018

  • Tripathi, Alok M.; Su, Wei-Nien; Hwang, Bing Joe
  • Chemical Society Reviews, Vol. 47, Issue 3
  • DOI: 10.1039/c7cs00180k

Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries
journal, January 2019

  • Zhang, Yaguang; Du, Ning; Yang, Deren
  • Nanoscale, Vol. 11, Issue 41
  • DOI: 10.1039/c9nr05748j

Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive
journal, July 2017


Mass‐Production of Electrospun Carbon Nanofiber Containing SiO x for Lithium‐Ion Batteries with Enhanced Capacity
journal, December 2018

  • Moon, Seongjun; Yun, Jisu; Lee, Jae Young
  • Macromolecular Materials and Engineering, Vol. 304, Issue 3
  • DOI: 10.1002/mame.201800564

Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries
journal, January 2019

  • Xu, Hui; Li, Sa; Zhang, Can
  • Energy & Environmental Science, Vol. 12, Issue 10
  • DOI: 10.1039/c9ee01404g

Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry
journal, January 2016

  • Fears, T. M.; Doucet, M.; Browning, J. F.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 20
  • DOI: 10.1039/c6cp00978f

Lithium insertion into silicon electrodes studied by cyclic voltammetry and operando neutron reflectometry
journal, January 2018

  • Jerliu, B.; Hüger, E.; Dörrer, L.
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 36
  • DOI: 10.1039/c8cp03540g

Role of conductive binder to direct solid–electrolyte interphase formation over silicon anodes
journal, January 2019

  • Browning, Katie L.; Browning, James F.; Doucet, Mathieu
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 31
  • DOI: 10.1039/c9cp02610j

Ion Diffusivity through the Solid Electrolyte Interphase in Lithium-Ion Batteries
journal, January 2017

  • Benitez, Laura; Seminario, Jorge M.
  • Journal of The Electrochemical Society, Vol. 164, Issue 11
  • DOI: 10.1149/2.0181711jes

Silicon clathrates for lithium ion batteries: A perspective
journal, December 2016

  • Warrier, Pramod; Koh, Carolyn A.
  • Applied Physics Reviews, Vol. 3, Issue 4
  • DOI: 10.1063/1.4958711

Insights into solid electrolyte interphase formation on alternative anode materials in lithium-ion batteries
journal, December 2016

  • Steinhauer, Miriam; Diemant, Thomas; Heim, Christopher
  • Journal of Applied Electrochemistry, Vol. 47, Issue 2
  • DOI: 10.1007/s10800-016-1032-3

Electrolyte additives for lithium ion battery electrodes: progress and perspectives
journal, January 2016

  • Haregewoin, Atetegeb Meazah; Wotango, Aselefech Sorsa; Hwang, Bing-Joe
  • Energy Environ. Sci., Vol. 9, Issue 6
  • DOI: 10.1039/c6ee00123h

Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive
journal, July 2017