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Abstract

High-order discretization methods offer the potential to reduce the computational cost associated
with modelling compressible flows. However, it is difficult to obtain accurate high-order discretizations
of conservation laws that do not produce spurious oscillations near discontinuities, especially on multi-
dimensional unstructured meshes. A novel, high-order, central essentially non-oscillatory (CENO) finite-
volume method that does not have these difficulties is proposed for tetrahedral meshes. The proposed
unstructured method is vertex-based, which differs from existing cell-based CENO formulations, and
uses a hybrid reconstruction procedure that switches between two different solution representations.
It applies a high-order k-exact reconstruction in smooth regions and a limited linear reconstruction
when discontinuities are encountered. Both reconstructions use a single, central stencil for all variables,
making the application of CENO to arbitrary unstructured meshes relatively straightforward. The
new approach was applied to the conservation equations governing compressible flows and assessed in
terms of accuracy and computational cost. For all problems considered, which included various function
reconstructions and idealized flows, CENO demonstrated excellent reliability and robustness. Up to fifth-
order accuracy was achieved in smooth regions and essentially non-oscillatory solutions were obtained
near discontinuities. The high-order schemes were also more computationally efficient for high-accuracy
solutions, i.e., they took less wall time than the lower-order schemes to achieve a desired level of error.
In one particular case, it took a factor of 24 less wall-time to obtain a given level of error with the
fourth-order CENO scheme than to obtain the same error with the second-order scheme.

Keywords: Numerical Algorithms; Computational Fluid Dynamics; High-Order Methods; Compressible
Flows; Shock Hydrodynamics

1. Introduction
Finite-volume methods are a popular discretization technique for computational fluid dynamics, especially
for compressible flows. Numerous formulations exist, and one of the main differing characteristics is the
approach used to discretize the computational domain. Either cell- or vertex-based discretizations are
typically employed. Cell-based approaches apply conservation laws to the individual elements or cells of
the mesh, whereas vertex-based approaches apply them to control volumes constructed surrounding the
vertices of the mesh. The choice is not always straightforward, since both techniques are widely used
and both have their respective advantages/disadvantages. For example, vertex-based schemes are often
favored for use with unstructured tetrahedral meshes since there are approximately 5 to 6 times fewer
vertices than elements. But because there are more elements than vertices in a tetrahedral mesh, cell-based
schemes have more degrees of freedom. As such, cell-based schemes tend to be slightly more accurate on
tetrahedral meshes, although this increased accuracy comes at the expense of additional computational
effort [1]. The direct comparison between the two types of schemes is complicated, however, because they
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both use different stencils. The larger, denser stencils that vertex-based schemes use are more robust and
accurate per degree of freedom, which may make vertex centered schemes more computationally efficient
for a given accuracy [1]. Nonetheless, whatever the chosen finite-volume formulation, current production
codes rely mostly on standard first- or second-order accurate discretization schemes. These discretizations
are often not practical for physically-complex, multi-dimensional flows with disparate scales as they tend
to exhibit excessive numerical dissipation.

High-order discretization methods for conservation laws have the potential to significantly reduce the
cost of modelling physically-complex flows. They offer improved numerical efficiency to obtain high-
resolution solutions since fewer computational cells are required to achieve a desired level of accuracy [2].
However, this potential is challenging to fully realize as it is difficult to obtain accurate and robust dis-
cretizations of hyperbolic conservation laws near discontinuities [3]. Although there are many different
high-order schemes for both structured and unstructured meshes that address this issue [3–31], there is still
no consensus on the most robust, efficient, and accurate scheme that deals with the aforementioned issues
and is also universally applicable to arbitrary meshes.

One promising high-order discretization is the central essentially non oscillatory (CENO) finite-volume
approach [32–40]. It was originally developed for two-dimensional structured meshes by Ivan et al. [36–40]
and then extended to three-dimensional unstructured meshes by Charest et al. [32–35]. In all formulations,
CENO remained both accurate and robust throughout a variety of physically-complex flows. This robustness
is provided by a hybrid reconstruction procedure that switches between two algorithms: an unlimited high-
order k-exact reconstruction in smooth regions, and a monotonicity-preserving limited piecewise linear
reconstruction in regions with discontinuities or shocks. Switching between the two reconstructions is
facilitated by a smoothness indicator that measures the ability of the of the k-exact reconstruction to
locally resolve the flow. Fixed central stencils are used for both reconstruction algorithms, which makes its
extension to arbitrary unstructured meshes straightforward.

Essentially non-oscillatory (ENO) [5, 41] and weighted ENO (WENO) [10, 11, 42–45] finite-volume
schemes that can provide accurate and robust solutions on unstructured meshes already exist. However, the
CENO approach avoids many of the complexities associated with these ENO and WENO schemes because it
does not require a high-order reconstruction on multiple stencils. ENO and WENO have difficulty selecting
stencils on general multi-dimensional unstructured meshes [5, 6, 9, 46], and some of these stencils produce
poorly conditioned linear systems for solution reconstruction [9, 46].

The existing CENO formulations for structured [36–40] and unstructured [32–35] meshes were developed
for cell-based finite-volume schemes only. In the present research, CENO was extended to a vertex-based
finite-volume discretization for three-dimensional unstructured meshes and applied to solve the equations
governing compressible flows. The resulting algorithm was applied to various function reconstructions as
well as steady and unsteady flows and then analyzed with respect to accuracy and computational cost.
This research was performed using Chicoma, a computational framework for compressible fluid flow, i.e.,
shock hydrodynamics [47–53]

2. Governing Equations
The Euler equations governing compressible fluid flow were considered for the present research. In three
space dimensions, these partial-differential equations (PDEs) are given by

∂

∂t
U(W) + ~∇ · ~F(W) = S(W) (1)

where t is the time, U and W are the vectors of conserved and primitive variables, respectively, ~F(W) =
[E,F,G] is the inviscid solution flux dyad, and S(W) is a vector of source terms. These terms are defined
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(a) Primal and dual mesh (shown in two-dimensions
for simplicity).

(b) Example of a three-dimensional control volume.

Fig. 1. Computational mesh and local control volume configuration.

as

U =
[
ρ, ρu, ρv, ρw, ρet

]
,

W =
[
ρ, u, v, w, e

]
,

E =


ρu

ρu2 + p
ρuv
ρuw

u(ρet + p)

 , F =


ρv
ρvu

ρv2 + p
ρvw

v(ρet + p)

 , G =


ρw
ρwu
ρwv

ρw2 + p
w(ρet + p)


where ρ is the fluid density, p is the pressure, ~v = (u, v, w) is the fluid velocity vector, e is the internal
energy, and et is the total energy. The total energy is the sum of the internal and kinetic energies, i.e.,

et = e+
1

2
(u2 + v2 + w2) (2)

Internal energy is related to pressure and density through the following relation for an ideal gas:

e =
p

ρ(γ − 1)
(3)

where γ is the ratio of specific heats. The sound speed of an ideal gas is given by

a =
√
γp/ρ (4)

Although Eqs. (3) and (4) describe an ideal gas, the numerical formulation described herein is designed to
support arbitrary analytic or tabular equations of state. For all test cases considered, γ = 1.4.

The source term vector, S, is typically treated as zero throughout this work. There is one particular
case — which will be discussed in the following sections — where it was used to generate a known solution
for verification purposes.

3. CENO Finite-Volume Scheme
In the proposed vertex-based finite-volume approach, the physical domain, Ω, was discretized into non-
overlapping, finite-sized control volumes, Ωi, such that

Ω = ∪Ωi (5)
Ωi ∩ Ωj = ∅ for i 6= j (6)
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Table 1. Gauss quadrature rules used for integrating over triangles and tetrahedrons.

Reconstruction Number of Points Degree of Precision
Triangle Tetrahedron

Constant (k = 0) 1 1 1
Linear (k = 1) 1 1 1
Quadratic (k = 2) 3 4 2
Cubic (k = 3) 4 8 3
Quartic (k = 4) 6 14 4

The individual control volumes were formed by constructing the median dual, D(Ω), of a three-dimensional
triangulation of the domain, T (Ω), which is illustrated in two-dimensions in Fig. 1(a). Only primal meshes
composed of tetrahedral elements were considered, and they have a corresponding dual mesh composed of
complex polyhedrons with triangular faces. A control volume surrounding a vertex i, Ωi, was constructed
from the polyhedron whose vertices are the centroids of incident tetrahedra and triangles, plus the mid-
points of incident edges. A sample control volume surrounding an individual vertex in a three-dimensional
tetrahedral mesh is illustrated in Fig. 1(b).

Equation (1) was integrated over each individual control volume to give the following system of ordinary
differential equations (ODEs) for control-volume-averaged solution quantities, Ui:

dUi

dt
= − 1

Vi

∮
∂Ωi

(
~F · n̂

)
dΓ +

1

Vi

∫
Ωi

S dΩ = Ri, i = 1, 2, . . . , Nv (7)

where Nv is the number of control volumes (i.e., vertices of the primal mesh), Vi is the volume, n̂ is the unit
vector normal to the surface of the control volume, ∂Ωi, and Ui = 1

Vi

∫
Ωi

U dΩ. Applying Gauss quadrature
to evaluate the surface and volume integrals in Eq. (7) produces a set of nonlinear ODEs given by

dUi

dt
= − 1

Vi

Nf∑
j=1

Gf∑
k=1

[
ωf~F · n̂

]
i,j,k

+
1

Vi

Gv∑
m=1

[ωv S]i,m = Ri (8)

where Nf is the number of faces of Ωi, Gf and Gv are the number of quadrature points for the face and
volume integrals, respectively. The corresponding quadrature weights for the face and volume integrals are
denoted by ωf and ωv, respectively.

In Eq. (8), the number of quadrature points required for each rule is a direct function of the number
of spatial dimensions and the reconstruction order — i.e., the quadrature rule must be able to integrate a
k-degree polynomial exactly (k-exactness). Integrating over the individual faces of the polyhedral-shaped
control volume is relatively straightforward. Since the faces are triangular, standard quadrature rules for
triangles were used. However, general quadrature rules for integrating over complex polyhedrons do not
exist. As such, numerical integrals over the volume of these complex elements were evaluated by subdividing
the polyhedrons into tetrahedrons and applying standard Gauss quadrature rules to each individual tetra-
hedron. The coefficients for the quadrature rules applied herein are as given by Felippa [54] and summarized
in Table 1.

3.1 CENO Reconstruction
Evaluating Eq. (8) requires numerically integrating the fluxes and source terms over the control-volumes,
and this numerical integration requires interpolating the solution at quadrature points. Only control-volume
averages are known in the proposed finite-volume approach, so the solution at these quadrature points was
interpolated using the high-order CENO method [32–40]. The reconstruction was applied to the primitive
solution quantities, W, to ensure that both pressure and internal energy remain positive.
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3.1.1 k-Exact Reconstruction

The CENO spatial discretization scheme is based on the high-order k-exact least-squares reconstruction
technique of Barth and Fredrickson [4, 55]. The k-exact reconstruction algorithm begins by assuming that
the solution within each control-volume is represented by piecewise Taylor polynomials. In three space
dimensions, the polynomials are defined as

uki (x, y, z) =

p+q+r≤k∑
p=0

∑
q=0

∑
r=0

(x− xi)p(y − yi)q(z − zi)rDpqr (9)

where uki is the reconstructed solution quantity, (xi, yi, zi) is the geometric reference point, k is the degree of
the piecewise polynomial interpolant, and Dpqr are the unknown coefficients of the Taylor series expansion.
Any geometric reference point can be chosen; the vertex about which the control volume was constructed
was used here.

The following conditions were applied to determine the unknown coefficients: (i) the mean or average
value within the computational volume must be preserved; (ii) the solution reconstruction must reproduce
polynomials of degree ≤ k exactly (i.e., k-exactness); and (iii) the reconstruction must have compact
support. The first condition introduces a constraint on the reconstruction which states that

ui =
1

Vi

∫
Ωi

uki (x, y, z) dΩ (10)

where ui is the control-volume average in Ωi. Additional constraints are introduced by the second condition,
requiring that

uki (x, y, z) = uexact +O(hk+1) (11)

in the vicinity of Ωi. The length scale, h, is defined as the maximum diameter of the control-volume
circumspheres in the vicinity of Ωi. From Eq. (11), the reconstruction polynomial for Ωi must also recover
the averages of neighboring control volumes. That is,

uj =
1

Vj

∫
Ωj

uki (x, y, z) dΩ +O(hk+1) ∀j ∈ Sneigh,i (12)

where Sneigh,i is the collection of control-volume indices in the vicinity of Ωi. This property ensures that
the difference between the predicted solution states at control-volume interfaces diminishes at a rate pro-
portional to hk+1.

The third condition merely specifies the number and location of neighbors included in the reconstruction.
For a compact stencil, the minimum number of neighbors is equal to the number of unknowns minus one
(because of the constraint imposed by Eq. (10)). For any type of mesh, the total number of unknown
coefficients for a particular order is given by

N =
1

d!

d∏
n=1

(k + n) (13)

where d represents the number of space dimensions. In three-dimensions, there are four, ten, twenty and
thirty-five unknown coefficients for k = 1, k = 2, k = 3 and k = 4, respectively.

A sample stencil for Ωi is illustrated in two-dimensions in Fig. 2. The stencil was constructed by
recursively selecting nearest neighbors until at least the minimum number of neighbors was met. The
closest neighbors were selected first, and then, if more neighbors were required, the next nearest neighbors
were selected. This process continued until the stencil was deemed sufficient. Additional neighbors were
included to ensure that the stencil was not biased in any particular direction and that the reconstruction
remained reliable on poor quality meshes with high aspect ratio cells [55]. In the present research, a stencil
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1st neighbor

2nd neighbor

Ωi

Fig. 2. Supporting stencil for the reconstruction in Ωi. First- and second-level neighbors are indicated in
the figure.

Table 2. Minimum stencil sizes used for reconstructions.

Reconstruction Minimum Stencil Size
Theoretical Actual

Linear (k = 1) 3 5
Quadratic (k = 2) 9 14
Cubic (k = 3) 19 29
Quartic (k = 4) 34 51

at least 1.5 times larger than the minimum size was employed. The employed stencil sizes are listed in
Table 2.

The constraints given by Eqs. (10) and (12) create an over-determined system of linear equations of the
form,

AX = B (14)

where A is the coefficient matrix, X is the vector of unknown polynomial coefficients, and B is a vector
which depends on control volume averages. Since the system is over-determined, a least-squares solution
for X was obtained in each control-volume. Equation (10) was strictly enforced, while a minimum-error
solution to the remaining constraint equations was sought. The final form of Eq. (14) for each control
volume Ωi was derived from Eqs. (10) and (12). It is given by

w1i x̂0y0z1
1i · · · w1i x̂pyqzr1i · · · w1i x̂ky0z0

1i
...

...
...

wji x̂0y0z1
ji · · · wji x̂pyqzrji · · · wji x̂ky0z0

ji
...

...
...

wni x̂0y0z1
ni · · · wni x̂pyqzrni · · · wni x̂ky0z0

ni


·


D001
...

Dpqr
...

Dk00

 =


w1i (u1 − ui)

...
wji (uj − ui)

...
wni (un − ui)

 (15)

where n is the number of neighbors in the stencil, Sneigh,i, and wji are least-squares weights. The geometric
coefficients, x̂pyqzrji, are given by

x̂pyqzrji = x̃pyqzrji − xpyqzri (16)
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where

x̃pyqzrji =
1

Vj

∫
Ωj

(x− xi)p(y − yi)q(z − zi)r dΩ (17)

xpyqzri =
1

Vi

∫
Ωi

(x− xi)p(y − yi)q(z − zi)r dΩ (18)

To reduce the computational storage requirements, only the geometric moments about each individual
control-volume, xpyqzri, were computed and stored prior to solving Eq. (8). The remaining geometric
coefficients were computed as needed using a binomial expansion [10, 12]:

x̃pyqzrji =
1

Vj

∫
Ωj

[(x− xj) + (xj − xi)]p · [(y − yj) + (yj − yi)]q · [(z − zj) + (zj − zi)]r dΩ (19)

=

p∑
a=0

q∑
b=0

r∑
c=0

(
p

a

)(
q

b

)(
r

c

)
· (xj − xi)a · (yj − yi)b · (zj − zi)c · xp−ayq−bzr−cj (20)

Weighting was applied to each individual constraint equation to improve the locality of the reconstruc-
tion [56]. The weights for the reconstruction in Ωi are

wji =
1

|~xj − ~xi|p
, (21)

where ~xi and ~xj are the vertex locations. The exponent, p, was set equal to 1.
The condition number of the least-squares problem for the reconstruction coefficients was improved

via the application of a simple column scaling [10, 57], which effectively makes the condition number
independent of the mesh size and control-volume aspect ratio. Scaling the columns of the matrix A gives
the new linear system

(AP)
(
P−1X

)
= B (22)

where P is a diagonal matrix of size N − 1 whose entries are the inverse of the largest absolute values of
each column of A. The scaling matrix is given by

Pjj =
1

max
∀i
|Aij |

i = 1, 2, . . . , n (23)

where Pjj and Aij are the individual elements of P and A, respectively.
A least-squares solution to Eq. (22) was sought using either QR factorization based on Householder

transformations or the singular value decomposition (SVD) method [58]. Since the coefficient matrix, A,
and the scaling matrix, P, only depend on the mesh geometry, they can be inverted and stored prior to
solving Eq. (8) [37]. Thus, when SVD was used, the pseudoinverse was stored and polynomial coefficients
were simply determined from the following matrix-vector product at each iteration:

X = P (AP)†B (24)

where † denotes the pseudoinverse and the matrix P (AP)† is the pre-computed and stored result of SVD.
This operation was considerably less computationally intensive than performing a full QR factorization or
SVD decomposition for each control-volume at every iteration. Once the least-squares solution for X in
Eq. (22) was obtained, the remaining polynomial coefficient, D000, was obtained from Eq. (10).

3.1.2 Reconstruction at Boundaries

To enforce conditions at the boundaries of the computational domain, the least-squares reconstruction was
constrained at Gauss quadrature points along the boundary without altering the reconstruction’s order of
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accuracy [12, 13, 37]. The constraints were implemented as Robin-type boundary conditions and are given
by

f (~x) = a (~x) fD (~x) + b (~x) fN (~x) (25)

where a (~x) and b (~x) are coefficients which define the contribution of the Dirichlet, fD (~x), and Neumann,
fN (~x), components, respectively. These coefficients are simply (a, b) = (1, 0) for Dirichlet- and (a, b) = (0, 1)
for Neumann-type boundary conditions. The Dirichlet condition is expressed as

fD (~xg) = uki (~xg) (26)

where ~xg is the location of the Gauss quadrature point. The Neumann condition is

fN (~xg) = ~∇uki (~xg) · n̂g

=

p+q+r≤k∑∑∑
p+q+r=1

∆xp−1∆yq−1∆zr−1 [p∆y∆znx + q∆x∆yny + r∆x∆ynz]Dpqr (27)

where ∆(·) = (·)g − (·)i is the distance between the vertex of the control volume adjacent to the boundary
and the Gauss quadrature point, and n̂g is the outward surface normal at the quadrature point.

Exact solutions to the boundary constraints described by Eq. (25) were sought, which adds linear
equality constraints to the original over-determined system (Eq. (15)). This resulting equality-constrained
least-squares problem was solved using the method of weights [58]. It was solved in the same manner as
described in Section 3.1.1, except the original equations in Eq. (15) were multiplied by an additional weight.
The new over-determined linear system with boundary constraints is given by[

εA
C

]
·
[
X
]

=

[
εB
D

]
(28)

where C and D are the coefficient matrix and solution vector for the boundary constraints, respectively. A
weight, ε, equal to 10−3 was applied to the original equations defined by Eq. (15), which gives the boundary
constraints a large influence.

For boundary conditions where the reconstructed variables are not related, such as inflow/outflow or
farfield-type conditions, the constraints were applied separately to each variable. Thus, a separate least-
squares problem with equality constraints was set up for each variable and solved independently of the
others. For these cases, the flux along the boundary is simply given as

~Fb(~x) = ~F (W(~x)) (29)

More complex boundary conditions involve linear combinations of solution variables that couple the
reconstruction coefficients of different variables. For example, the individual velocity components for re-
flection or solid wall conditions are coupled because ~v · n̂ = 0. These types of coupled boundary conditions
were handled via constraints in combination with an appropriately prescribed flux [12, 13, 38, 59].

For coupled boundary conditions, the unknown polynomial coefficients for the uncoupled variables were
determined independently first, and then the coupled variables were reconstructed together. To illustrate
this procedure, consider a reflection boundary condition, which was applied in the present study. Along
reflecting boundaries,

~∇ρ · n̂ = 0

~v · n̂ = 0

~∇e · n̂ = 0
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where n̂ is a unit vector normal to the boundary. Both ρ and e are independent, so they were reconstructed
separately by solving Eq. (28), but the three components of velocity are coupled via a linear combination
of each other. The constraints for a zero normal velocity at the boundary are given by

u (~x)nx (~x) + v (~x)ny (~x) + w (~x)nz (~x) = 0 (30)

As such, the coupled, over-determined linear system for the unknown polynomial coefficients of the three
velocity components is as follows:

εAu 0 0

Cu 0 0

0 εAv 0

0 Cv 0

0 0 εAw

0 0 Cw

Coupled constraints, Eq. (30)


·


Xu

Xv

Xw

 =



εBu

Du

εBv

Dv

εBw

Dw

· · ·


(31)

where the subscripts u, v, and w refer to the solution quantities with which the components of the linear
system are associated with.

The prescribed flux at each quadrature point along the reflecting boundary is

~Freflect · n̂ = [0, pnx, pny, pnz, 0] (32)

where p is calculated at the wall boundary by extrapolating ρ and e.
Solid walls were treated the same as reflecting boundaries, except that no constraints were applied to ρ

and e along the boundary, i.e., only ~v · n̂ = 0 was enforced.

3.1.3 Smoothness Indicator

After performing a k-exact reconstruction in each control volume, the smoothness indicator was computed
for every reconstructed variable to identify under-resolved solution content. It was evaluated for each control
volume as [38]

Si =
σ

max [(1− σ), δ]

SOS−DOF
DOF− 1

(33)

where σ is a smoothness parameter, δ is a tolerance to avoid division by zero (equal to 10−8), DOF is the
number of degrees of freedom and SOS is the size of the stencil. The factor, (SOS − DOF)/(DOF − 1),
adjusts σ to account for the number of polynomial coefficients relative to the size of the reconstruction
stencil.

The smoothness parameter is based on the coefficient of determination or R2 parameter, which is a
statistical parameter used for assessing how well lines or curves fit data points [60]. For a control-volume
Ωi, the smoothness parameter is given by

σi = 1−

∑
∀j∈Sneigh,i

[
ukj (~xj)− uki (~xj)

]2

∑
∀j∈Sneigh,i

[
ukj (~xj)− ui

]2 (34)

where u is the solution variable of interest. The numerator of the fraction in Eq. (34) measures how well
the reconstruction polynomial for Ωi predicts the values in nearby control volumes, while the denominator
in Eq. (34) measures the variance from some reference point — ui in this case — and normalizes σ.
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By definition, σ can have a value between negative infinity and one. A value of unity indicates that the
solution is smooth whereas a small or negative value indicates large variations in solution content within the
reconstruction stencil. An order of magnitude analysis similar to the ones performed by Ivan and Groth [39]
and Charest et al. [35] for cell-based CENO formulations confirms the correct behavior of σ with changes
in mesh size, h. It follows from Eq. (11) that

σ ≈ 1−
[
O(hk+1)

]2
[O(h)]2

≈ 1−O(h2k) (35)

for smooth solution content. Thus, σ → 1 as ∆x → 0 at a rate much faster than the formal order of
accuracy of the scheme. Conversely, when the solution is not smooth, σ is much less than unity because

σ ≈ 1− [O(1)]2

[O(1)]2
≈ 1−O(1) (36)

This analysis confirms that the switching between the low- and high-order reconstructions occurs because
the numerical solution is under-resolved and reconstructions are oscillatory. The smoothness indicator only
measures how well nearby recovered polynomials agree with each other. It is not directly related to the size
of the computational mesh.

Solutions were deemed smooth when the value of S was above a critical value, Sc. Previous studies found
that values for Sc between 1000–5000 provided an excellent balance between stability and accuracy [38].
And because of the form of Eq. (33), S grows rapidly as σ → 1. Thus, S tends to be orders of magnitude
greater than these cutoff limits in smooth regions. Unless otherwise specified, Sc was equal to 2000. Smaller
values of Sc may provide more accurate predictions in some cases, but values much less than 1000 tend to
allow small oscillations in the solution.

In cases where the solution was not varying, such as in the free-stream, the smoothness indicator
sometimes incorrectly indicated that solutions with small deviations due to numerical noise were under-
resolved. This occurred because both the denominator and numerator of the fraction in Eq. (34) approached
zero, and σ was close to zero or negative. To alleviate this issue, the solution was automatically deemed
smooth if the local variation within the stencil was below a tolerance. That is, if

max
∀j∈Sneigh,i

|uj − ui| < tabsuref + trelustencil, (37)

the smoothness indicator was not computed and the high-order k-exact reconstruction was used. Here, uref
is a reference solution, ustencil is the stencil average, tabs = 10−5 is an absolute tolerance, and trel = 10−3 is
a relative tolerance. The reference solution, uref, was the average value within the computational domain
and was only computed once prior to solving the governing ODEs given by Eq. (8).

3.1.4 Limited Piecewise Linear Reconstruction

In regions where the smoothness indicator was below the critical value, monotonicity was preserved by
switching to a limited piecewise linear (k = 1) reconstruction on a smaller stencil (see Table 2 for stencil
sizes). The least-squares reconstruction procedure described by Barth [61] was used in these regions, since
it was found to be more computationally efficient than directly solving Eq. (15) via QR factorization or
SVD.

The limited piecewise linear representation in each control volume is given by

uk=1 (~x) = ui + φi~∇u · (~x− ~xc,i) (38)

where φi is the slope limiter and ~xc,i is the location of the control-volume centroid. In this particular case,
k = 1, the control-volume-averaged solution is equal to the solution at the centroid. It is not equal to the
solution at the control volume’s associated vertex, since the two locations do not coincide with each other,
i.e., ~xc,i 6= ~xi.
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For a control volume Ωi, the new over-determined matrix equation for the unknown polynomial coeffi-
cients, which, in this case, are the solution gradients, is given by


wi1∆xi1 wi1∆yi1 wi1∆zi1

...
...

...
wij∆xij wij∆yij wij∆zij

...
...

...
win∆xin win∆yin win∆zin

 ·



∂u

∂x

∂u

∂y

∂u

∂z


=


wi1 (u1 − ui)

...
wij (uj − ui)

...
win (un − ui)

 (39)

where ∆(·)ij = (·)j − (·)i is the distance between control volume centroids. This system was solved in a
least-squares sense using the Gram-Schmidt process outlined in [61].

Uncoupled Dirichlet- and Neumann-type boundary conditions were incorporated by adding constraint
equations to Eq. (39) for each quadrature point:

Dirichlet: ~∇u ·∆~xi = u (~xg)− ui (40)

Neumann: ~∇u ·∆~xn = ~∇u (~xg) ·∆~xn (41)

where ∆~xi = ~xg − ~xc,i and ∆~xn = (∆~xi · n̂g)n̂g. More complicated boundary conditions were treated using
ghost cells to influence the reconstruction. For example, reflecting boundaries or solid walls were treated
by reflecting the solution at the control volume’s centroid about the boundary and injecting the reflected
solution into the ghost cell.

Limiting was performed using the multi-dimensional limiting process (MLP) developed by Park et al.
[62] in conjunction with the slope limiter function of Venkatakrishnan [63]. Although MLP was developed
specifically for cell-based finite-volume schemes on structured and unstructured meshes, it is easily extended
to vertex-based formulations. The general form of the MLP condition states that monotonicity is preserved
if the following condition is true for every vertex vj of a control-volume Ωi:

umin
i,neigh ≤ uvj ≤ umax

i,neigh ∀vj ∈ Ωi (42)

where uvj is the interpolated value at the vertex vj , and umin
i,neigh and umax

i,neigh are the minimum and maxi-
mum control-volume-averaged values among the control-volumes that share a vertex with Ωi, respectively.
Essentially, the interpolated values at the vertices of the control volume must be bounded by the maximum
and minimum u of the surrounding control volumes. These vertices, vj , are the vertices of the dual mesh,
D(Ω), not the primal mesh, T (Ω).

The final MLP slope limiter for the ith control volume is expressed as

φi = min
∀vj∈Ωi



Φ

(
umax
i,neigh − ui
uvj − ui

)
if uvj − ui > a,

Φ

(
umin
i,neigh − ui
uvj − ui

)
if uvj − ui < −a,

1 otherwise

(43)

where Φ is the Venkatakrishnan limiter function and a = 10−7 is tolerance to avoid limiter chatter caused
by numerical noise.

3.2 Numerical Flux and Sources

An upwind Godunov-type scheme was used to integrate the inviscid numerical flux, ~F, over the control-
volume [64]. Given the left and right solution states, WL and WR, the numerical flux at the interface
between two control-volumes is defined as

~F · n̂ = F (WL,WR, n̂) (44)
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where F is a flux function which solves a Riemann problem in a direction aligned along the face normal, n̂.
Both the Rusanov [65, 66] and HLL [67] approximate Riemann solvers were implemented for the numerical
flux, F . The two different approximate Riemann solvers each have their own advantages and disadvantages.
The HLL flux was found to be slightly more accurate while the Rusanov flux was found to be more stable
and less costly.

The left and right solution states at the interface were determined using the CENO reconstruction
procedure described in Section 3.1. As a result, the leading truncation error due to the inviscid operator
is O

(
hk+1

)
in smooth regions. When the solution is under-resolved and deemed not smooth, the limited

piecewise linear reconstruction was used. In this case, the truncation error of the inviscid operator is
between O

(
h2
)
(unlimited) and O (h) (limited).

The limited linear reconstruction of Section 3.1.4 was only ever applied to the inviscid terms in Eq. (8).
Even when the solution was deemed non-smooth, the source terms were still evaluated using the higher-
order representation since they don’t generally generate instabilities. Thus, the truncation error of the
source term operator is O

(
hk+1

)
.

3.3 Transient Continuation and Steady-State Relaxation
Equation (8) defines a finite set of ODEs. For unsteady problems, the temporal derivative was discretized
using the classical Runge-Kutta (RK) schemes [68]. Schemes with up to four stages were implemented. For
example, the four-stage (RK4) scheme is written as

U1 = Un +
∆t

2
Rn (45a)

U2 = Un +
∆t

2
R1 (45b)

U3 = Un + ∆tR2 (45c)

Un+1 = Un +
∆t

6

(
Rn + 2R1 + 2R2 + R3

)
(45d)

where the superscript n denotes the time level.
Steady-state problems where relaxed using the two-stage optimally smoothing scheme of van Leer et al.

[69].

Un+1 = Un +

ns∑
α=1

βα∆tRα (46)

where ns = 2 is the number of stages, the superscript α denotes the intermediate stage, and βα are the
stage coefficients.

In both cases, steady and unsteady, the time step was determined by considering the inviscid Courant-
Friedrichs-Lewy (CFL) stability criteria. The maximum permissible time step for each control volume is
given by

∆ti = CFL ·
(

∆i

‖~vi‖+ ai

)
, i = 1, 2, . . . , Nv (47)

where ∆i = 3
√
Vi and CFL is a constant greater than zero. For time-accurate problems, a global time step

was used. It is given as
∆t = min

∀i
∆ti (48)

4. Results For Three-Dimensional Unstructured Meshes
The proposed finite-volume scheme was assessed in terms of accuracy, stability, and computational efficiency.
Numerical results for smooth and discontinuous function reconstructions, as well as steady and unsteady
idealized flows, were obtained on three-dimensional unstructured tetrahedral meshes. All computations
were performed on an Hewlett-Packard DL980 G7 compute node with eight Intel Xeon X6550 (2.00GHz)
processors and 128 GB of random-access memory (RAM).
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Table 3. Convergence rates of the error norms for the spherical cosine function.

k Formal L1 L2 L∞

0 1 1.01 1.00 0.95
1 2 2.13 2.11 2.11
2 3 3.06 3.07 2.71
3 4 4.04 4.01 4.01
4 5 5.08 5.05 4.41

Depending on the problem, accuracy was assessed based on the L1, L2, and/or L∞ norms of the error
between the exact solution and the numerical solution. The Lp norm of the error evaluated over the entire
computational domain is given by

Lp = ‖Error‖p =

[
1

VT

Nv∑
i

∫
Ωi

∣∣∣uki (~x)− uexact(~x)
∣∣∣p dΩ

]1/p

(49)

where VT is the total volume of the domain and uexact(~x) is the exact solution. This integration was
performed using the adaptive cubature algorithm developed by Berntsen et al. [70] for integrating functions
over a collection of three-dimensional simplices. The algorithm makes use of a 43-point cubature formula
of degree 8.

4.1 Spherical Cosine Function
The first case considered was the reconstruction of a smooth spherical cosine function. The function, which
is smooth in all directions, is illustrated in Fig. 3(a) and described by

u(r) = 1 +
1

3
cos(r) (50)

where r = 10
√
x2 + y2 + z2 is the radial position. The solution was computed on a unit cube centered at

(0.5, 0.5, 0.5) using grids composed of tetrahedral cells with varying levels of resolution. A sample mesh is
illustrated in Fig. 3(b).

Unlimited k-exact reconstructions of the spherical cosine function were obtained on a coarse mesh (995
vertices and 4,515 tetrahedral elements) and are illustrated in Fig. 3(c). As the order of the piecewise
polynomial interpolant was increased from k = 0 to k = 4, the reconstructed solution rapidly approached
the exact solution. There is almost no visible difference between the exact solution and the reconstructed
solution for k = 4.

The behavior of the L2 norm of the discretization error as a function of mesh resolution is illustrated in
Fig. 3(d) for various values of k. A large reduction in the global error was observed as the mesh resolution
and the order of the polynomial representation were increased. For example, the L2 error norm obtained
on the finest mesh using k = 4 was approximately a factor of 3 × 104 smaller than the error obtained
using k = 0. Figure 3(d) also confirms that k-exact reconstruction of a smooth function yields an order of
accuracy equal to k+1. A convergence rate of approximately k+1 was observed in all of the error norms,
including the L∞ error norm. The individual convergence rates as a function of k are listed in Table 3.

4.2 Abgrall’s Function
The Abgrall function [71] possesses a number of solution discontinuities that test a high-order spatial dis-
cretization’s ability to maintain monotonicity. As such, reconstructions of this function were performed
using the proposed CENO algorithm to ensure the effectiveness of the smoothness indicator defined in
Eq. (33). While the performance of the smoothness indicator was already verified using the Abgrall func-
tion on both structured [36] and unstructured [32–35] meshes, it has not been verified for a vertex-based
approach. All of the previous CENO approaches applied cell-based finite-volume formulations only.
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(a) Exact solution. (b) A sample computational mesh.
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(c) Unlimited reconstructions along the diagonal
from (0, 0, 0) to (1, 1, 1) on a mesh with 995
vertices.
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(d) Reconstruction error as a function of mesh size.

Fig. 3. Results for k-exact reconstruction of the spherical cosine function.

The Abgrall function was originally designed to vary in two space dimensions only. As such, it was
modified to include a variation and discontinuity along the third dimension. The resulting three-dimensional
discontinuous function is given by

u(x, y, z) = g(z) ·


f
[
x− cot

(√
π/2 y

)]
x ≤ cos(πy)/2

f
[
x+ cot

(√
π/2 y

)]
+ cos(2πy) x > cos(πy)/2

(51)

where

f(r) =


−r · sin

(
3πr2/2

)
r ≤ −1/3

| sin(2πr)| |r| < 1/3

2r − 1 + sin(3πr)/6 r ≥ 1/3

(52)
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(a) Exact solution along z = 0. (b) Reconstructed solution along z = 0 using k = 4.

(c) Computed smoothness indicator for k = 4.
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(d) Reconstructed solution along the section line in
(b).

Fig. 4. Results for CENO reconstruction of the modified Abgrall function. Numerical results shown here
were obtained using a mesh with 3 million vertices and 18 million tetrahedral elements.

and

g(z) =

{
sin (zπ/2) /2 + 1 z < −1/2

−z/2 + 1 z ≥ −1/2
(53)

Eq. (51) was discretized on a cube with length 2 and centered about the origin, using computational meshes
similar to those used for the spherical cosine function (Fig. 3(b)). The exact and numerical solutions along
z = 0 are illustrated in Figs. 4(a) and 4(b), respectively. This reconstruction was preformed using k = 4
on a mesh with approximately 3 million vertices and 18 million tetrahedral elements, and, as observed in
Fig. 4(b), it was able to accurately represent the Abgrall function without producing spurious oscillations.
This is because the smoothness indicator, illustrated in Fig. 4(c), correctly identified the discontinuities in
both u and ~∇u.

The reconstructed solution obtained with k = 1 to 4 and a mesh with 18 million tetrahedral elements
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Fig. 5. Effect of grid resolution on solution accuracy for CENO reconstruction of the modified Abgrall
function. Accuracy is measured using the L1 norm of the error.

is compared with the original function along a line in Fig. 4(d). For all values of k, the proposed CENO
scheme accurately represented the exact solution and was able to achieve oscillation-free solutions despite
the large discontinuities in u and ~∇u. This oscillation-free behavior confirms the ability of the smoothness
indicator to correctly identify under-resolved solution content.

The effect of mesh resolution on the L1 norm of the solution error is illustrated in Fig. 5. A large
improvement in the error was achieved by increasing k. The largest reduction in error occurs when k is
increased from 0 to 1. There was a factor of 2.2 reduction in error using k = 1 on the finest mesh when
compared to the solution error obtained with k = 0. Although this improvement became less pronounced
as k was increased further, there was still a reduction in error as k was increased above 1. Using k = 4
on the same mesh, the error was approximately a factor of 2.4 less than the value obtained using k = 0.
Even larger reductions in error over the first- and second-order schemes are expected when the high-order
(k > 1) CENO schemes are used combination with adaptive mesh refinement (AMR) [38].

The convergence rate of the error norms is also provided in Fig. 5. An order of accuracy of 1 was
observed for all values of k, which was expected after applying a limited piecewise linear reconstruction
near discontinuities. Nonetheless, the main highlight is that the hybrid reconstruction procedure was able to
produce non-oscillatory solutions despite the presence of discontinuities, using only a single, central stencil.

4.3 Smooth Supersonic Flow
The spatial accuracy of the proposed finite-volume formulation was verified for smooth flows using the
method of manufactured solutions (MMS) [72–74]. In MMS, analytical source terms are derived which,
when added to the governing equations, produce a desired solution. The particular MMS approach outlined
by Roy et al. [75, 76] was applied to produce sinusoidal solutions of the following form:

ρ = ρ0 + ρx sin (aρxπx/L) + ρy cos
(
aρyπy/L

)
+ ρz sin (aρzπz/L) (54a)

u =u0 + ux sin (auxπx/L) + uy cos
(
auyπy/L

)
+ uz cos (auzπz/L) (54b)

v = v0 + vx cos (avxπx/L) + vy sin
(
avyπy/L

)
+ vz sin (avzπz/L) (54c)

w =w0 + wx sin (awxπx/L) + wy sin
(
awyπy/L

)
+ wz cos (awzπz/L) (54d)

p = p0 + px cos (apxπx/L) + py sin
(
apyπy/L

)
+ pz cos (apzπz/L) (54e)

where φ0, φx, φy, φz, aφx , aφy , and aφz are constants for the variable φ ∈ {ρ, u, v, w, p}. The coefficients
were chosen based on those given by Roy et al. [75] for smooth, three-dimensional, supersonic inviscid flow.
They are provided in Table 4 for completeness. The length scale, L, was chosen as unity.

This particular manufactured solution describes a steady supersonic flow at an angle of approximately
45 degrees to the coordinate axes, and with a Mach number varying between 3 and 6. The flow was modeled
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Table 4. The coefficients for the three-dimensional manufactured solution to Eq. (54).

φ φ0 φx φy φz aφx aφy aφz

ρ 1 0.15 -0.1 -0.12 1 0.5 1.5
u 800 50 -30 -18 1.5 0.6 0.5
v 800 -75 40 -30 0.5 2/3 1.25
w 800 15 -25 35 1/3 1.5 1
p 1×105 0.2×105 0.5×105 -0.35×105 2 1 1/3

on a unit cube over the range 0 ≤ x, y, z ≤ 1; although, any domain could be chosen since the solutions
exist for all x, y and z. An example of this smoothly varying solution is illustrated in Fig. 6(a), which
depicts the internal energy distribution.

The spatial accuracy was assessed by performing calculations with different mesh sizes and measuring
the changes in solution error. Solutions were obtained on meshes of varying resolution, similar to those
in Fig. 3(b), with supersonic inflow and outflow boundary conditions at the corresponding upstream and
downstream boundaries of the domain. All solutions were relaxed to a steady-state using the two-stage
optimally smoothing scheme of van Leer et al. [69] with a CFL = 0.5 and the HLL numerical flux. Any
numerical flux can be used for this error analysis, because, according to Eq. (12), the dissipation vanishes
with O(hk+1) for smooth solutions.

For each calculation, the analytical solution was prescribed at every vertex of the primal mesh and the
governing equations were relaxed until all equation residuals were reduced by four orders of magnitude.
Tighter tolerances were also tested, but no significant gain in accuracy was observed using them.

The L2 norm of the error in the predicted internal energy, e, is illustrated in Fig. 6(b). All of the
primitive solution quantities displayed the same relationship between mesh size and total solution error,
but e displayed the largest errors and was therefore chosen for this analysis. The slopes of the lines in
Fig. 6(b) are provided in Fig. 6(c), along with those observed for the other norms, i.e., the L1 and L∞
norms. For all values of interest for k, the formal order of accuracy was achieved by the L2 norm. The
other norms also displayed similar convergence characteristics, although some degradation of the slopes of
the L∞ norms were observed as the mesh spacing decreased. This is largely attributed to the finite precision
of the adaptive cubature algorithm used to evaluate the numerical errors.

Figure 6(b) illustrates the advantages of using high-order methods on smooth problems. On the finest
mesh investigated for this problem, the fifth-order (k = 4) scheme achieved an L2 error norm that was
5 × 105 times smaller than what was obtained using the first-order (k = 0) scheme on the same mesh.
However, this direct comparison does not account for the added computational cost of using high-order
methods.

To compare computational cost, the solution error obtained with each scheme is plotted as a function of
the wall-clock time in Fig. 6(d). The high-order schemes became more efficient in terms of accuracy versus
computational cost as the target accuracy got smaller. That is, there is a particular range of accuracy for
which a particular value of k is the most efficient, and this optimal value of k increases with the desired
level of accuracy. For all the meshes considered, the first-order (k = 0) scheme was the least efficient, while
the second-order (k = 1) scheme was the most efficient for a target error above approximately 10−3. Just
below this level of error, the fourth-order (k = 3) scheme was the most efficient. For example, it took
approximately 24 times less wall-time than the second-order scheme to achieve an error of about 3.5×10−5.
The computational savings from the fifth-order scheme are much greater. This scheme was the most efficient
for errors below 10−6. Extrapolating the results in Fig. 6(d), the fifth-order scheme achieved an error of
7× 10−9 in a factor of 2× 106 less wall-time than the second-order scheme.

These results confirm that, for smooth problems, the higher-order CENO schemes are more efficient for
higher levels of desired accuracy (i.e., lower errors).
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(a) Exact solution.
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k Formal L1 L2 L∞

0 1 0.97 0.97 0.83
1 2 2.05 2.06 1.88
2 3 3.10 3.09 2.72
3 4 3.93 3.89 3.39
4 5 5.09 5.08 4.35

(c) Convergence of error norms.
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Fig. 6. Results for smooth supersonic flow.

4.4 Ringleb’s Flow
Another steady-state problem with a known solution that was used to assess the accuracy of numerical
algorithms is Ringleb’s flow [77]. It is a hodograph solution to the Euler equations that is parameterized
in terms of the total velocity, q, and the stream line constant, ψ, as [78]

x(q, ψ) =
1

2ρ

(
2

ψ2
− 1

q2

)
− J

2
(55)

y(q, ψ) = ± 1

ψρq

√
1−

(
q

ψ

)2

(56)
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Fig. 7. Mach number contours and sample computational mesh for Ringleb’s flow.

where

a =

√
1− γ − 1

2
q2

ρ = a

(
2

γ−1

)

p =
1

γ
a

(
2γ
γ−1

)

J =
1

a
+

1

3a3
+

1

5a5
− 1

2
ln

1 + a

1− a

The flow angle φ is related to the streamline constant and velocity by

φ = 2π − arcsin (q/ψ) (57)

Here, a fluid with γ = 1.4 was considered in the quadrant bounded by the streamlines ψmin = 0.75 and
ψmax = 1.5. The inflow was situated along the iso-velocity line of q0 = 0.5 and the outflow is situated
along y = 0 or q = k. This configuration results in subsonic flow at the inlet that smoothly accelerates
and transitions to supersonic. The Mach number contours for the resulting transonic flow are illustrated in
Fig. 7.

For this test case, the spatial accuracy was assessed by measuring the error between the predicted and
exact solutions for density. Calculations were performed with both k = 1 and k = 4 using a series of
successfully refined meshes. The coarsest mesh that was used is illustrated in Fig. 7. It was created by first
subdividing the domain into hexehedral elements: 31 hexahedra along the streamwise direction, 19 along the
transverse direction (i.e., between the streamline boundaries), and 2 in the remaining (z) direction. Each
hexahedral element was then split into 28 new tetrahedra to produce a final mesh with 32,984 elements
and 7,321 vertices. Finer meshes were generated by refining the original hexahedral mesh and applying the
same hexehedra-to-tetrahedra conversion procedure. Since the solution only varies in two directions, x and
y, the domain was not refined in the z-direction. Rather, the thickness of the slab was varied to maintain
the original aspect ratios of the elements.

As for the previous test case, computations were initialized with the analytic solution and the governing
equations were relaxed until all equation residuals were reduced by four orders of magnitude. Tighter
tolerances provided no significant gain in accuracy. All solutions were relaxed to a steady-state using the
two-stage optimally smoothing scheme of van Leer et al. [69] with a CFL = 0.5 and the HLL numerical
flux. Characteristic boundary conditions were applied at upstream and downstream boundaries, while the
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Table 5. Global error norms and convergence rates of the predicted density for Ringleb’s flow.

Nodes Elements Error Convergence Rate

L1 L2 L∞ L1 L2 L∞
k = 1

7,321 32,984 6.74× 10−5 1.82× 10−4 2.88× 10−3

28,314 129,808 1.44× 10−5 3.68× 10−5 7.52× 10−4 −2.28 −2.36 −1.99
112,257 519,232 3.29× 10−6 8.00× 10−6 1.89× 10−4 −2.15 −2.22 −2.00
439,368 2,041,200 7.98× 10−7 1.89× 10−6 4.99× 10−5 −2.08 −2.12 −1.95

k = 4

7,321 32,984 1.17× 10−5 6.31× 10−5 1.33× 10−3

28,314 129,808 4.88× 10−7 4.18× 10−6 1.42× 10−4 −4.69 −4.01 −3.31
112,257 519,232 1.22× 10−8 1.43× 10−7 9.73× 10−6 −5.35 −4.90 −3.90
439,368 2,041,200 3.04× 10−10 3.76× 10−9 3.80× 10−7 −5.42 −5.33 −4.75
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Fig. 8. Solution time for a given accuracy for Ringleb’s flow.

exact solution was prescribed along the streamline boundaries. The mesh was assumed periodic in the
z-direction.

The global error norms for the predicted density are provided in Table 5. Four different meshes were
considered, and, as the meshes were refined, the L1, L2 and L∞ error norms all converged towards their
correct asymptotic behavior. Second-order accuracy was observed for k = 1 while fifth-order accuracy was
observed for k = 4. This was confirmed by the computed convergence rates, which are also provided in
Table 5.

Similar conclusions as those for the previous test case were reached upon comparing the computational
cost for the two schemes as a function of error. As shown in Fig. 8, which depicts the L2 error in ρ versus
wall-clock time, the low-order scheme was more efficient for coarse meshes or higher error levels. But the
computational savings of the fifth-order scheme quickly became significant as the desired error was reduced
below approximately 10−5 in this case. Extrapolating the results for k = 1, the fifth-order (k = 4) scheme
achieves an error approximately 30 times less than the second-order (k = 1) scheme for a wall-time of about
2× 104 s. Additionally, it takes about a factor of 30 less time to get an error of 4×10−9 with the high-order
scheme than with the low-order one. These results reaffirm the improved computational efficiency and
accuracy of the proposed high-order CENO schemes when applied to smooth problems.
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4.5 Convection of an Isentropic Vortex
The accuracy of the overall scheme was also verified for transient problems by studying the convection of
an isentropic, cylindrical vortex. This is a smooth problem for which an exact solution is known. The flow
is initially uniform with a density of ρ∞ = 1 kg/m3, a velocity of ~v∞ = (u∞, v∞, w∞) = (1, 1, 0) m/s, and
a temperature of T∞ = p∞/ρ∞ = 1 J/kg. At a time t = 0 s, the flow is perturbed by a cylindrical vortex
centered at (x0, y0, z) that propagates undisturbed at a velocity of ~v∞. This initial perturbation is defined
by [79]

δT =
(γ − 1)β2

8γπ2
exp

(
1− r2

)
(58a)

δu = − β

2π
y exp

(
1− r2

2

)
(58b)

δv =
β

2π
x exp

(
1− r2

2

)
(58c)

δw = 0 (58d)

where δT and (δu, δv, δw) are the perturbations in temperature and velocity, respectively, r =
√
x2 + y2 is

the radial position relative to the vortex center, and β = 5 is a parameter which determines the strength
of the vortex. The scaled coordinates are given by x = (x− x0)/rc and y = (y − y0)/rc, where rc = 0.1m
is the radius of the vortex core. Based on the perturbations defined by Eq. (58), the initial conditions for
the isentropic flow at a time t = 0 s are given by

ρ = (T∞ + δT )1/(γ−1) (59a)
u = u∞ + δu (59b)
v = v∞ + δv (59c)
w = w∞ + δw (59d)
p = ργ (59e)

This solution is translationally invariant, i.e., the initial vortex at (x0, y0) is merely translated by a distance
~v∞t over a time t. Thus, the exact solution at any time is given by

U(~x, t) = U(~x− ~v∞t, 0) (60)

In this study, a rectangular domain was considered with Ω = [−Lx/2, Lx/2] × [−Ly/2, Ly/2] ×
[−Lz/2, Lz/2]. The lengths Lx and Ly are equal to 1m, but, since this is a two dimensional problem, the
length Lz was varied to maintain a computational domain that was only two layers of elements thick. At
t = 0 s, the vortex was placed at (x0, y0) = (−0.05,−0.05)m and convected until tmax = 0.1 s, which results
in a final vortex centered at (0.05, 0.05)m.

The domain was subdivided into tetrahedral meshes of varying resolutions. A sample mesh configuration
along with the initial density contours at t = 0 s are illustrated in Fig. 9. Characteristic boundary conditions
were applied at all upstream and downstream boundaries while the mesh was assumed periodic in the z-
direction.

4.5.1 Temporal Accuracy

First, a temporal refinement study was performed to ensure the asymptotic behavior of the time integration
schemes. The study was performed in a similar manner to the spatial error analysis performed in the
previous section, i.e., by analyzing the effect of the temporal resolution on the global solution error. For
this study, several solutions were obtained using k = 4 and the HLL numerical flux on a single mesh with
57,344 uniform tetrahedra and 12,611 vertices. These solutions were obtained using the following time
steps: ∆t = 1.0, 0.5, 0.25, and 0.125 µs.
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Fig. 9. Sample mesh and contours of density at t = 0 for the convection of an isentropic vortex.
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(b) Spatial convergence.

Fig. 10. Convergence of the error norms for the convection of an isentropic vortex.

For each time integration scheme, a reference or “exact” solution was obtained using a small time
step and the error was approximated by the norm of the difference between the computed and reference
solutions. This was necessary to eliminate the spatial errors and isolate the temporal ones. Here, reference
solutions for each temporal discretization were obtained with a small time step of ∆t = 0.02 µs. The errors
obtained with various RK schemes (RK1, RK2, and RK4) at t = 0.1 s are plotted in Fig. 10(a) and the
convergence rates are provided in Table 6. These results show that the formal temporal accuracy was
achieved by all schemes. They also demonstrate the drastic reductions in error that are possible using
high-order time-marching schemes.

4.5.2 Spatial Accuracy

In addition to the temporal accuracy, the spatial accuracy was verified for this transient problem using
different values of k between 1 and 4. All solutions were integrated in time using a fixed CFL and an
s-stage RK scheme. For k ≤ 3, the number of stages s was selected so that the temporal accuracy matched
the spatial accuracy and a constant CFL number of 0.5 was used for all meshes. This ensured that the
ratio between the spatial and temporal errors remained constant as the mesh was refined, since this ratio
is proportional to ∆ts/hk+1. However, since a fifth-order RK scheme was not implemented, solutions for
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Table 6. Temporal convergence rates of the error norms for the convection of an isentropic vortex.

Scheme Formal L1 L2 L∞

RK1 1 1.13 1.13 1.13
RK2 2 2.03 2.03 2.03
RK4 4 3.82 3.98 3.91

Table 7. Spatial convergence rates of the error norms for the convection of an isentropic vortex.

k Formal L1 L2 L∞

0 1 0.85 0.86 0.94
1 2 2.38 2.32 2.45
2 3 2.96 2.94 2.91
3 4 4.45 4.41 4.32
4 5 4.97 4.96 4.90

k = 4 (fifth-order accurate in space) were obtained with RK4 (fourth-order accurate in time) instead. And
because the behavior of the two errors do not match, i.e., temporal and spatial, the CFL number was varied
according to the following relation for k = 4:

CFL
CFL0

=

(
h

h0

)1/4

(61)

where CFL0 = 0.5 is the CFL number used for the coarsest mesh with mesh spacing h0, and h is the spacing
for the mesh in question. This formula ensured that the ratio between the spatial and temporal errors was
always maintained constant when using k = 4 with RK4.

For the spatial accuracy study, solutions were obtained on a sequence of finer grids with different
values of k. Spatial errors were computed using the analytical solution as a reference and are shown in
Fig. 10(b). The corresponding convergence rates are provided in Table 7. These results verify that, for a
transient problem, the proposed finite-volume formulation achieved the expected formal spatial accuracy
for all values of k considered.

To compare the computational costs associated with each high-order scheme, the solution error is plotted
as a function of the wall-clock time in Fig. 11. As previously shown for steady problems, the high-order
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Fig. 11. Solution time to a given level of accuracy for the convection of an isentropic vortex.
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Table 8. Mesh sizes used for the shock tube problem.

Nodes Elements
Average Edge
Length (mm)

Mesh 1 1,484 5,745 16.6
Mesh 2 9,654 45,960 8.16
Mesh 3 69,035 367,680 4.06
Mesh 4 520,821 2,941,440 2.03

x

0.05L

L=1 m

Fig. 12. Sample computational mesh and domain used for shock tube problem.

schemes are more efficient in terms of accuracy versus computational cost when the target accuracy is high.
That is, there is a particular range of accuracy for which a particular value of k is the most efficient, and
this optimal value of k increases with the desired level of accuracy.

4.6 Shock Tube
The robustness and accuracy of the algorithm was demonstrated for non-smooth problems with a one-
dimensional shock-tube [80]. This time-dependent problem was solved on a rectangular domain of length
1 m, with the following initial conditions:

W(x, 0) =

{
WL if x ≤ 0.45m,
WR if x > 0.45m

(62)

where WL =
[
1 kg/m3, 0, 0, 0, 1Pa

]
and WR =

[
0.125 kg/m3, 0, 0, 0, 0.1Pa

]
. A sample of the meshes

used is illustrated in Fig. 12 along with the dimensions of the computational domain. The sizes and average
edge length for each mesh are provided in Table 8.

Solutions were obtained for different values of k, using meshes of increasing resolution. All solutions
were integrated in time until t = 0.2 s with the RK4 time-marching scheme, a CFL of 0.2, and the HLL
numerical flux. Reflection boundary conditions were applied to the surrounding surfaces while the solution
was free to vary at both ends of the tube.

Solutions on the finest mesh considered are compared with the exact solution at t = 0.2 s in Fig. 13(a).
Overall, there was a distinct improvement in the numerical solution as the polynomial degree was increased,
even near discontinuities. This is highlighted for the contact surface in the inset of Fig. 13(a). There was
an initial large improvement in the solution as k was increased from 0 to 1. Further increases in k provided
smaller and smaller improvements in the solution.

A similar comparison is made in Fig. 13(b), which illustrates the effect of mesh resolution on the fifth-
order (k = 4) scheme. As expected, increasing the mesh resolution improves the agreement of the numerical
solution with the exact solution.

The behavior of the L1 norm of the error in predicted density is demonstrated in Fig. 13(c). The first-
order (k = 0) scheme does not quite reach the asymptotic region. It only achieves an order of accuracy of
approximately 0.7. The k = 1 scheme achieved a significant reduction in error over the k = 0 scheme, but
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Fig. 13. Results for one-dimensional shock-tube at t = 2 s.

only converges at a rate of O(h) due to the discontinuities present in the solution. All higher-order schemes
only achieved first-order accuracy as well, which was expected because of the discontinuities in the solution,
but there was still a decrease in overall error as k was increased beyond unity. Even though CENO drops
to first-order near discontinuities, the size of the region influenced by the discontinuity decreases with mesh
size. As such, there is a net reduction in error. For example, using the finest mesh considered for this
problem (Mesh 4), the error obtained using the second-order (k = 1) scheme is 3.2 times smaller than the
error obtained using the first-order (k = 0) scheme. The fifth-order (k = 4) scheme achieves an even larger
reduction in error. It is 4.4 times smaller than the error obtained using the first-order (k = 0) scheme.

Similar to the previous test involving smooth supersonic flow (Section 4.3), the computational efficiency
was assessed in terms of the wall-clock time to a given level of error in Fig. 13(d). The k = 1 scheme was
the most efficient over the range of meshes studied. However, extrapolating to lower error levels, the k = 2
scheme is expected to be more efficient for error levels below 0.02. For example, extrapolating the results
illustrated in Fig. 13(d), the k = 2 scheme is expected to take approximately half the wall-time than the
k = 1 scheme to achieve an error of 5 × 10−4. The efficiencies of the other high-order schemes, i.e., k = 3
and k = 4, are expected to improve as the desired error is lowered further.
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Fig. 15. Sample computational mesh for the
Shu-Osher problem.

For problems with discontinuities and no structure in the smooth regions, such as the shock tube problem
studied here, the benefits of the proposed scheme in terms of improved global error are not as great as they
were for completely smooth problems (Sections 4.3–4.5). As shown in Fig. 13(d), overly fine meshes are
required for the proposed high-order schemes to demonstrate improved efficiency. Greater benefits are
expected for these types of problems using the high-order schemes in conjunction with AMR. AMR would
reduce the local error near the discontinuities and the unlimited high-order reconstruction would reduce
the errors in the smooth regions.

4.7 Shu-Osher Problem
The advantages of the proposed high-order scheme are more significant for problems with discontinuities
when the smooth regions involve more complex variations. To illustrate this, the one-dimensional Shu-Osher
problem [81] was studied. This particular problem involves a shock wave moving at Mach 3 and interacting
with a sinusoidal density wave. It is similar to the shock tube studied in the previous section but contains
more smoothly varying features. For this problem the initial solution at time t = 0 is given by

W(x, 0) =

{
WL if x < −4

WR if x ≥ −4
(63)

where

WL =


3.857143
2.629369

0
0

10.33333

 WR =


1 + 0.2 sin 5x

0
0
0
1


and W(x, 0) is defined on x ∈ [−5, 5]. The initial conditions are illustrated in Fig. 14.

This problem was investigated using the three-dimensional tube-shaped mesh illustrated in Fig. 15. The
mesh is only two cells wide in the y- and z-directions. It consists of 46,413 vertices and 179,200 elements
with an average edge length of 4.5 × 10−3. Predictions were obtained using both the formally second-
(k = 1) and fifth-order (k = 4) schemes. All solutions were integrated in time until t = 1.8 s with the RK4
time-marching scheme, a CFL of 0.2, and the HLL numerical flux. Characteristic boundary conditions were
applied at x = −5 and x = 5 while all other boundaries were assumed periodic. Since an exact solution is
not known for this particular problem, a reference solution was computed using a one-dimensional version
of the proposed finite-volume algorithm and a finely resolved mesh with 2000 elements.
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Fig. 16. Predicted density for Shu-Osher problem at t = 1.8 s. Solutions were obtained with Sc = 200.

Predictions for density are compared with the reference solution at t = 1.8 s in Fig. 16. These predictions
were obtained with a smoothness indicator cutoff of Sc = 200 since this value produces a result with low
diffusion. As illustrated in Fig. 16, both the second- (k = 1) and fifth-order (k = 4) solutions agree with
the reference solution. The high-order discretization does a much better job representing the small-scale
variations, i.e., the peaks in front and behind of the shock. There are no oscillations observed across the
shock for the high-order CENO predictions either. This demonstrates the ability of the proposed scheme
to resolve smoothly varying features with high-order accuracy even in the presence of discontinuities.

The regions where the reconstructed density was indicated to be non-smooth is illustrated in Fig. 17(a).
Only a few small regions were flagged as non-smooth. One small region surrounding the shock was flagged
along with two regions begin the shock where the compressed entropy waves begin to steepen. There was
also a small region just behind the shock where the density oscillated with a high frequency. While these
three limited regions behind the shock do not necessarily possess discontinuities in the PDEs themselves,
there were significant jumps in the predicted control-volume averages through these regions. As such, these
regions were deemed under-resolved and limited to avoid generating any spurious oscillations.

Most test cases considered up to this point used a slightly larger cutoff than the one used for this
problem. A cutoff of Sc = 2000 was used for the previous cases while Sc = 200 was used for the Shu-
Osher problem described in this section. It was mentioned in Section 3.1.3 that Sc = 2000 provided the
best balance between accuracy and stability for a wide range of problems. Smaller values of Sc offer less
numerical diffusion and improved accuracy, but can be less robust depending upon the case. Larger values
are more dissipative but they offer improved robustness. Figure 17 illustrates this effect of the cutoff Sc on
the predicted density for the Shu-Osher problem. As illustrated in the figure, a significant improvement in
the predicted solution was observed as Sc was reduced. Nevertheless, no oscillations were observed in any
of the high-order solutions for this problem, even when using more relaxed smoothness requirements.

4.8 Sedov Blast Wave
The next two problems were used to demonstrate the robustness of the proposed algorithm. The first of
these two, the Sedov explosion problem [82], involves the evolution of a spherical blast wave from an initial
pressure singularity in an otherwise homogeneous medium. This problem challenges a scheme’s robustness
and ability to remain monotone since any oscillations near the blast front can easily cause negative densities
or pressures.

The blast wave is generated by an initial energy source, eblast, located in a small region of radius r0

near the origin. In practice, it is difficult to define a small radius r0 without an overly fine mesh near the
origin, especially when using tetrahedral mesh. So the total amount of initial energy eblast was deposited
at t = 0 s into a single control volume at the origin only, hereafter referred to as control volume Ωo. The
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(c) Sc = 2000.

Fig. 17. Effect of smoothness indicator on predicted density for Shu-Osher problem. The solutions
correspond to a time of t = 1.8 s.

Table 9. Mesh sizes used for the Sedov blast wave problem.

Sphere Cube

Nodes Elements
Average Edge
Length (mm) Nodes Elements

Average Edge
Length (mm)

Mesh 1 1,999 9,615 98.6 5,631 28,000 84.2
Mesh 2 14,364 76,920 48.6 42,461 224,000 41.9
Mesh 3 108,655 615,360 24.2 140,491 756,000 27.9
Mesh 4 844,701 4,922,880 12.1 329,721 1,792,000 20.9
Mesh 5 640,151 3,500,000 16.7

initial conditions at time t = 0 s are

ρ(~x, 0) = 1 kg/m3, ~v(~x, 0) = ~0 m/s, p(~x, 0) =

 (γ − 1) ρ
eblast
Vo

if ~x ∈ Ωo

10−5 Pa otherwise

where eblast = 0.851072 Jm3, and Vo is the volume of the control volume that the energy is deposited into.
This configuration gives a blast wave that reaches r =

√
x2 + y2 + z2 = 1 m at t = 1 s. An exact solution

for this spherical blast wave is available using the numerical algorithm described by Kamm [83].
Two different types of domains/meshes were considered to investigate their effects on the accuracy of

predicted solutions: a spherical domain with irregular meshes and a cube-shaped domain with regular
meshes. Samples of the two types of computational meshes are presented in Fig. 18. In both cases, only an
octant of the computational domain was modeled using reflection boundary conditions to enforce symmetry.
Thus, V0 is eight times the volume of the control volume at the origin. The outer surfaces of the octant
were also treated as a reflecting wall, but this boundary condition had no effect on the predicted solution
since the blast wave never reached the outer surfaces over the simulation time considered. The radius of
the sphere and the length of the sides of the cube were both 1.2 m.

All solutions were integrated in time until t = 1 s with the RK4 time-marching scheme, a CFL of 0.2,
and the Rusanov numerical flux. Simulations were obtained with k = 0, 1, . . . , 4 on a series of different,
successively-refined meshes. The number of vertices and tetrahedral elements as well as the average edge
length for each mesh considered are provided in Table 9. Note that the finest meshes for the spherical and
cube-shaped domains have a similar degree of resolution, i.e., the average edge lengths for the two meshes
are of the same order of magnitude.
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(a) Sphere. (b) Cube.

Fig. 18. Sample computational meshes used for the Sedov problem.

(a) Sphere. (b) Cube.

Fig. 19. Predicted pressure contours for the Sedov problem at t = 1 s. The predictions were obtained with
k = 4 on the finest mesh (i.e., Mesh 4 for the spherical domain and Mesh 5 for the cube-shaped domain).

Three dimensional contours of pressure at t = 1 s are illustrated in Fig. 19. These predictions were
obtained using the finest mesh of both domains (i.e., Mesh 4 for the spherical domain and Mesh 5 for
the cube-shaped domain) with the k = 4 CENO discretization. As illustrated in Fig. 19, there was no
noticeable effect of mesh configuration on the overall solution for pressure. Additionally, both solutions
where monotone and displayed an excellent degree of symmetry.

The degree of spherical symmetry in the predicted pressure was quantified by measuring the mean and
standard deviation of this quantity as a function of radius. As observed in Fig. 20, which illustrates the
variation of the mean and standard deviation of pressure with radius, there was little deviation in pressure
at a particular fixed radius. These results were obtained with k = 4 on the finest spherical and cube-
shaped meshes. In front of and behind the shock, where the solution was relatively smooth, the deviation
from the mean was close to zero. The largest deviations occurred at the shock front in both cases, and
this deviation was similar for both types of meshes. For example, the maximum standard deviation of
the predicted pressure for the finest cube-shaped and spherical meshes were 16.2 and 21.4%, respectively.
And both of these maximums occurred at the shock front, i.e., r = 1 m, where the CENO discretization
used a limited piecewise linear reconstruction. The limiter does not produce symmetric results since the
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Fig. 20. Mean and deviation of the predicted density as a function of radius for the Sedov problem at
t = 1 s. Symbols represent the mean while error bars represent the standard deviation. The predictions
were obtained with k = 4 on the finest mesh (i.e., Mesh 4 for the spherical domain and Mesh 5 for the
cube-shaped domain).

r (m)

D
en

si
ty

, 
 (

k
g
/m

3
)

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

Exact
k=0
k=1
k=2
k=3
k=4

NonSmooth
For k=4

(a) Effect of polynomial degree on predictions ob-
tained using the spherical Mesh 4 (844,701 ver-
tices).

r (m)

D
en

si
ty

, 
 (

k
g
/m

3
)

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

Exact
1,999 vertices
14,364 vertices
108,655 vertices
844,701 vertices

(b) Effect of mesh size on predictions for k = 4.

Fig. 21. Predicted density along a line passing through (0, 0, 0) and (1, 1, 1) for the Sedov problem at
t = 1 s. These results were obtained using the irregular spherical meshes.

shock front is not aligned with the mesh. Additionally, larger deviations occurred along the boundaries
because the limiter tended to be more conservative near boundaries than in the interior of the domain.
This produced asymmetries in the limiter values, which in turn generated asymmetries in the predictions.
Nonetheless, the largest standard deviation for each case got smaller as the mesh spacing was decreased.

Predictions for density obtained using the spherical domain are compared with the analytical solution
at t = 1 s in Fig. 21. These predictions were obtained by interpolating the solution along a line passing
through the origin and the coordinate (x, y, z) = (1, 1, 1). For all values of k and meshes employed, no
oscillations were observed in front of or behind the shock wave. For the high-order solutions, i.e., k > 1,
the smoothness indicator correctly identified the large solution discontinuity at the moving shock front. For
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Fig. 22. Computational domain and initial conditions for the triple-point problem.

example, for the k = 4 case on the spherical Mesh 4, the region along this line that was deemed non-smooth
was confined to the area surrounding the shock, as illustrated in Fig. 21(a). Similar results were obtained
using the regular cube-shaped meshes.

Figure 21(a) illustrates the effect of polynomial order on the predicted density for the finest spherical
mesh investigated (Mesh 4 with 844,701 vertices and 4,922,880 tetrahedra). As was also observed for the
shock tube test problem in Section 4.6, increasing the order of the polynomial from k = 0 to k = 1 provided
a significant improvement in the predicted solution. Although the improvements were less drastic for the
higher-order solutions, i.e., k > 1, the peak density predicted using k = 3 and 4 is noticeably improved over
k = 1. It is not clear why the peak density predicted for k = 2 is slightly less than that predicted with
k = 1.

The effect of mesh resolution on the predicted density that was obtained using the 5th-order (k = 4)
CENO reconstruction is illustrated in Fig. 21(b). At low resolutions, the outwardly propagating shock
wave was smeared over several cell widths. However, as the mesh resolution was increased, the shock front
steepens and the accuracy of the numerical solution improves. Only the region directly surrounding the
shock was limited (see Fig. 21(a)).

The most significant result for this test case is that all of the high-order solutions displayed excellent
robustness without any oscillations. No negative densities or pressures were ever encountered in any of the
numerical solutions.

4.9 Triple-Point Shock Interaction
As a final test of the algorithm’s robustness, a three-state Riemann problem was studied. The test problem
considered here is a single-material, three-dimensional variant of the original two-dimensional problem
proposed by Galera et al. [84]. This problem does not have an exact solution, but it was studied here
because of the difficulty in resolving the interaction between shocks and contact discontinuities without
generating spurious oscillations. It consists of a computational domain Ω = [0, 7] × [0, 3] × [0, 1] that is
subdivided into three separate regions defined by Ω1 = [0, 1]× [0, 3]× [0, 1], Ω2 = [1, 7]× [0, 1.5]× [0, 1],
and Ω3 = [1, 7] × [1.5, 3] × [0, 1]. As illustrated in Fig. 22, a different set of initial conditions is
prescribed for each region at time t = 0. The initial discontinuity between Ω1 and Ω2 generates a contact
discontinuity, a rightward shock wave and leftward rarefaction wave. The same wave pattern is generated
by the discontinuity between Ω1 and Ω3, except that the shock propagates at a faster speed in Ω3. This
difference in propagation speed creates a strong shear along the initial contact discontinuity located at the
interface between Ω2 and Ω3 that eventually generates a high-speed vortex.

Two solutions were obtained on a mesh with 1,866,149 vertices and 10,712,865 tetrahedra, one with a
second-order polynomial representation (k = 1) and one with a fifth-order (k = 4) representation. Both
solutions were integrated in time until t = 5 s with the RK4 time-marching scheme, a CFL of 0.25, and the
HLL numerical flux. Reflection conditions were applied to all boundary surfaces as indicated in Fig. 22.

Numerical predictions for density at t = 5 s are compared in Fig. 23. Significant differences between
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Fig. 23. Predicted density field at t = 5 s for triple-point problem.

Fig. 24. Reference solution of the density field at t = 5 s for triple-point problem. This solution was
obtained using Chicoma [51] on a mesh with 78 million tetrahedra.

the two solutions are visible. Most notably, the high-order CENO solution does a better job resolving
the different types of discontinuities. Predicted gradients are steeper and the vortex rolls up further in
the high-order prediction. There are also some Kelvin-Helmholtz-like instabilities that develop along the
contact discontinuity in the fifth-order solution that are not observed in the second-order predictions. To
verify that these instabilities are not spurious oscillations generated by the numerical method, a reference
solution was generated using Chicoma [51] with a much finer mesh of 78 million tetrahedra. The reference
solution for density at t = 5 s is presented in Fig. 24. As observed in the figure, similar Kelvin-Helmholtz-like
instabilities form along the surface of the contact.

These results highlight the robustness of the high-order CENO algorithm since the k = 4 scheme was
able to reliably obtain a solution without producing any unphysical oscillations. They also highlight the
improved accuracy for problems with strong discontinuities. The high-order solution observed in Fig. 23 is
in better agreement with the reference solution presented in Fig. 24. More improvements over the second-
order scheme are expected when the CENO algorithm is used in conjunction with AMR. AMR will help
reduce the control volume sizes near the shock and their contribution to the overall global error.

5. Conclusions
A high-order finite-volume scheme was developed for the mathematical description of compressible fluids on
unstructured meshes. It is a vertex-based variant of the cell-based, Godunov-type, finite-volume methods
developed by Ivan et al. [36–40] and Charest et al. [32–35], which use a hybrid CENO reconstruction
procedure to avoid spurious oscillations. The scheme was assessed in terms of accuracy and computational
cost for a variety of problems, including smooth and discontinuous function reconstructions, and solutions
to idealized flow problems.

Up to fifth-order accuracy was demonstrated. For smooth flows and function reconstructions, an order
of accuracy of (k+ 1) was achieved using piecewise polynomial representations of degree k. Only first-order
accuracy was observed for all problems that contained discontinuities, but there was still a measured ad-
vantage provided by the high-order schemes. They displayed lower errors for a given mesh. This advantage
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was more distinct for discontinuous problems with structure in the smooth regions, like the Shu-Osher and
triple-point problems.

In terms of computational efficiency, i.e., wall time for a given accuracy, there was an optimal value of
k which varied depending upon the desired error and the particular problem. The standard second-order
scheme was the most efficient for higher error levels, and the high-order schemes became more efficient as
the desired error was decreased. This was demonstrated for smooth and discontinuous problems, although
the mesh sizes at which the high-order schemes were more efficient was significantly larger for discontinuous
problems. In one smooth case, the wall-time to a given level of error was reduced by a factor of approximately
24 when the high-order CENO scheme was compared with the second-order scheme.

For problems with discontinuities and no structure in the smooth regions, such as the shock tube
and Sedov blast wave problems, the benefits of the proposed scheme in terms of improved global error and
computational efficiency were not as great. This is because the global error for these cases was dominated by
the local error near discontinuities, and regions surrounding discontinuities are treated using a limited linear
reconstruction in the CENO procedure. As such, the key result of applying the proposed CENO algorithm
to these types of problems is that no spurious oscillations were generated and that the solution remained
essentially non-oscillatory. Greater benefits are expected for these types of problems using the proposed
high-order scheme in conjunction with AMR. AMR would reduce the local error near the discontinuities
and the unlimited high-order reconstruction would reduce the errors in the smooth regions.

Overall, this research highlights the main advantages of the CENO finite-volume algorithm. High-
order accuracy was achieved in smooth regions, while robust and monotone solutions were maintained
near discontinuities and under-resolved solution content. Future work consists of further development and
validation of the proposed algorithm, including its extension to multi-material problems, arbitrary equations
of state, moving meshes, and adaptive mesh refinement.

Acknowledgments
This research was supported by the United States Department of Energy, through the Advanced Simulation
& Computing (ASC) and Metropolis postdoctoral fellowship programs.

References
[1] D.J. Mavriplis. Unstructured-mesh discretizations and solvers for computational aerodynamics. AIAA J., 46(6):1281–

1298, 2008.
[2] S. Pirozzoli. On the spectral properties of shock-capturing schemes. J. Comput. Phys., 219(2):489–497, 2006.
[3] A. Harten, B. Engquist, S. Osher, and S.R. Chakravarthy. Uniformly high order accurate essentially non-oscillatory

schemes, III. J. Comput. Phys., 71(2):231–303, 1987.
[4] T.J. Barth. Recent developments in high order k-exact reconstruction on unstructured meshes. AIAA Paper 93-0668,

1993.
[5] R. Abgrall. On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput.

Phys., 114:45–58, 1994.
[6] T. Sonar. On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation

laws on general triangulations: polynomial recovery, accuracy and stencil selection. Comp. Meth. Appl. Mech. Eng., pp.
140–157, 1997.

[7] C.F. Ollivier-Gooch. Quasi-ENO schemes for unstructured meshes based on unlimited data-dependent least-squares
reconstruction. J. Comput. Phys., 133:6–17, 1997.

[8] G.S. Jiang and C.W. Shu. Efficient implementation of weighted ENO schemes. J. Comput. Phys., 126(1):202–228, 1996.
[9] D. Stanescu and W. Habashi. Essentially nonoscillatory Euler solutions on unstructured meshes using extrapolation.

AIAA J., 36:1413–1416, 1998.
[10] O. Friedrich. Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids.

J. Comput. Phys., 144(1):194–212, 1998.
[11] C. Hu and C.W. Shu. Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys., 150:97–127,

1999.
[12] C.F. Ollivier-Gooch and M. Van Altena. A high-order accurate unstructured mesh finite-volume scheme for the advection-

diffusion equation. J. Comput. Phys., 181(2):729–752, 2002.
[13] A. Nejat and C. Ollivier-Gooch. A high-order accurate unstructured finite volume Newton-Krylov algorithm for inviscid

compressible flows. J. Comput. Phys., 227(4):2582–2609, 2008.

33



[14] B. Cockburn and C.W. Shu. TVB Runge-Kutta local projection discontinous Galerkin finite-element method for conser-
vation laws II: General framework. Math. Comp., 52:411, 1989.

[15] B. Cockburn, S. Hou, and C.W. Shu. TVB Runge-Kutta local projection discontinous Galerkin finite-element method
for conservation laws IV: The multidimensional case. J. Comput. Phys., 54:545, 1990.

[16] R. Hartmann and P. Houston. Adaptive discontinuous Galerkin finite element methods for the compressible Euler
equations. J. Comput. Phys., 183:508–532, 2002.

[17] H. Luo, J.D. Baum, and R. Löhner. A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured
grids. J. Comput. Phys., 225:686–713, 2007.

[18] G. Gassner, F. Lörcher, and C.D. Munz. A contribution to the construction of diffusion fluxes for finite volume and
discontinuous Galerkin schemes. J. Comput. Phys., 224(2):1049–1063, 2007.

[19] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the numerical solution of the
compressible Navier-Stokes equations. J. Comput. Phys., 131:267–279, 1997.

[20] B. Cockburn and C.W. Shu. The local discontinuous Galerkin method for time-dependent convection diffusion system.
SIAM J. Numer. Anal., 35(6):2440–2463, 1998.

[21] B. Leervan , M. Lo, and M. Raaltevan . A discontinuous Galerkin method for diffusion based on recovery. AIAA Paper
2007-4083, 2007.

[22] M. Raaltevan and B. Leervan . Bilinear forms for the recovery-based discontinuous Galerkin method for diffusion.
Commun. Comput. Phys., 5(2–4):683–693, 2009.

[23] H. Liu and J. Yan. The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal.,
41(1):675–698, 2009.

[24] Z.J. Wang. Spectral (finite) volume method for conservation laws on unstructured grids – basic formulation. J. Comput.
Phys., 178:210–251, 2002.

[25] Z.J. Wang and Y. Liu. Spectral (finite) volume method for conservation laws on unstructured grids – ii. extenstion to
two-dimensional scalar equation. J. Comput. Phys., 179:665–697, 2002.

[26] Z.J. Wang, L. Zhang, and Y. Liu. High-order spectral volume method for 2d euler equations. Paper 2003–3534, AIAA,
June 2003.

[27] Z.J. Wang and Y. Liu. Spectral (finite) volume method for conservation laws on unstructured grids – iii. one dimensional
systems and partition optimization. Journal of Scientific Computing, 20(1):137–157, 2004.

[28] Y. Sun, Z.J. Wang, and Y. Liu. Spectral (finite) volume method for conservation laws on unstructured grids VI: extension
to viscous flow. J. Comput. Phys., 215(1):41–58, 2006.

[29] H. Huynh. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. AIAA Paper
2007-4079, 2007.

[30] Z.J. Wang and H. Gao. A unifying lifting collocation penalty formulation for the Euler equations on mixed grids. AIAA
Paper 2009–401, 2009.

[31] Z.J. Wang and H. Gao. A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral
volume/difference methods for conservation laws on mixed grids. J. Comput. Phys., 228:8161–8186, 2009.

[32] S.D. McDonald, M.R.J. Charest, and C.P.T. Groth. High-order CENO finite-volume schemes for multi-block unstructured
mesh. 20th AIAA Computational Fluid Dynamics Conference, Honolulu, Hawaii, June 27–30 2011. doi: 10.2514/6.
2011-3854. AIAA-2011-3854.

[33] M.R.J. Charest, C.P.T. Groth, and P.Q. Gauthier. High-order CENO finite-volume scheme for low-speed viscous flows on
three-dimensional unstructured mesh. ICCFD7 - International Conference on Computational Fluid Dynamics, Hawaii,
July 9–13 2012. Paper ICCFD7-1002.

[34] M.R.J. Charest and C.P.T. Groth. A high-order central ENO finite-volume scheme for three-dimensional turbulent
reactive flows on unstructured mesh. 21st AIAA Computational Fluid Dynamics Conference, San Diego, California, June
24–27 2013. doi: 10.2514/6.2013-2567. AIAA 2013-2567.

[35] M.R.J. Charest, C.P.T. Groth, and P.Q. Gauthier. A high-order central ENO finite-volume scheme for three-dimensional
low-speed viscous flows on unstructured mesh. Commun. Comput. Phys., 2015. Accepted for publication.

[36] L. Ivan and C.P.T. Groth. High-order central CENO finite-volume scheme with adaptive mesh refinement. AIAA paper
2007-4323, 2007.

[37] L. Ivan and C.P.T. Groth. High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous
flows. AIAA paper 2011-0367, 2011.

[38] L. Ivan and C.P.T. Groth. High-order central ENO scheme with adaptive mesh refinement for hyperbolic conservation
laws. Commun. Comput. Phys., 2013. submitted for publication.

[39] L. Ivan and C.P.T. Groth. High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous
flows. J. Comput. Phys., 257:830–862, 2013.

[40] A. Susanto, L. Ivan, H. De Sterck, and C.P.T. Groth. High-order central ENO finite-volume scheme for ideal MHD.
J. Comput. Phys., 250(1):141 – 164, 2013.

[41] A. Harten and S.R. Chakravarthy. Multi-dimensional ENO schemes for general geometries. ICASE Report No. 91-76,
1991.

[42] Y.T. Zhang and C.W. Shu. Third order WENO scheme on three dimensional tetrahedral meshes. Commun. Comput.
Phys., 5(2-4):836–848, 2009.

[43] M. Dumbser and M. Käser. Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear

34



hyperbolic systems. J. Comput. Phys., 221(2):693–723, 2007.
[44] P. Tsoutsanis, V.A. Titarev, and D. Drikakis. WENO schemes on arbitrary mixed-element unstructured meshes in three

space dimensions. J. Comput. Phys., 230(4):1585–1601, 2011.
[45] Y. Liu and Y.T. Zhang. A robust reconstruction for unstructured WENO schemes. J. Sci. Comput., 54(2-3):603–621,

2013.
[46] A. Haselbacher. A WENO reconstruction algorithm for unstructed grids based on explicit stencil construction. AIAA

paper 2005-0879, 2005.
[47] J. Waltz. Derived data structure algorithms for unstructured finite element meshes. Int. J. Numer. Meth. Engin., 54(7):

945–963, 2002.
[48] J. Waltz. Parallel adaptive refinement for unsteady flow calculations on 3d unstructured grids. Int. J. Numer. Meth.

Fluids, 46(1):37–57, 2004.
[49] J. Waltz. Microfluidics simulation using adaptive unstructured grids. Int. J. Numer. Meth. Fluids, 46(9):939–960, 2004.
[50] J. Waltz, T.R. Canfield, N.R. Morgan, L.D. Risinger, and J.G. Wohlbier. Verification of a three-dimensional unstructured

finite element method using analytic and manufactured solutions. Comput. Fluids, 2013.
[51] J. Waltz, N.R. Morgan, T.R. Canfield, M.R.J. Charest, L.D. Risinger, and J.G. Wohlbier. A three-dimensional finite

element arbitrary Lagrangian-Eulerian method for shock hydrodynamics on unstructured grids. Comput. Fluids, 92:
172–187, 2013.

[52] J. Waltz, N.R. Morgan, T.R. Canfield, M.R.J. Charest, and J.G. Wohlbier. A nodal Godunov method for Lagrangian
shock hydrodynamics on unstructured tetrahedral grids. Int. J. Numer. Meth. Fluids, 76(3):129–146, 2014.

[53] N.R. Morgan, J. Waltz, D.E. Burton, M.R.J. Charest, T.R. Canfield, and J.G. Wohlbier. A Godunov-like point-centered
essentially Lagrangian hydrodynamic approach. J. Comput. Phys., 281:614–652, 2014.

[54] C.A. Felippa. A compendium of FEM integration formulas for symbolic work. Eng. Computation., 21(8):867–890, 2004.
[55] T.J. Barth and P.O. Fredrickson. Higher order solution of the Euler equations on unstructured grids using quadratic

reconstruction. AIAA Paper 90-0013, 1990.
[56] D.J. Mavriplis. Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes. AIAA paper

2003-3986, 2003.
[57] A. Jalali and C. Ollivier-Gooch. Higher-order finite volume solution reconstruction on highly anisotropic meshes. AIAA

Paper 2013-2565, 2013.
[58] C.L. Lawson and R.J. Hanson. Solving least squares problems. Prentice-Hall, 1974.
[59] K. Michalak and C. Ollivier-Gooch. Matrix-explicit GMRES for a higher-order accurate inviscid compressible flow solver.

AIAA paper 2007-3943, 2007.
[60] N.R. Draper and H. Smith. Applied regression analysis. Wiley, New York, 3rd edition, 1998.
[61] T.J. Barth. A three-dimensional upwind Euler solver for unstructured meshes. AIAA Paper 91-1548, 1991.
[62] J.S. Park, S.H. Yoon, and C. Kim. Multi-dimensional limiting process for hyperbolic conservation laws on unstructured

grids. J. Comput. Phys., 229(3):788–812, 2010.
[63] V. Venkatakrishnan. On the accuracy of limiters and convergence to steady state solutions. AIAA Paper 93-0880, 1993.
[64] S.K. Godunov. Fintite-difference method for numerical computations of discontinuous solutions of the equations of fluid

dynamics. Mat. Sb., 47:271–306, 1959.
[65] V.V. Rusanov. Calculation of intersection of non-steady shock waves with obstacles. J. Comput. Math. Phys. USSR, 1:

267–279, 1961.
[66] S.F. Davis. Simplified second-order Godunov-type methods. SIAM J. Sci. Stat. Comput., 9(3):445–473, 1988.
[67] A. Harten, P.D. Lax, and B. Leervan . On upstream differencing and Godunov-type schemes for hyperbolic conservation

laws. SIAM Rev., 25(1):35–61, 1983.
[68] H. Lomax, T.H. Pulliam, and D.W. Zingg. Fundamentals of Computational Fluid Dynamics. Springer, New York, 2003.
[69] B. Leervan , C. Tai, and K.G. Powell. Design of optimally smoothing multi-stage schemes for the Euler equations. AIAA

Paper 89-1933, 1989.
[70] J. Berntsen, R. Cools, and T.O. Espelid. Algorithm 720: An algorithm for adaptive cubature over a collection of

3-dimensional simplices. ACM Trans. Math. Softw., 19(3):320–332, 1993.
[71] R. Abgrall. Design of an essentially non-oscillatory reconstruction procedure on finite-element type meshes. ICASE

Contractor Report 189574, 1991.
[72] P.J. Roache and S. Steinberg. Symbolic manipulation and computational fluid dynamics. AIAA J., 22(10):1390–1394,

1984.
[73] W.L. Oberkampf and F.G. Blottner. Issues in computational fluid dynamics code verification and validation. AIAA J.,

36(5):687–695, 1998.
[74] P.J. Roache. Code verification by the method of manufactured solutions. J. Fluids Eng., 124(1):4–10, 2001.
[75] C.J. Roy, T.M. Smith, and C.C. Ober. Verification of a compressible cfd code using the method of manufactured solutions.

AIAA Paper 2002-3110, 2002.
[76] C.J. Roy, C.C. Nelson, T.M. Smith, and C.C. Ober. Verification of Euler/NavierâĂŞStokes codes using the method of

manufactured solutions. Int. J. Numer. Meth. Fluids, 44(6):599–620, 2004.
[77] F. Ringleb. Exakte lösungen der differentialgleichungen einer adiabatischen gasströmung. ZAMM, 20(4):185–198, 1940.
[78] W.J. Coirier and K.G. Powell. An accuracy assessment of Cartesian-mesh approaches for the Euler equations. J. Comput.

Phys., 117:121–131, 1995.

35



[79] H.C. Yee, N.D. Sandham, and M.J. Djomehri. Low-dissipative high-order shock-capturing methods using characteristic-
based filters. J. Comput. Phys., 150(1):199–238, 1999.

[80] G.A. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput.
Phys., 27(1):1 – 31, 1978.

[81] C.W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput.
Phys., 83(1):32–78, 1989.

[82] L.I. Sedov. Similarity and Dimensional Methods in Mechanics. Academic Press, New York, 1959.
[83] J. Kamm. Evaluation of the Sedov-von Neumann-Taylor blast wave solution. Technical Report LA-UR-00-6055, Los

Alamos National Laboratory, 2000.
[84] S. Galera, P.H. Maire, and J. Breil. A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF

interface reconstruction. J. Comput. Phys., 229(16):5755–5787, 2010.

36


	Abstract
	1 Introduction
	2 Governing Equations
	3 CENO Finite-Volume Scheme
	3.1 CENO Reconstruction
	3.1.1 k-Exact Reconstruction
	3.1.2 Reconstruction at Boundaries
	3.1.3 Smoothness Indicator
	3.1.4 Limited Piecewise Linear Reconstruction

	3.2 Numerical Flux and Sources
	3.3 Transient Continuation and Steady-State Relaxation

	4 Results For Three-Dimensional Unstructured Meshes
	4.1 Spherical Cosine Function
	4.2 Abgrall's Function
	4.3 Smooth Supersonic Flow
	4.4 Ringleb's Flow
	4.5 Convection of an Isentropic Vortex
	4.5.1 Temporal Accuracy
	4.5.2 Spatial Accuracy

	4.6 Shock Tube
	4.7 Shu-Osher Problem
	4.8 Sedov Blast Wave
	4.9 Triple-Point Shock Interaction

	5 Conclusions
	Acknowledgements
	References

