DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable III–V photovoltaics

Abstract

The high balance-of-system costs of photovoltaic (PV) installations indicate that reductions in cell $/W costs alone are likely insufficient for PV electricity to reach grid parity unless energy conversion efficiency is also increased. Technologies which yield both high-efficiency cells (>25%) and maintain low costs are needed. GaAs and related III-V semiconductors are used in the highest-efficiency single- and multi-junction photovoltaics, but the technology is too expensive for non-concentrated terrestrial applications. This is due in part to the difficulty of scaling the metal-organic chemical vapor deposition (MOCVD) process, which relies on expensive reactors and employs toxic and pyrophoric gas-phase precursors such as arsine and trimethyl gallium, respectively. In this study, we describe GaAs films made by an alternative close-spaced vapor transport (CSVT) technique which is carried out at atmospheric pressure and requires only bulk GaAs, water vapor, and a temperature gradient in order to deposit crystalline films with similar electronic properties to that of GaAs deposited by MOCVD. CSVT is similar to the vapor transport process used to deposit CdTe thin films and is thus a potentially scalable low-cost route to GaAs thin films.

Authors:
 [1];  [2];  [2];  [3];  [4];  [1]
  1. University of Oregon, Eugene, OR (United States). Department of Chemistry and Biochemistry.
  2. University of Oregon, Eugene, OR (United States). Department of Physics.
  3. University of Oregon, Eugene, OR (United States). Department of Chemistry and Biochemistry
  4. Lawrence Berkeley National Laboratory, Berkeley, CA (United States). The Molecular Foundry.
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of Oregon, Eugene, OR (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
OSTI Identifier:
1214554
Alternate Identifier(s):
OSTI ID: 1222721
Report Number(s):
DOE-UO-05957-1
Journal ID: ISSN 1754-5692; EESNBY
Grant/Contract Number:  
AC02-05CH11231; EE00065957; EE0005957
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; photovoltaic cells; gallium arsenide; close-spaced vapor transport (CSVT); III-V semi conductor materials

Citation Formats

Ritenour, Andrew J., Boucher, Jason W., DeLancey, Robert, Greenaway, Ann L., Aloni, Shaul, and Boettcher, Shannon W. Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable III–V photovoltaics. United States: N. p., 2014. Web. doi:10.1039/C4EE01943A.
Ritenour, Andrew J., Boucher, Jason W., DeLancey, Robert, Greenaway, Ann L., Aloni, Shaul, & Boettcher, Shannon W. Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable III–V photovoltaics. United States. https://doi.org/10.1039/C4EE01943A
Ritenour, Andrew J., Boucher, Jason W., DeLancey, Robert, Greenaway, Ann L., Aloni, Shaul, and Boettcher, Shannon W. Mon . "Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable III–V photovoltaics". United States. https://doi.org/10.1039/C4EE01943A. https://www.osti.gov/servlets/purl/1214554.
@article{osti_1214554,
title = {Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable III–V photovoltaics},
author = {Ritenour, Andrew J. and Boucher, Jason W. and DeLancey, Robert and Greenaway, Ann L. and Aloni, Shaul and Boettcher, Shannon W.},
abstractNote = {The high balance-of-system costs of photovoltaic (PV) installations indicate that reductions in cell $/W costs alone are likely insufficient for PV electricity to reach grid parity unless energy conversion efficiency is also increased. Technologies which yield both high-efficiency cells (>25%) and maintain low costs are needed. GaAs and related III-V semiconductors are used in the highest-efficiency single- and multi-junction photovoltaics, but the technology is too expensive for non-concentrated terrestrial applications. This is due in part to the difficulty of scaling the metal-organic chemical vapor deposition (MOCVD) process, which relies on expensive reactors and employs toxic and pyrophoric gas-phase precursors such as arsine and trimethyl gallium, respectively. In this study, we describe GaAs films made by an alternative close-spaced vapor transport (CSVT) technique which is carried out at atmospheric pressure and requires only bulk GaAs, water vapor, and a temperature gradient in order to deposit crystalline films with similar electronic properties to that of GaAs deposited by MOCVD. CSVT is similar to the vapor transport process used to deposit CdTe thin films and is thus a potentially scalable low-cost route to GaAs thin films.},
doi = {10.1039/C4EE01943A},
journal = {Energy & Environmental Science},
number = 1,
volume = 8,
place = {United States},
year = {Mon Sep 01 00:00:00 EDT 2014},
month = {Mon Sep 01 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit
journal, July 2012

  • Miller, Owen D.; Yablonovitch, Eli; Kurtz, Sarah R.
  • IEEE Journal of Photovoltaics, Vol. 2, Issue 3, p. 303-311
  • DOI: 10.1109/JPHOTOV.2012.2198434

Design of GaAs Solar Cells Operating Close to the Shockley–Queisser Limit
journal, April 2013


Solar cell efficiency tables (version 43): Solar cell efficiency tables
journal, December 2013

  • Green, Martin A.; Emery, Keith; Hishikawa, Yoshihiro
  • Progress in Photovoltaics: Research and Applications, Vol. 22, Issue 1
  • DOI: 10.1002/pip.2452

The potential of III-V semiconductors as terrestrial photovoltaic devices
journal, January 2006

  • Bosi, Matteo; Pelosi, Claudio
  • Progress in Photovoltaics: Research and Applications, Vol. 15, Issue 1
  • DOI: 10.1002/pip.715

Growth of semiconductors by the close-spaced vapor transport technique: A review
journal, October 1988

  • Perrier, G.; Philippe, R.; Dodelet, J. P.
  • Journal of Materials Research, Vol. 3, Issue 5
  • DOI: 10.1557/JMR.1988.1031

The Use of Close Spacing in Chemical-Transport Systems for Growing Epitaxial Layers of Semiconductors
journal, January 1963

  • Nicoll, F. H.
  • Journal of The Electrochemical Society, Vol. 110, Issue 11
  • DOI: 10.1149/1.2425614

Die “sandwich-methode”—Ein neues Verfahren zur herstellung epitaktisch gewachsener halbleiterschichten
journal, November 1963


GaAs-on-silicon conformal vapor-phase epitaxy using reversible transport and selective etching reactions with water vapour
journal, May 2001


Selectively-grown InGaP/GaAs on silicon heterostructures for application to photovoltaic–photoelectrolysis cells
journal, May 2001


Requirements for a 20%-efficient polycrystalline GaAs solar cell
conference, January 1997

  • Kurtz, Sarah R.; McConnell, Robert
  • Future generation photovoltaic technologies, AIP Conference Proceedings
  • DOI: 10.1063/1.53447

High-efficiency GaAs solar cells on mm and sub-mm grain-size polycrystalline Ge substrates
conference, January 1997

  • Venkatasubramanian, R.; O’Quinn, B.; Siivola, E.
  • National renewable energy laboratory and sandia national laboratories photovoltaics program review meeting, AIP Conference Proceedings
  • DOI: 10.1063/1.52846

Large-grain (>1-mm), recrystallized germanium films on alumina, fused silica, oxide-coated silicon substrates for III–V solar cell applications
journal, March 2003


GROWTH AND CHARACTERIZATION OF GaAsp-n JUNCTIONS OBTAINED BY THE CSVT TECHNIQUE USING ATOMIC HYDROGEN
journal, August 2001


The Close-Spaced Growth of Degenerate P-Type GaAs, GaP, and Ga(As[sub x], P[sub 1−x]) by ZnCl[sub 2] Transport for Tunnel Diodes
journal, January 1968

  • Hoss, P-A.; Murray, L. A.; Rivera, J. J.
  • Journal of The Electrochemical Society, Vol. 115, Issue 5
  • DOI: 10.1149/1.2411328

Efficient n -GaAs Photoelectrodes Grown by Close-Spaced Vapor Transport from a Solid Source
journal, December 2011

  • Ritenour, Andrew J.; Cramer, Richard C.; Levinrad, Solomon
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 1
  • DOI: 10.1021/am201631p

n ‐type GaAs photoanodes in acetonitrile: Design of a 10.0% efficient photoelectrode
journal, July 1983

  • Gronet, Chris M.; Lewis, Nathan S.
  • Applied Physics Letters, Vol. 43, Issue 1
  • DOI: 10.1063/1.94148

Close-spaced epitaxial growth of GaAsx P1-X from powder GaAs and GaP
journal, May 1968


Electron mobility and free‐carrier absorption in GaAs: Determination of the compensation ratio
journal, February 1979

  • Walukiewicz, W.; Lagowski, L.; Jastrzebski, L.
  • Journal of Applied Physics, Vol. 50, Issue 2
  • DOI: 10.1063/1.326008

Empirical low-field mobility model for III–V compounds applicable in device simulation codes
journal, March 2000

  • Sotoodeh, M.; Khalid, A. H.; Rezazadeh, A. A.
  • Journal of Applied Physics, Vol. 87, Issue 6
  • DOI: 10.1063/1.372274

Towards low-cost high-efficiency GaAs photovoltaics and photoelectrodes grown via vapor transport from a solid source
conference, May 2013

  • Boucher, Jason W.; Ritenour, Andrew J.; Boettcher, Shannon W.
  • SPIE Defense, Security, and Sensing, SPIE Proceedings
  • DOI: 10.1117/12.2015276

A review of the theory and technology for ohmic contacts to group III–V compound semiconductors
journal, June 1975


Photoelectrochemical Behavior of n-GaAs and n-Al x Ga 1 - x As in CH 3 CN
journal, June 2000

  • Casagrande, Louis G.; Juang, Agnes; Lewis, Nathan S.
  • The Journal of Physical Chemistry B, Vol. 104, Issue 23
  • DOI: 10.1021/jp9941155

Semiconductor electrodes. 24. Behavior of photoelectrochemical cells based on p-type gallium arsenide in aqueous solutions
journal, May 1980

  • Fan, Fu Ren F.; Bard, Allen J.
  • Journal of the American Chemical Society, Vol. 102, Issue 11
  • DOI: 10.1021/ja00531a002

Semiconductor Electrodes
journal, January 1979

  • Kohl, P. A.
  • Journal of The Electrochemical Society, Vol. 126, Issue 1
  • DOI: 10.1149/1.2128989

Electrochemical Nanostructuring of n -GaAs Photoelectrodes
journal, July 2013

  • Ritenour, Andrew J.; Levinrad, Solomon; Bradley, Colin
  • ACS Nano, Vol. 7, Issue 8
  • DOI: 10.1021/nn4020104

Stability of n-Si/CH3OH Contacts as a Function of the Reorganization Energy of the Electron Donor
journal, May 1995

  • Pomykal, Katherine E.; Fajardo, Arnel M.; Lewis, Nathan S.
  • The Journal of Physical Chemistry, Vol. 99, Issue 20
  • DOI: 10.1021/j100020a064

Flat-Band Potential of a Semiconductor: Using the Mott–Schottky Equation
journal, April 2007

  • Gelderman, K.; Lee, L.; Donne, S. W.
  • Journal of Chemical Education, Vol. 84, Issue 4
  • DOI: 10.1021/ed084p685

Electron beam‐induced current in direct band‐gap semiconductors
journal, December 1981

  • Akamatsu, B.; Hénoc, J.; Hénoc, P.
  • Journal of Applied Physics, Vol. 52, Issue 12
  • DOI: 10.1063/1.328710

Effects of passivating ionic films on the photoluminescence properties of GaAs
journal, December 1987

  • Skromme, B. J.; Sandroff, C. J.; Yablonovitch, E.
  • Applied Physics Letters, Vol. 51, Issue 24
  • DOI: 10.1063/1.98280

Oxygen in gallium arsenide
journal, January 1991

  • Bourgoin, J. C.; Stievenard, D.; Deresmes, D.
  • Journal of Applied Physics, Vol. 69, Issue 1
  • DOI: 10.1063/1.347710

Doping and residual impurities in GaAs layers grown by close‐spaced vapor transport
journal, February 1993

  • Le Bel, C.; Cossement, D.; Dodelet, J. P.
  • Journal of Applied Physics, Vol. 73, Issue 3
  • DOI: 10.1063/1.353246

Doping of GaAs epitaxial layers grown on (100) GaAs by close-spaced vapor transport
journal, April 1989

  • Koskiahde, E.; Cossement, D.; Paynter, R.
  • Canadian Journal of Physics, Vol. 67, Issue 4
  • DOI: 10.1139/p89-044

Vapor Phase Transport and Epitaxial Growth of GaAs[sub 1−x]P[sub x] Using Water Vapor
journal, January 1965

  • Gottlieb, G. E.
  • Journal of The Electrochemical Society, Vol. 112, Issue 2
  • DOI: 10.1149/1.2423493

Electrical Characterization of GaAs Epitaxial Layers Grown by CSVT from Zn-doped GaAs Sources
journal, January 1991

  • Cossement, D.
  • Journal of The Electrochemical Society, Vol. 138, Issue 3
  • DOI: 10.1149/1.2085685

Electron Transport in GaAs
journal, April 1971


Depletion-Layer Photoeffects in Semiconductors
journal, October 1959


Studies of the gallium arsenide/potassium hydroxide-selenium ion (Se22-)/selenide semiconductor/liquid junction
journal, April 1989

  • Tufts, Bruce J.; Abrahams, Ian L.; Casagrande, Louis G.
  • The Journal of Physical Chemistry, Vol. 93, Issue 8
  • DOI: 10.1021/j100345a076

820 mV open-circuit voltages from Cu2O/CH3CN junctions
journal, January 2011

  • Xiang, Chengxiang; Kimball, Gregory M.; Grimm, Ronald L.
  • Energy & Environmental Science, Vol. 4, Issue 4
  • DOI: 10.1039/c0ee00554a

Chemical studies of the passivation of GaAs surface recombination using sulfides and thiols
journal, December 1991

  • Lunt, Sharon R.; Ryba, Gail N.; Santangelo, Patrick G.
  • Journal of Applied Physics, Vol. 70, Issue 12
  • DOI: 10.1063/1.349741

Electrodeposition of Crystalline GaAs on Liquid Gallium Electrodes in Aqueous Electrolytes
journal, December 2012

  • Fahrenkrug, Eli; Gu, Junsi; Maldonado, Stephen
  • Journal of the American Chemical Society, Vol. 135, Issue 1
  • DOI: 10.1021/ja309476x

Single-junction GaAsP solar cells grown on SiGe graded buffers on Si
journal, November 2013

  • Faucher, J.; Gerger, A.; Tomasulo, S.
  • Applied Physics Letters, Vol. 103, Issue 19
  • DOI: 10.1063/1.4828879

Works referencing / citing this record:

Arsenic antisite and oxygen incorporation trends in GaAs grown by water-mediated close-spaced vapor transport
journal, March 2017

  • Boucher, Jason; Boettcher, Shannon
  • Journal of Applied Physics, Vol. 121, Issue 9
  • DOI: 10.1063/1.4977757

Enhanced thermoelectric performance in single-crystal-like semiconducting flexible GaAs films
journal, March 2019

  • Singh, S.; Dutta, P.; Rathi, M.
  • APL Materials, Vol. 7, Issue 3
  • DOI: 10.1063/1.5086061