DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Boundaries for martensitic transition of 7Li under pressure

Abstract

We report that physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressure dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ~3 GPa, once in fcc phase, lithium does not undergo a martensitic transition.

Authors:
 [1];  [1];  [1]; ORCiD logo [2];  [3];  [2];  [1]
  1. Univ. of Utah, Salt Lake City, UT (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Quantum Condensed Matter Division
  3. Carnegie Inst. of Washington, Argonne, IL (United States). Geophysical Lab.
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC)
OSTI Identifier:
1212934
Alternate Identifier(s):
OSTI ID: 1265658
Grant/Contract Number:  
AC02-06CH11357; NA0001974; FG02-99ER45775; 1351986; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
ENGLISH
Subject:
36 MATERIALS SCIENCE; Lithium; high pressure; crystallography

Citation Formats

Schaeffer, Anne Marie, Cai, Weizhao, Olejnik, Ella, Molaison, Jamie J., Sinogeikin, Stanislav, dos Santos, Antonio M., and Deemyad, Shanti. Boundaries for martensitic transition of 7Li under pressure. United States: N. p., 2015. Web. doi:10.1038/ncomms9030.
Schaeffer, Anne Marie, Cai, Weizhao, Olejnik, Ella, Molaison, Jamie J., Sinogeikin, Stanislav, dos Santos, Antonio M., & Deemyad, Shanti. Boundaries for martensitic transition of 7Li under pressure. United States. https://doi.org/10.1038/ncomms9030
Schaeffer, Anne Marie, Cai, Weizhao, Olejnik, Ella, Molaison, Jamie J., Sinogeikin, Stanislav, dos Santos, Antonio M., and Deemyad, Shanti. Fri . "Boundaries for martensitic transition of 7Li under pressure". United States. https://doi.org/10.1038/ncomms9030. https://www.osti.gov/servlets/purl/1212934.
@article{osti_1212934,
title = {Boundaries for martensitic transition of 7Li under pressure},
author = {Schaeffer, Anne Marie and Cai, Weizhao and Olejnik, Ella and Molaison, Jamie J. and Sinogeikin, Stanislav and dos Santos, Antonio M. and Deemyad, Shanti},
abstractNote = {We report that physical properties of lithium under extreme pressures continuously reveal unexpected features. These include a sequence of structural transitions to lower symmetry phases, metal-insulator-metal transition, superconductivity with one of the highest elemental transition temperatures, and a maximum followed by a minimum in its melting line. The instability of the bcc structure of lithium is well established by the presence of a temperature-driven martensitic phase transition. The boundaries of this phase, however, have not been previously explored above 3 GPa. All higher pressure phase boundaries are either extrapolations or inferred based on indirect evidence. Here we explore the pressure dependence of the martensitic transition of lithium up to 7 GPa using a combination of neutron and X-ray scattering. We find a rather unexpected deviation from the extrapolated boundaries of the hR3 phase of lithium. Furthermore, there is evidence that, above ~3 GPa, once in fcc phase, lithium does not undergo a martensitic transition.},
doi = {10.1038/ncomms9030},
journal = {Nature Communications},
number = ,
volume = 6,
place = {United States},
year = {Fri Aug 14 00:00:00 EDT 2015},
month = {Fri Aug 14 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Superconductivity in lithium below 0.4 millikelvin at ambient pressure
journal, May 2007

  • Tuoriniemi, Juha; Juntunen-Nurmilaukas, Kirsi; Uusvuori, Johanna
  • Nature, Vol. 447, Issue 7141
  • DOI: 10.1038/nature05820

Superconductivity in lithium below 0.4 millikelvin at ambient pressure
journal, May 2007

  • Tuoriniemi, Juha; Juntunen-Nurmilaukas, Kirsi; Uusvuori, Johanna
  • Nature, Vol. 447, Issue 7141
  • DOI: 10.1038/nature05820

Pressure-induced reentrant metallic phase in lithium
journal, April 2014


Martensitic phase transformation of single-crystal lithium from bcc to a 9R -related structure
journal, March 1987


X-ray study of the alkali metals at low temperatures
journal, August 1956


Polytype structures of lithium at low temperatures
journal, December 1990


Martensitic transformation and mechanical deformation of high-purity lithium
journal, December 1999


Quantum-solid behavior and the electronic structure of the light alkali metals
journal, May 1989


Superconducting Phase Diagram of Li Metal in Nearly Hydrostatic Pressures up to 67 GPa
journal, October 2003


Superconductivity in compressed lithium at 20 K
journal, October 2002

  • Shimizu, Katsuya; Ishikawa, Hiroto; Takao, Daigoroh
  • Nature, Vol. 419, Issue 6907
  • DOI: 10.1038/nature01098

Superconductivity and Lattice Instability in Compressed Lithium from Fermi Surface Hot Spots
journal, February 2006


New high-pressure phases of lithium
journal, November 2000

  • Hanfland, M.; Syassen, K.; Christensen, N. E.
  • Nature, Vol. 408, Issue 6809
  • DOI: 10.1038/35041515

Superconductivity in Dense Lithium
journal, October 2002


Influence of uniaxial deformation on the phase transformation in lithium
journal, October 1995


Lithium, Compression and High-Pressure Structure
journal, March 1983


Crystal Structure of Lithium at 4.2 K
journal, July 1984


Equation of State of NaCl and Its Use as a Pressure Gauge in High‐Pressure Research
journal, January 1965

  • Decker, Daniel L.
  • Journal of Applied Physics, Vol. 36, Issue 1
  • DOI: 10.1063/1.1713864

Superconductivity in lithium under high pressure investigated with density functional and Eliashberg theory
journal, February 2009


High-pressure superconducting phase diagram of 6 Li: Isotope effects in dense lithium
journal, December 2014

  • Schaeffer, Anne Marie; Temple, Scott R.; Bishop, Jasmine K.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 1
  • DOI: 10.1073/pnas.1412638112

Direct observation of a pressure-induced metal-to-semiconductor transition in lithium
journal, March 2009


EosFit7c and a Fortran module (library) for equation of state calculations
journal, January 2014

  • Angel, Ross J.; Alvaro, Matteo; Gonzalez-Platas, Javier
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 229, Issue 5
  • DOI: 10.1515/zkri-2013-1711

Predicted Superconductive Properties of Lithium under Pressure
journal, February 2001


Pressure effects on the martensitic transformation in metallic lithium
journal, January 1990


Martensitic Transition and Related Properties in AgCd Alloy
journal, August 1973

  • Nagasawa, Akira
  • Journal of the Physical Society of Japan, Vol. 35, Issue 2
  • DOI: 10.1143/jpsj.35.489

High-pressure superconducting phase diagram of 6 Li: Isotope effects in dense lithium
journal, December 2014

  • Schaeffer, Anne Marie; Temple, Scott R.; Bishop, Jasmine K.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 1
  • DOI: 10.1073/pnas.1412638112

Lithium, Compression and High-Pressure Structure
journal, March 1983


Metallography of alkali metal single crystals
journal, January 2001


Neutron powder-diffraction studies of lithium, sodium, and potassium metal
journal, December 1989


New high-pressure phases of lithium
journal, November 2000

  • Hanfland, M.; Syassen, K.; Christensen, N. E.
  • Nature, Vol. 408, Issue 6809
  • DOI: 10.1038/35041515

Energetics of the martensitic phase transition in sodium
journal, October 1979


Equation of state of lithium to 21GPa
journal, September 1999


High-pressure x-ray diffraction studies on rhenium up to 216 GPa (2.16 Mbar)
journal, December 1987

  • Vohra, Yogesh K.; Duclos, Steven J.; Ruoff, Arthur L.
  • Physical Review B, Vol. 36, Issue 18
  • DOI: 10.1103/PhysRevB.36.9790

Cold melting and solid structures of dense lithium
journal, January 2011

  • Guillaume, Christophe L.; Gregoryanz, Eugene; Degtyareva, Olga
  • Nature Physics, Vol. 7, Issue 3
  • DOI: 10.1038/nphys1864

High Pressure Melting of Lithium
journal, November 2012


EosFit7c and a Fortran module (library) for equation of state calculations
journal, January 2014

  • Angel, Ross J.; Alvaro, Matteo; Gonzalez-Platas, Javier
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 229, Issue 5
  • DOI: 10.1515/zkri-2013-1711

Works referencing / citing this record:

Quantum and isotope effects in lithium metal
journal, June 2017

  • Ackland, Graeme J.; Dunuwille, Mihindra; Martinez-Canales, Miguel
  • Science, Vol. 356, Issue 6344
  • DOI: 10.1126/science.aal4886

Using forces to accelerate first-principles anharmonic vibrational calculations
journalarticle, January 2017


Perspective: Role of structure prediction in materials discovery and design
journal, May 2016

  • Needs, Richard J.; Pickard, Chris J.
  • APL Materials, Vol. 4, Issue 5
  • DOI: 10.1063/1.4949361

Perspective: Role of structure prediction in materials discovery and design
text, January 2016

  • Needs, Richard; Pickard, Christopher
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.65

Parallel background subtraction in diamond anvil cells for high pressure X-ray data analysis
journal, October 2019


Using forces to accelerate first-principles anharmonic vibrational calculations
journal, July 2017


Plasmons in Li under compression
journal, March 2019

  • Matsuoka, Takahiro; Ibañez-Azpiroz, Julen; Hiraoka, Nozomu
  • Journal of Physics: Condensed Matter, Vol. 31, Issue 18
  • DOI: 10.1088/1361-648x/ab0528

A suite-level review of the neutron powder diffraction instruments at Oak Ridge National Laboratory
journal, September 2018

  • Calder, S.; An, K.; Boehler, R.
  • Review of Scientific Instruments, Vol. 89, Issue 9
  • DOI: 10.1063/1.5033906