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Abstract Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations
for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron
precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron
Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental
Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant
interactions with EMIC waves using wave and particle data measured by multiple instruments on board
GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution, and the time
variation of the simulated precipitation all agree very well with the balloon observations, suggesting that
EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first
balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed
quantitative analysis on the link of EMIC waves with observed REP to date.

1. Introduction

Electromagnetic ion cyclotron (EMIC) waves have been proposed as a mechanism to rapidly scatter relativis-
tic electrons into the loss cone through Doppler-shifted resonant interactions [Albert, 2003; Summers and
Thorne, 2003; Thorne et al., 2006]. The interactions are expected to be the most effective in the dusk sector
[Thorne and Kennel, 1971; Albert, 2003; Summers and Thorne, 2003] and are often associated with simultane-
ous ion precipitation caused by gyroresonance between ions and EMIC waves [Thorne and Andreoli, 1981].
Many observations support the link between relativistic electron precipitation (REP) and EMIC waves. The
preferential occurrence of REP on the duskside has been observed by both satellites [Vampola, 1971; Green
et al., 2004; Carson et al., 2013; Comess et al., 2013] and balloons [Foat et al., 1998; Lorentzen et al., 2000;
Millan et al., 2002]. Coincident precipitation of electrons and ions has been reported by various satellite
studies [Imhof et al., 1986; Bortnik et al., 2006; Sandanger et al., 2009; Carson et al., 2013].

Simultaneous observations of EMIC waves and REP, however, are uncommon. Engebretson et al. [2008] and
Rodger et al. [2008] reported several REP events with strong riometer absorption and subionospheric VLF
propagation, respectively, and simultaneous EMIC wave activities observed by ground magnetometers.
Miyoshi et al. [2008] reported coincident ion and electron precipitation observed by one of the
Polar-orbiting Operational Environmental Satellites (POES) into a proton aurora in conjunction with ground
magnetometer EMIC wave observations. All of these observations showed correlation but could not pro-
vide a quantitative analysis to test the theory. Strong observational evidence that can be used to quantify
the EMIC wave-driven REP is still lacking. The Balloon Array for Radiation belt Relativistic Electron Losses
(BARREL) campaign, conducted in the 2013 and 2014 Austral summer seasons during the Radiation Belt
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Figure 1. (a) OMNI solar wind speed and dynamic pressure. (b) OMNI Bz of IMF (in GSM) and Dst. (c and d) EMIC waves measured by RBSP EMFISIS-A and
GOES 13 magnetometers. The white lines are O+ and He+ gyrofrequencies. (e) X-ray fast spectrum measured by BARREL balloon 1G (FSPC1: <180 keV, FSPC2:
180–550 keV, FSPC3: 550–840 keV). (f ) Upper hybrid resonance frequency in the HFR spectrum measured by RBSP EMFISIS-A. (g) >30 eV ion density observed by
RBSP-ECT HOPE-A.

Storm Probes (RBSP, now called “the Van Allen Probes”) mission, provides the first balloon measurements of
REP while comprehensive in situ measurements of both plasma waves and energetic particles are available
[Millan et al., 2013].

In the present paper we analyze a REP event observed by BARREL during a period of strong EMIC wave
activity. The event was in close conjunction with EMIC waves observed by Geostationary Operational Envi-
ronmental Satellite (GOES) 13. The energy distribution of REP caused by scattering with EMIC waves is
simulated using parameters provided by GOES 13 and the Van Allen Probes and is compared with BARREL
spectrometer data. The event reported in this paper is the first balloon REP event with closely conjugate
EMIC wave observations, and the presented study is by far the most detailed quantitative analysis on the
link of EMIC waves with observed REP.

2. Observations

The REP event reported here occured on 17 January 2013, which was moderately active day, Kp around 2
to 4 (not shown). A moderate storm sudden commencement occurred at around 0 UT in association with
an increase in solar wind dynamic pressure, followed by a geomagnetic storm, with Dst reaching ∼−60 nT
at the end of the day (Figures 1a and 1b). Between 01 and 06 UT, long-lasting EMIC waves were observed
from ground and space throughout the duskside/nightside magnetosphere, ranging over L∼4.5–8 and
MLT∼15:40–03:30. The instruments that detected the waves include GOES 13 and 15, the Van Allen Probes,
the Canadian Array for Realtime Investigations of Magnetic Activity ground magnetometer in Dawson City,
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Figure 2. Magnetic (T89) equatorial locations of spacecraft, balloons,
and the plasmapause simulated by the plasmapause test particle
(PTP) model.

Canada, and the British Antarctic Sur-
vey (BAS) ground magnetometer at
Halley, Antarctica [Weaver et al., 2013].
While ground observations cannot
determine the wave band due to
horizontal ducting, the EMIC waves
observed by the Van Allen Probes (e.g.,
Figure 1c for Van Allen Probes A) and
the GOES satellites (e.g., Figure 1d for
GOES 13) were in the hydrogen and
the helium band, respectively. During
this period, three relativistic electron
precipitation events were observed by
BARREL balloon 1G, 1C, and 1I at dif-
ferent times. Mapped to the magnetic
equator using the International Radia-
tion Belt Environment Modeling Library
(IRBEM-LIB, formerly the ONERA-DESP
library) in the magnetic field model
of Tsyganenko [1989] (T89), the 03 UT
event observed by balloon 1G was
found to be at MLT∼22 h and L∼6.5
(Figure 2), in close conjunction with the

EMIC waves observed by GOES 13 (MLT∼22 h and L∼7.5; cf. Figures 1d and 2), suggesting the waves may
have scattered the electrons into the loss cone. This precipitation event observed by 1G lasted for about
20 min from ∼02:48:20–03:08:20 UT (Figure 1e).

We focus on this conjunction event in the present study. We solve the Fokker-Planck pitch angle diffusion
equation using the diffusion coefficient derived by Summers and Thorne [2003] and Summers et al. [2007]
in order to simulate the evolution of the distribution of electrons due to scattering with EMIC waves and
to compute the precipitating electron flux at the boundary of the atmosphere. Details about the model
can be found in Li et al. [2013], and the simulation results are shown in the next section. Items 1 through
6 directly below list the input parameters of the model that we obtained from GOES 13 and the Van Allen
Probes observations:

1. Initial trapped electron population: When the precipitation event occurred at 03 UT, the 30 keV–600 keV
Magnetospheric Electron Detector (MAGED) [Hartley et al., 2013] of GOES 13 observed a “butterfly”
electron pitch angle distribution (PAD), a typical PAD on the nightside at GEO caused by the drift shell
splitting effect [West et al., 1973; Baker et al., 1978; Chen et al., 2014]. To estimate the flux of higher-energy
electrons, we assume they have the same PAD as the particles observed by the highest energy channel
(350–600 keV) of MAGED and calculate their energy differential flux from the integral flux measured
by the E1 (>0.8 MeV) and E2 (>2 MeV) channels of the Energetic Proton Electron and Alpha Detector
(EPEAD) [Rodriguez et al., 2010] of GOES 13 using the method derived by Onsager et al. [2004] and
Gannon et al. [2012], which assumes a relativistic Maxwellian interpolation. Figure 3a shows the <600 keV
PAD observed by GOES 13 and the >600 keV PAD calculated using this method.

The Van Allen Probes were at their apogees (L∼6.5, MLT∼2.6) at 03 UT. Probes A and B observed very
similar features, due to the proximity of the two spacecraft during this day. We analyze the electron flux
measurements from the Relativistic Electron Proton Telescope (REPT) [Baker et al., 2013] and the Mag-
netic Electron Ion Spectrometer (MagEIS) [Blake et al., 2013] of the Energetic Particle, Composition, and
Thermal Plasma suite [Spence et al., 2013]. Since the calibration efforts on REPT remain ongoing, we use a
simple linear adjustment factor in the instrument overlap region to match the flux observed by REPT with
MagEIS and plot in Figure 3a both electron fluxes as a function of pitch angle. Although PAD generally
varies with MLT, the Van Allen Probes and GOES 13 observed a similar PAD, due to the fact that they were
symmetrically located about the noon-midnight meridian plane, where the drift shell splitting effects
are often similar. The flux level observed by the Van Allen Probes, however, was higher than GOES 13 by
less than an order of magnitude (Figure 3a. Note the differences between instrument energy channels.),
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likely because the probes were at a lower L. The energy distribution (e.g., Figure 3b for 90◦ pitch angle)
observed by the Van Allen Probes followed a broken power law distribution [Mauk and Fox, 2010] with a
break at ∼1.6 MeV. Considering the better energy and angular resolution than GOES 13 as well as the sim-
ilarity in L with balloon 1G, we use the trapped flux measured by the Van Allen Probes in our simulation.
We fit a broken power law to the electron energy distribution using equation (7) in Mauk and Fox [2010]
with fitting parameters C = 9 × 1013, kT = 20, 𝛾1 = 4, E0 = 1600, and 𝛾2 = 6.5, and Legendre polynomials
to the unbinned electron pitch angle data using equation (1) in Chen et al. [2014] with normalized coeffi-
cients 0.013, −0.35, 0.0024, and −0.4 for first–fourth orders and zero for higher orders. The flux near the
loss cone is extrapolated from the Legendre polynomial fit.

2. Wave power distribution: Although EMIC waves were observed at many different locations, we use
the wave properties measured by GOES 13, because when mapped to the magnetic equator, it
was the closest to the balloon. The waves observed by the magnetometer of GOES 13 lasted from
∼02:52:00–03:12:00 UT, lagging behind the REP event by a little less than 4 min, likely because GOES 13
entered the rotating plasmapause at a later time than balloon 1G ([Goldstein et al., 2014], cf. Figure 2 in
the present paper), and the high density plasmasphere has been suggested to be a preferable region
for EMIC wave occurrence [Horne and Thorne, 1993; Spasojević et al., 2004; Yahnin and Yahnina, 2007;
Chen et al., 2010; Usanova et al., 2013]. The wave amplitude was modulated by ULF waves and fluctuated
between ∼0–1 nT (plot above Figure 4d). The wave frequency spectrum is fit by a Gaussian with maxi-
mum frequency 𝜔m ∼0.147 Hz, and half width 𝛿 𝜔∼0.02 Hz. We use the corresponding frequency ratios
𝜔m/ΩO+ =2.25 and 𝛿 𝜔/ΩO+ =0.31 in our simulation, because between the L values of balloon 1G and
GOES 13, the wave frequency ratios have been proposed to be roughly constant, assuming constant
cold ion composition [Denton et al., 2014]. In addition, although theoretically, the wave frequency to be
considered in the diffusion coefficient calculations should range from 0 to infinity [Lyons et al., 1971], for
computational convenience, we only integrate the waves within the helium band, with a lower cutoff at
the boundary of the stop band above O+ gyrofrequency and a higher cutoff at the He+ gyrofrequency.
This is justified because the wave power in the oxygen and hydrogen bands was negligible.

3. Cold plasma density: Since the wave power is centered well below the He+ gyrofrequency, the finite beta
effect is ignorable [Chen et al., 2011, 2013] and the cold wave dispersion relation is used in computing
the diffusion coefficient. Since GOES 13 does not provide plasma density observations, we calculate the
plasma density using the upper hybrid resonance (UHR) frequency provided by the Electric and Magnetic
Field Instrument and Integrated Science (EMFISIS) [Kletzing et al., 2013] on the Van Allen Probes. At 03 UT,
balloon 1G was shown by a plasmapause test particle (PTP) model [Goldstein et al., 2014] to be at the
main plasmapause wrapped inside a residual plume (Figure 2). At the same time, as suggested by both
EMFISIS UHR frequency observations (Figure 1f ) and the PTP model [Goldstein et al., 2014], the Van Allen
Probes were outside the plasmasphere, where the plasma density could be very different from the wave
region. However, as the plasmapause rotated eastward [Goldstein et al., 2014], when the spacecraft came
back to their apogees (with an L value similar to the REP event) at 12 UT, the spacecraft was inside the
plasmasphere, as indicated by the EMFISIS UHR frequency observations (Figure 1f ). We then use the UHR
frequency measured at 12 UT to calculate the plasma density, which is determined to be 100 cm−3. Mean-
while, the Helium Oxygen Proton Electron (HOPE) sensor [Funsten et al., 2013] on the Van Allen Probes
observed that the warm/hot (>30 eV) component of the ion density was 0.27 cm−3 (Figure 1g). Assuming
charge neutrality, this warm/hot plasma component is negligible compared to the total density 100 cm−3.

4. Cold ion composition: Since HOPE only provides warm/hot (>30 eV) ion densities, we use other methods
to determine the cold ion composition. At 12 UT, Alfven wave activity was seen by EMFISIS and the
Electric Fields and Waves (EFW) instrument [Wygant et al., 2013] on the Van Allen Probes. From the
observed third Alfven harmonic frequency (12.5 mHz), we obtain the total mass density 121 amu/cm3

(R. E. Denton and K. Takahashi, private communication, 2014). In comparison, by adding up the H+,
He+, and O+ mass densities observed by HOPE (Figure 1g), we find that the >30 eV ion mass density is
1 amu/cm3, a negligible fraction of the total mass density. Assuming charge neutrality and the ratio of
cold He+ ∶ H+ = 4.4% [Farrugia et al., 1989], we solve the mass density equation [Takahashi et al., 2008,
equation (8)] with the cold number density 100 cm−3 and obtain the density ratios H+ ∶ He+ ∶ O+ =
95.3 ∶ 4.2 ∶ 0.5. This estimate is very similar to many statistical study results [Chappell et al., 1970; Young
et al., 1977; Horwitz et al., 1981].
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Figure 3. (a) Electron pitch angle distribution from RBSP-ECT MagEIS-A and REPT-A (binned) and GOES 13 MAGED and
EPEAD. (b) Electron energy distribution of 90◦ pitch angles from RBSP-ECT MagEIS-A and REPT-A.

5. Background magnetic field: Tracing from balloon 1G using IRBEM-LIB in T89, we estimate the minimum
magnetic field near the magnetic equator conjugate to the balloon to be 41.1 nT; we use this value as the
equatorial background magnetic field in our simulation.

6. Wave-particle interaction spatial scale: Since GOES 13 detected EMIC waves when it traversed a 20 min
MLT span during the event, we determine the interaction region to be 1.4% of the drift orbit. Although
EMIC waves were observed over a broader region, we do not use a higher percentage because the plasma
conditions at other locations were different and we do not find them favorable for the wave-particle res-
onant interaction. This is supported by the fact that, at this time, REP was not observed by any other
BARREL balloon or any other Polar-orbiting Operational Environmental Satellite (POES) than N19, which
was in close conjunction with 1G ([Weaver et al., 2013], as well as S. Shekhar, private communication,
2014). We further assume the interaction region to be within ±15◦ in magnetic latitude, where the waves
are believed to be mostly field aligned with left-hand circular polarization and can most strongly scatter
electrons [Albert, 2003; Loto’aniu et al., 2005; Hu and Denton, 2009].

3. Simulations

We use the diffusion model described in Li et al. [2013] to simulate the time evolution of the energy dis-
tribution of the REP flux during the 20 min precipitation event. The simulation parameters used are those
described in the previous section. The diffusion coefficient is plotted in Figure 4a. The simulated precipi-
tation is found to be the strongest near 1.2 MeV and falls sharply at lower and higher energies (Figure 4b).
We then use the BARREL standard response model ([Millan et al., 2013]) to determine the bremsstrahlung
X-rays that would be detected by the balloon-borne scintillator given the simulated incident precipitat-
ing electrons at the boundary of the atmosphere. The BARREL standard response model is derived from
GEANT-3 Monte Carlo simulations that include all relevant particle interactions such as ionization losses of
precipitating electrons, bremsstrahlung production, and scattering of X-rays in the atmosphere and BAR-
REL instruments. We acquire the X-ray backgrounds before and after the precipitation event and compare
the background subtracted X-ray medium spectrum observed by BARREL balloon 1G with the simulated
X-rays. The simulated count rate is shown to be very close to that observed, only 2.7 times higher on aver-
age, and 3.5 times higher at the strongest precipitation peak. We show the comparisons in Figures 4d and
4e, where we divide the simulated flux level by 3.5 and average the count rates within every 8 s to show
the details of the temporal structure (The time resolution of the BARREL medium spectrum is 4 s.). The
black lines are the total X-ray count rates integrated over energy at every time step (The simulated total
count rate is divided by 3.5.). Although the counting statistics in the observed spectrum (Figure 4e), espe-
cially at high energies, is affected by using a small 8 s time step, the variation of the observed count rate
is reproduced in the simulated count rate (Figure 4d). Shown above Figure 4d is the time variation of the
EMIC wave amplitude observed by GOES 13. The ULF modulation frequency, as well as the growth and
decay time of the EMIC waves are reflected in REP. Shown in Figure 4c as an example is a line plot of the
energy distribution of the X-ray count rates averaged between the two strongest peaks in the middle of the
event (02:57:30–02:59:30 UT). We can see that the simulated energy distribution of the X-rays (black solid
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Figure 4. (a) Bounce- and drift-averaged pitch angle diffusion coefficients for EMIC waves interacting with electrons. (b) Time variation of the energy distribution
of the simulated precipitating electrons. (c) Log-log line plot of the energy distribution of the bremsstrahlung X-ray count rate averaged over 02:57:30–02:59:30 UT
from the medium spectrum of BARREL balloon 1G (with error bars, background subtracted), the simulation with estimated parameters, and two test simulations
with densities changed to 40 cm−3 and 250 cm−3. (d and e) Time variation of the bremsstrahlung X-rays from simulation and balloon 1G medium spectrum
(background subtracted). The black lines are the total X-ray count rates integrated over energy at every time step. The simulated count rate has been divided by
3.5. Above Figure 4d is the time variation of the EMIC wave amplitude observed by GOES 13. (f ) Time variation of the slope of the linear fit on [400, 800] keV of
the log-log line plot of the simulated and observed (background subtracted) bremsstrahlung X-ray energy spectrum.

curve) matches that observed (red dotted curve) very well (other curves in the plot are discussed in the next
section). We then apply a linear fit in the energy interval [400, 800] keV on the log-log line plot at every 24 s
and characterize the evolution of the hardness of the spectrum using the slope of the linear fit. Shown in
Figure 4f, the hardness of the simulated and the observed spectra are very similar, both becoming slightly
harder with time.

However, there are a few differences between the simulated and observed X-ray spectra. First, though very
similar, the simulated flux is still higher than the observed by 2.7 times on average. Second, the time varia-
tion of the observed X-ray count rate (Figure 4e) is more gradual than the simulated count rate (Figure 4d).
Especially before the first peak (∼02:54 UT), when the observed EMIC wave amplitude was small and con-
stant, the simulated precipitation does not show an evident gradual increase as that in the observed
spectrum. These differences are likely due to the slightly different wave profiles at GOES 13 and the diffusion
region, because the satellite and the balloon were not perfectly conjugate. The difference in the flux levels
may also be a result of the different trapped flux levels at the Van Allen Probes and the diffusion region. Fur-
thermore, please note that the BARREL standard response matrix assumes a downward isotropic REP flux
distribution, corresponding to a flat loss cone distribution that resulted from highly strong diffusion. If we
instead assume that the loss cone flux increases with pitch angle, which was what happened in this event
according to our diffusion simulation, fewer bremsstrahlung X-rays will arrive at the balloon altitude and the
simulated X-ray count rate will be lower. According to our test simulation, a mirroring REP flux distribution of
pitch angles between 80 and 90◦ reduces the expected X-ray count rate by a factor of ∼2 over a downward
isotropic REP flux distribution and hence causes the expected X-ray count rate to be closer to what
was observed.

4. Summary and Discussion

This paper analyzes a relativistic electron precipitation event observed by BARREL during a period of strong
EMIC wave activity. We simulated the electron pitch angle diffusion using wave and particle parameters
observed by GOES 13 and Van Allen probes and compared results with balloon observations. We showed
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that the simulated precipitation reproduced the balloon observations to a large degree in count rate, energy
distribution, and the temporal variation, indicating that EMIC wave scattering was a likely cause for the pre-
cipitation event, and the adopted diffusion model did a good job simulating the wave-particle interactions
during the event. Reported here is the first balloon REP event with closely conjugate EMIC wave observa-
tions, and our study adopts the most detailed quantitative analysis on the link of EMIC waves with observed
REP to date.

Since the REP flux and energy distribution strongly depends on the wave, particle, and plasma parameters
[Li et al., 2013], and our bremsstrahlung X-ray response model proves to be very sensitive to the variations
in REP caused by changes in the input parameters of the diffusion model, the X-ray spectrum simulated by
our model can be used to effectively test the conditions of the precipitation caused by EMIC wave scatter-
ing. Higher initial trapped flux, stronger waves, and broader interaction spatial coverage will cause the REP
flux to increase and hence result in a higher X-ray count rate, and vice versa; weaker equatorial background
magnetic field, higher wave frequency, and greater cold plasma density will not only cause the REP flux level
to increase but also lower the energy of the peak in the REP energy spectrum, leading to a higher count
rate as well as a softer X-ray energy spectrum, and vice versa [Li et al., 2013] (Shown in Figure 4c are two test
simulations with cold plasma density increased and decreased by a factor of 2.5.). The presented approach
of comparing the X-ray spectra should be further exploited in testing the role of EMIC waves in relativistic
electron precipitation.
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