DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability

Abstract

The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIF implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of ΧΩ ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.

Authors:
 [1];  [1];  [2];  [1]
  1. Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics, Dept. of Physics and Fusion Science Center.
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics.
Sponsoring Org.:
USDOE
OSTI Identifier:
1197482
Alternate Identifier(s):
OSTI ID: 1228655
Report Number(s):
DOE-LLE-1944-1230
Journal ID: ISSN 1070-664X; PHPAEN; 2015-1; 2195; TIC-1230
Grant/Contract Number:  
NA0001944; FC02-04ER54789
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 22; Journal Issue: 7; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Raleigh Taylor instabilities; thermal radiation; thermal conduction; hydrodynamics; ice

Citation Formats

Bose, A., Woo, K. M., Nora, R., and Betti, R. Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability. United States: N. p., 2015. Web. doi:10.1063/1.4923438.
Bose, A., Woo, K. M., Nora, R., & Betti, R. Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability. United States. https://doi.org/10.1063/1.4923438
Bose, A., Woo, K. M., Nora, R., and Betti, R. Thu . "Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability". United States. https://doi.org/10.1063/1.4923438. https://www.osti.gov/servlets/purl/1197482.
@article{osti_1197482,
title = {Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability},
author = {Bose, A. and Woo, K. M. and Nora, R. and Betti, R.},
abstractNote = {The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIF implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of ΧΩ ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.},
doi = {10.1063/1.4923438},
journal = {Physics of Plasmas},
number = 7,
volume = 22,
place = {United States},
year = {Thu Jul 02 00:00:00 EDT 2015},
month = {Thu Jul 02 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Direct-drive laser fusion: Status and prospects
journal, May 1998

  • Bodner, Stephen E.; Colombant, Denis G.; Gardner, John H.
  • Physics of Plasmas, Vol. 5, Issue 5, p. 1901-1918
  • DOI: 10.1063/1.872861

Theory of laser-induced adiabat shaping in inertial fusion implosions: The decaying shock
journal, November 2003

  • Anderson, K.; Betti, R.
  • Physics of Plasmas, Vol. 10, Issue 11
  • DOI: 10.1063/1.1616559

Demonstration of the Highest Deuterium-Tritium Areal Density Using Multiple-Picket Cryogenic Designs on OMEGA
journal, April 2010


Hot-spot dynamics and deceleration-phase Rayleigh–Taylor instability of imploding inertial confinement fusion capsules
journal, December 2001

  • Betti, R.; Umansky, M.; Lobatchev, V.
  • Physics of Plasmas, Vol. 8, Issue 12
  • DOI: 10.1063/1.1412006

Ignition condition and gain prediction for perturbed inertial confinement fusion targets
journal, November 2001

  • Kishony, Roy; Shvarts, Dov
  • Physics of Plasmas, Vol. 8, Issue 11
  • DOI: 10.1063/1.1412009

Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Spears, Brian K.; Edwards, M. J.; Hatchett, S.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4870390

Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility
journal, April 2014

  • Kritcher, A. L.; Town, R.; Bradley, D.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4871718

Generalized Measurable Ignition Criterion for Inertial Confinement Fusion
journal, April 2010


The National Ignition Facility: Ushering in a new age for high energy density science
journal, April 2009

  • Moses, E. I.; Boyd, R. N.; Remington, B. A.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3116505

Polar direct drive on the National Ignition Facility
journal, May 2004

  • Skupsky, S.; Marozas, J. A.; Craxton, R. S.
  • Physics of Plasmas, Vol. 11, Issue 5, p. 2763-2770
  • DOI: 10.1063/1.1689665

Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility
journal, May 2014

  • Nora, R.; Betti, R.; Anderson, K. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4875331

A measurable Lawson criterion and hydro-equivalent curves for inertial confinement fusion
journal, October 2008

  • Zhou, C. D.; Betti, R.
  • Physics of Plasmas, Vol. 15, Issue 10
  • DOI: 10.1063/1.2998604

Deceleration phase of inertial confinement fusion implosions
journal, May 2002

  • Betti, R.; Anderson, K.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459458

High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion
journal, November 2005


Alpha Heating and Burning Plasmas in Inertial Confinement Fusion
journal, June 2015


Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement
journal, May 2010

  • Betti, R.; Chang, P. Y.; Spears, B. K.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3380857

Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma
journal, January 1985

  • Takabe, H.; Mima, K.; Montierth, L.
  • Physics of Fluids, Vol. 28, Issue 12
  • DOI: 10.1063/1.865099

Ablative Stabilization of the Deceleration Phase Rayleigh-Taylor Instability
journal, November 2000


Hydrodynamic relations for direct-drive fast-ignition and conventional inertial confinement fusion implosions
journal, July 2007


Shock-tuned cryogenic-deuterium-tritium implosion performance on Omega
journal, May 2010

  • Sangster, T. C.; Goncharov, V. N.; Betti, R.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3360928

Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments
journal, October 1987


The Effect of Viscosity in Hypervelocity Impact Cratering
journal, September 2003

  • MacCormack, Robert W.
  • Journal of Spacecraft and Rockets, Vol. 40, Issue 5
  • DOI: 10.2514/2.6901

Works referencing / citing this record:

A comprehensive alpha-heating model for inertial confinement fusion
journal, January 2018

  • Christopherson, A. R.; Betti, R.; Bose, A.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.4991405

The physics of long- and intermediate-wavelength asymmetries of the hot spot: Compression hydrodynamics and energetics
journal, October 2017

  • Bose, A.; Betti, R.; Shvarts, D.
  • Physics of Plasmas, Vol. 24, Issue 10
  • DOI: 10.1063/1.4995250

Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock
journal, May 2018

  • Huntington, C. M.; Shimony, A.; Trantham, M.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5022179

Yield reduction via the Knudsen layer effect in a mixture of fuel and pusher material
journal, December 2018

  • McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 2
  • DOI: 10.1088/1361-6587/aaee5a

Burn regimes in the hydrodynamic scaling of perturbed inertial confinement fusion hotspots
journal, June 2019


Burn regimes in the hydrodynamic scaling of perturbed inertial confinement fusion hotspots
text, January 2019