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We present a new model-independent dynamic feedback technique, rotation rate tuning, for auto-
matically and simultaneously tuning coupled components of uncertain, complex systems. The main
advantages of the method are: 1) It has the ability to handle unknown, time-varying systems, 2)
It gives known bounds on parameter update rates, 3) We give an analytic proof of its convergence
and its stability, and 4) It has a simple digital implementation through a control system such as
the Experimental Physics and Industrial Control System (EPICS). Because this technique is model
independent it may be useful as a real time, in-hardware, feedback-based optimization scheme for
uncertain and time-varying systems. In particular, it is robust enough to handle uncertainty due
to coupling, thermal cycling, misalignments, and manufacturing imperfections. As a result, it may
be used as a fine-tuning supplement for existing accelerator tuning/control schemes. We present
multi-particle simulation results demonstrating the scheme’s ability to simultaneously adaptively
adjust the set points of twenty two quadrupole magnets and two RF buncher cavities in the Los
Alamos Neutron Science Center (LANSCE) Linear Accelerator’s transport region, while the beam
properties and RF phase shift are continuously varying. The tuning is based only on beam current
readings, without knowledge of particle dynamics. We also present an outline of how to implement
this general scheme in software for optimization, and in hardware for feedback based control/tuning,
for a wide range of systems.

PACS numbers: 41.85.Lc, 02.30.Yy, 29.20.-c, 02.60.-x

I. INTRODUCTION

A. Motivation

It is rarely possible to build exact, deterministic in-
put to output models for complex physical systems such
as particle accelerators. It is especially difficult when the
behavior of the system is influenced by many coupled pa-
rameters. Since accelerators have many coupled param-
eters, they are prime candidates for genetic algorithm
(GA) and multi-objective genetic algorithm (MOGA)
based multidimensional, nonlinear optimization schemes.
In fact, MOGAs and GAs have been used to success-
fully optimize many aspects of particle accelerators, such
as magnet and radio frequency (RF) cavity design [1],
photoinjector design [2], damping ring design [3], stor-
age ring dynamics [4], global optimization of a lattice [5],
neutrino factory design [6], simultaneous optimization of
beam emittance and dynamic aperture [7], and free elec-
tron laser linac drivers [8]. A thorough review of GA for
accelerator physics applications is given in [9].

After an accelerator design has been finalized and the
accelerator has been constructed, one often encounters
time varying and nonlinear coupling effects between the
imperfectly manufactured and misaligned/unknown ori-
entation components of the accelerator. In theory, ac-
celerator design takes a certain level of uncertainty into
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account. In practice however, most accelerators require
post-manufacture and post-installation tuning. This is
especially the case for facilities with limited real-time di-
agnostics and noise measurement. In this case compo-
nents may have to be retuned after each shutdown or
change in operating conditions. Effects such as unknown
hysteresis curves and time varying component thermal
cycling also add to system uncertainty. A particular
problem faced by many accelerator systems is the arbi-
trary phase shift of the RF systems, a time-varying un-
certainty, requiring time consuming tuning such as phase
scans. The method presented here is demonstrated to
automatically adapt for time varying properties, such as
phase shift. A combination of the global optimization
abilities of GAs, with a local, model-independent feed-
back technique such as the one presented here, has the
potential to improve accelerator design and performance.

B. Results of the paper

In this work, we present a simple, model-independent
technique, that can aid in parameter tuning because it
does not, by design, assume any particular system model
for optimizing/tuning and therefore may be implemented
in hardware to automatically fine tune multiple parame-
ters and help mitigate un-modeled disturbances and com-
ponent imperfections.

For implementation, the user first defines a measurable
cost function, C, to be minimized, whose analytic form
may be unknown, such as the total particle loss along
the length of a particle accelerator. The components pi,
of the vector p = (p1, . . . , pm) are parameters by which
the cost may be influenced, such as the power source
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current settings feeding the quadrupole magnets in the
accelerator lattice. The rotation rate (RR) tuning law is:

pi(n+ 1) = pi(n) + ∆
√
αωi cos (ωin∆ + kC(p(n))) . (1)

Initial settings p(1), are chosen as usual, based on a
physics model and a MOGA or other numerical optimiza-
tion technique. The initial cost, C(p(1)), is calculated
after the first run and new parameter values p(2) are set
according to (1). The waiting time between implemen-
tation n and n + 1 is chosen depending on component
response/settling rates, data acquisition rates, and the
rate of time variation of system components due to dis-
turbance. Intuitively, α is the magnitude of a high fre-
quency (ωi) dither being introduced into the system’s dy-
namics, k is the gain of the controller/tuning algorithm,
and ∆ is a time interval for digital implementation. The
choices for the values of ωi, ∆, k, and α are discussed in
detail in Section III.

We demonstrate, through a multi-particle simulation
of the LANSCE low energy beam transport region, RR’s
ability to handle uncertainty by tuning up a twenty two
quadrupole lattice, and the phases of two RF buncher
cavities, by minimizing a cost which is based on beam
current loss along the transport region and the first two
tanks of the drift tube linac, for a time varying beam and
time varying RF phase drifts.

The RR approach may also be used as a simple
numerical optimizer, in which adding new parameters
pm+1, pm+2, . . . to (1), does not add significantly to com-
putation time. Multi-objective optimization is imple-
mented by replacing a single cost, C, with a combination
C = C1+· · ·+Cn, for any number of costs, such as C1 be-
ing total beam loss, C2 being total transverse beam size,
etc. Also, different parameters may be updated based on
different rates and costs (as in Section IV A), where com-
ponents having different sensitivities may require differ-
ent values of ki and αi. For example, we may implement:

pi(n+ 1) = pi(n) + ∆
√
αiωi cos (ωi∆n+ kiCi(p(n))) ,

(2)
for notational simplicity, we stick to single values of k,
α, and C throughout the analysis performed, which is
applicable in the same manner to the above, more general
scheme (2). Imposing restrictions on the parameters is
straightforward, and implemented as described in Section
III.

As shown in the analysis in Section II B, the scheme
(1) is chosen so that, with proper choices of ω, k, α, and
∆, (1) is the finite difference approximation of

ṗi =
√
αωi cos (ωit+ kC(p(t), t)) , (3)

which on average, follows the same trajectory as the sys-
tem

˙̄pi = −kα
2

∂C(p̄(t), t)

∂p̄i
, (4)

where the convention used here and throughout the re-
mainder of the paper is ṗ = ∂p

∂t .

RR is related to dithering-based optimiza-
tion/stabilization schemes, known in control theory
as extremum seeking (ES), which have been used for
optimizing unknown outputs of known, stable, systems,
by tuning known controllers. Originally introduced in
1922 [10], an overview of its development is available
in [11]. Recently, ES has been extended to perform
stabilization and optimization of unknown, possible
unstable systems [12]. RR is a further improvement and
modification of those results [13].

C. Optimization Schemes

There are many existing model dependent numeri-
cal methods for multi-dimensional/multi-parameter op-
timization, such as GA, MOGA, Newton-Raphson and
gradient descent based on the analytic form of∇C. Many
optimization methods are actually built into existing ac-
celerator design codes [14].

The main strengths of RR is its model independent na-
ture and ability to deal with multiple parameters simul-
taneously, even for time-varying systems, such as ther-
mal cycling, or unexpected component damage. Some
very simple, but computationally intensive and ineffi-
cient, model-independent methods are grid and random
point searches, especially for systems with many param-
eters. Gradient descent, based on a numerical approxi-
mation of an unknown ∇C is another model-independent
approach, but especially in the case of a multi-parameter,
noisy calculation of C, may face difficulties, whereas RR
is both robust to noise in C and does not need to try and
estimate ∇C. Only samples C(n) are required.

Simplex Fitting, in the sense that it samples many dif-
ferent directions in multi-dimensional parameter space,
has the most in common with RR. A major benefit of
RR is that its complexity does not grow with parameter
number, regardless of the number of parameters being
tuned. The scheme basically depends on three choices,
the values of k, ω, and α. Regarding noisy data, the
RR scheme is, on average, not influenced by noise, unless
it happens to both match an RR parameter’s perturba-
tion frequency and be large in magnitude relative to that
perturbation. Also, noise is easily handled by standard
methods, such as averaging and filtering.

D. Limitations

Although RR is model independent and able to tune
many parameters simultaneously, unlike GA, it is a local
technique, similar to gradient descent, and may become
trapped in local minimums. Therefore, we plan on ex-
ploring (in future work) a combination of GA and RR,
in which a GA is first used for global optimization fol-
lowed by RR for local, in-hardware tuning, to make up
for modeling errors and time variation.
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E. Organization

In Section II we give an explanation for the choice of
the update scheme (1). In Section III we explain how
to choose all RR parameters and describe digital imple-
mentation for general systems. In Section IV, we demon-
strate the scheme’s ability to handle uncertainty by tun-
ing a twenty two quadrupole lattice as well as two RF
buncher cavities, in a simulation of the LANSCE accel-
erator transport region and first two tanks of the drift
tube linac, for a varying input beam and drifting phase
shifts. Finally, in Section V we provide background re-
garding RR analysis.

II. TUNING METHOD

A. Physical Motivation

It is well known that by adding a fast, small oscillation
into a system’s dynamics, unexpected stability properties
may be achieved. The classic example is of the inverted
pendulum, whose vertical equilibrium point may be sta-
bilized by rapidly vertically oscillating the pendulum’s
pivot point. The dynamics of this process were first ana-
lytically described in the 1950s by Kapitza [15]. The RR
scheme has some similarities to this approach, in that we
introduce high frequency oscillations into a system in or-
der to force certain points of the state space to become
stable equilibrium points towards which the system’s tra-
jectory converges. By abstracting this to a general state
space and choosing such a point to be the minimum of a
cost function, we are able to tune a wide range of systems
towards various performance goals.

We start with a simple example, we do not introduce
any destabilizing terms in (5), (6), which are discussed in
remark 1. To give a simple 2D overview of this method,
we consider finding the minimum of a measurable func-
tion C(x, y), for which we cannot simply implement a
gradient descent for the trajectory of (x(t), y(t)) because
we are unaware of its analytic form. We propose the
following adaptive scheme:

∂x

∂t
=
√
αω cos (ωt+ kC(x, y)) (5)

∂y

∂t
=
√
αω sin (ωt+ kC(x, y)) . (6)

Note that although C(x, y) enters the argument of the
adaptive scheme, we do not rely on any knowledge of the
analytic form of C(x, y), we simply assume that it’s value
is available for measurement at different locations (x, y).

The velocity vector,

v =

(
∂x

∂t
,
∂y

∂t

)
=
√
αω [cos (θ(t)) , sin (θ(t))] , (7)

where θ(t) = ωt+kC(x(t), y(t)), has constant magnitude,
‖v‖ =

√
αω, and therefore the trajectory (x(t), y(t))

moves at a constant speed. However, the rate at which
the direction of the trajectories’ heading changes is a
function of ω, k, and C(x(t), y(t)) expressed as:

∂θ

∂t
= ω + k

(
∂C

∂x

∂x

∂t
+
∂C

∂y

∂y

∂t

)
. (8)

Therefore, when the trajectory is heading in the correct
direction, towards a decreasing value of C(x(t), y(t)), the
term k ∂C∂t is negative so the overall turning rate ∂θ

∂t (8),
is decreased. On the other hand, when the trajectory
is heading in the wrong direction, towards an increasing
value of C(x(t), y(t)), the term k ∂C∂t is positive, and the
turning rate is increased. On average, the system ends up
approaching the minimizing location of C(x(t), y(t)) be-
cause it spends more time moving towards it than away.

The ability of this direction-dependent turning rate
scheme is apparent in the simulation of system (5), (6),
in Figure 1. The system, starting at initial location
x(0) = 1, y(0) = −1, is simulated for 5 seconds with
update parameters ω = 50, k = 5, α = 0.5, and
C(x, y) = x2 + y2. We compare the actual system’s (5),
(6) dynamics with those of a system performing gradient
descent:

∂x̄

∂t
≈ −kα

2

∂C(x̄, ȳ)

∂x̄
= −kαx̄ (9)

∂ȳ

∂t
≈ −kα

2

∂C(x̄, ȳ)

∂ȳ
= −kαȳ, (10)

whose behavior our system mimics on average, with the
difference

max
t∈[0,T ]

‖(x(t), y(t))− (x̄(t), ȳ(t))‖ (11)

made arbitrarily small for any value of T , by choosing
arbitrarily large values of ω. The derivation of this rela-
tionship and of the rate of the gradient descent are given
in Section V.

Towards the end of the simulation, when the system’s
trajectory is near the origin, C(x, y) ≈ 0, and the dy-
namics of (5), (6) are approximately

∂x

∂t
≈
√
αω cos (ωt) =⇒ x(t) ≈

√
α

ω
sin (ωt) (12)

∂y

∂t
≈
√
αω sin (ωt) =⇒ y(t) ≈ −

√
α

ω
cos (ωt) , (13)

a circle of radius
√

α
ω , which is made arbitrarily small by

choosing small values of α or large values of ω. A detailed
overview of how to choose the values k, α, and ω is given
in Section III. Convergence towards a maximum, rather
than a minimum is achieved by replacing k with −k.

B. General RR Scheme

For general tuning, we consider the problem of locating
an extremum point of the function C(p, t) : Rn × R+ →
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FIG. 1. The subfigure in the bottom left shows the rotation

rate, ∂θ
∂t

= ω + ∂C(x,y)
∂t

, for the part of the trajectory that
is bold red, which takes place durring the first 0.5 seconds
of simulation. The rotation of the parameters’ velocity vec-
tor v(t) slows down when heading towards the minimum of
C(x, y) = x2 + y2, at which time k ∂C

∂t
< 0, and speeds up

when heading away from the minimum, when k ∂C
∂t

> 0. The
system ends up spending more time heading towards and ap-
proaches the minimum of C(x, y).
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n
,t)

u
i

p
i
(t)

cos(•)√αωi

ω
i
t

C

k

1

s

FIG. 2. Tuning of the ith component pi of p = (p1, . . . , pn) ∈
Rn. The symbol 1

s
denotes the Laplace Transform of an inte-

grator, so that in the above diagram pi(t) = pi(0)+
∫ t
0
ui(τ)dτ .

R, for p = (p1, . . . , pn) ∈ Rn, which we can measure the
value of, but whose analytic form is unknown. For nota-
tional convenience, in what follows we sometimes write
C(p) or just C instead of C(p(t), t).

The explanation presented in the previous section used
sin(·) and cos(·) functions for the x and y dynamics to
give circular trajectories. The actual requirement for
convergence is for an independence, in the frequency do-
main, of the functions used to perturb different param-
eters, such as sines or cosines of distinct frequencies. In
what follows, replacing cos(·) with sin(·) throughout, or
mixing sin(·) and cos(·) terms makes no difference.

Theorem 1 Consider the setup shown in Figure 2 (for
maximum seeking we replace k with −k):

ṗi =
√
αωi cos (ωit+ kC(p, t)) , (14)

where ωi = ω0ri such that ri 6= rj ∀i 6= j. The trajectory
of system (14) approaches the minimum of C(p, t), with
its trajectory arbitrarily close to that of

˙̄p = −kα
2
∇C, p̄(0) = p(0) (15)

with the distance between the two decreasing as a function
of increasing ω0. Namely, for any given T ∈ [0,∞), any
compact set of allowable parameters p ∈ K ⊂ Rm, and
any desired accuracy δ, there exists ω?0 such that for all
ω0 > ω?0 , the distance between the trajectory p(t) of (14)
and p̄(t) of (15) satisfies the bound

max
p,p̄∈K,t∈[0,T ]

‖p(t)− p̄(t)‖ < δ. (16)

Proof 1 By expanding

cos (ωit+ kC) = cos(ωit) cos (kC)− sin (ωit) sin (kC)
(17)

we rewrite the pi (1 ≤ i ≤ n) dynamics as

ṗi =
√
ωi cos(ωit)

√
α cos (kC)−

√
ωi sin(ωit)

√
α sin (kC) ,

(18)
and apply Corollary 1 with respect to ω0 and ν = 0.5.
The trajectory of system (14) uniformly converges to the
trajectory of

˙̄pi = −kα
2

∂C (p̄, t)

∂p̄i

(
cos2 (kC (p̄, t)) + sin2 (kC (p̄, t))

)
= −kα

2

∂C (p̄, t)

∂p̄i
, (19)

where we have used the fact that mismatched terms of
the form cos(ωit) sin(ωjt), ∀i, j, and terms of the form
cos(ωit) cos(ωjt), and sin(ωit) sin(ωjt), ∀i 6= j weakly,
uniformly converge to zero. Combining all the pi compo-
nents we get:

˙̄p = −kα
2
∇C. (20)

Remark 1 The stability of this scheme is verified by the
fact that an addition of an un-modeled, possibly destabi-
lizing perturbation of the form f(p, t) to the dynamics of
ṗ results in the averaged system:

˙̄p = f(p̄, t)− kα

2
∇C, (21)

which may be made to approach the minimum of C,
by choosing kα large enough relative to the values of∥∥∥(∇C)

T
∥∥∥ and ‖f(p̄, t)‖. Detailed stability analysis is

available in [12].

Remark 2 Although it is glossed over in the averaging
analysis presented above, if one looks into the details of
the proof of Theorem 2, in the case of a time-varying
max/min location p?(t) of C(p, t), there will be terms of
the form:

1√
ω

∣∣∣∣∂C(p, t)

∂t

∣∣∣∣ , (22)
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which are made to approach zero by increasing ω. Fur-
thermore, in the analysis of the convergence of the error
pe(t) = p(t)− p?(t) there will be terms of the form:

1

kα

∣∣∣∣∂C(p, t)

∂t

∣∣∣∣ . (23)

Together, (22) and (23) imply the intuitively obvious fact
that for systems whose time-variation is fast, in which
the minimum towards which we are descending is quickly
varying, both the value of ω and of the product kα must
be larger than for the time-invariant case.

Remark 3 In the case of different parameters having
vastly different response characteristics and sensitivities
(such as when tuning both RF and magnet settings in the
same scheme), the choices of k and α may be specified
differently for each component pi, as ki and αi, without
change to the above analysis.

III. GUIDELINES FOR DIGITAL
IMPLEMENTATION

A. Cost and Constraints

The first step is to choose tunable machine parame-
ters, p = (p1, . . . , pm) and a cost function to be mini-
mized, C = C(p1(t), . . . , pm(t), t). Next, constraints for
all parameters are chosen

pmax = (p1,max, . . . , pm,max) ,pmin = (p1,min, . . . , pm,min) .

Implementing initial parameter settings p(1), which are
chosen based on the physics model and numerical meth-
ods, allows one to calculate C(p(1)). The iterative up-
date scheme is then:

pi(n+1) = pi(n)+∆
√
αωi cos (ωin∆ + kC(p(n))) , (24)

which is based on the finite difference approximation of
the derivative:

pi(t+ ∆)− pi(t)
∆

≈ ∂pi
∂t

=
√
αωi cos (ωit+ kC(p(t), t)) ,

(25)
which, according the Theorem 1 will drive the system
towards a minimum of C. The constraints are imple-
mented by checking the updated parameters at each step
and confining them to their bounds if necessary:

IF pi(n+ 1) > pi,max, THEN pi(n+ 1) = pi,max,

IF pi(n+ 1) < pi,min, THEN pi(n+ 1) = pi,min.

B. Choice of ω, ∆, k, and α

It is important that ωi � kC, so that the adaptive
scheme is operating on a faster time scale then and able to
adapt to time variation of the cost function. Because RR

depends on distinguishing between different frequency
components of the cost, the ωi should be chosen within
such bounds such that it is possible to implement a small
enough ∆ obeying:

∆ ≤ 2π

20×max {ωi}
, (26)

ensuring that at least 20 iterations (10× the Nyquist sam-
pling rate) are required to perform one complete cosine
oscillation in the iterative scheme (24). Choosing smaller
values of ∆ results in smoother parameter oscillation and
more iterative steps required for convergence, larger val-
ues of ∆ speed up the convergence, but may destabilize
the overall scheme.

According to Theorem 1, the only requirement on the
choices of ωi is that they are big enough and distinct, but
in practice, the more harmonically independent they are
(such as ωi 6= 2ωj for all i 6= j) the better. The sensitivity
to frequency independence is different for every system
and depends on the coupling between different compo-
nents. One simple method is to choose a scaling factor,
ω0, and ωi = ω0ri, where the values ri are distinct.

The update scheme (24) is only valid as a finite dif-
ference approximation as in (25) if ∆ � 1 and ωi �√
α, kC. Taking into account (26), we choose a large

value of ω0, relative to kC, typically at least

min {ωi}
kC(p(1))

> 20, (27)

is a safe choice, where C(p(1)) is the initial cost calcu-
lated based on initial parameter settings p(1).

The rate of convergence is proportional to the product
kα, increasing either k or α speeds up convergence, as
long as they are not too big relative to the value of ω0,
so that the finite difference is an accurate approximation
of the derivative. If, after ω0 has been chosen, the con-
vergence is too slow, or if a local minimum is suspected,
k or α may be increased, with the possible need to in-
crease ω0 as well. The vector p is moving through the
parameter space Rm in ellipses with approximate major
axes of magnitude

√
α
ω , increasing α causes larger steady

state parameter oscillations, which is not a problem if the
adaptation is turned off following successful convergence.

The choices described above may vary from system to
system based on sensitivity and initially may be an it-
erative process. A good approach is to first fix values
of k and α, define the various relationships (26) - (27),
and increase ω0 if necessary until the scheme is stable.
Once convergence begins, if it is too slow, or if the cost
is not sensitive enough, k and α may be increased, with
a possible necessity to increase ω0 as well to maintain
stability.

C. Digital Resolution

Although the analytic form of C(n) may be unknown,
at each iteration the parameters are perturbed by a quan-
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tities with known bounds:

0 ≤ |∆
√
αωi cos (ωin∆ + kC(p(n)))| ≤ ∆

√
αωmax.

(28)
For a system with nb bits of resolution, and maximum
bounds ±Mi on the parameter settings, if ∆, α, and ωi
are chosen such that ∆

√
αωi ≥ N × Mi

2nb
, then, as cos()

varies between 0 and 1, it is possible for the parameter
value to take N discrete steps of minimum resolution Mi

2nb
.

D. Normalization of Parameters

Different parameters pi may require individual values
of ki and αi, in which case normalizing the parameters
to within [−1, 1] bounds may be useful. For example, at
each step n, one may compute the cost C(n) based on
parameter settings p(n), then translate into the scaled
parameters ps(n):

ps,i(n) =
2 (pi(n)− Cp,i)

Dp,i
, (29)

where Cp,i =
pi,max+pi,min

2 and Dp,i = pi,max − pi,min,
bounding each parameter within [−1, 1]. We then per-
form the RR-update

ps,i(n+ 1) = ps,i(n) + ∆
√
αiωi cos (ωin∆ + kiC(p(n))) ,

(30)
force the scaled parameters to satisfy the constraints −1
and 1, and transform back into un-scaled parameter val-
ues in order to calculate the cost for the next iteration:

pi(n+ 1) =
ps,i(n+ 1)Dp,i

2
+ Cp,i. (31)

IV. TUNING 22 QUADRUPOLE MAGNETS
AND 2 BUNCHER CAVITIES

In this section we present simulation results of using
the RR scheme to tune up the twenty two quadrupole
magnets and two buncher cavities in the Los Alamos
linear accelerator H+ transport region, a simplified
schematic of which is shown in Figure 3. The simula-
tions were done using a GPU-accelerated online beam
dynamics simulator [16, 17], which is being developed to
predict beam properties along the linac using real time
machine parameters. It can serve as a virtual beam ex-
periment environment and contribute to the cost being
minimized by the RR optimizer, by providing pseudo re-
altime estimates of beam sizes and current information in
parts of the machine where diagnostics are not available.
Currently being demonstrated on the LANSCE low en-
ergy beam transport (LEBT) and drift tube linac (DTL),
simulating a bunch of 32K macro particles through the
LEBT or DTL takes fractions of a second, which is 40
times faster than the simple CPU version of the code.

A. Magnet Tuning for Beam Transport

In a first, simple demonstration of the technique, we
perform a simulation of only the LEBT, with all initial
magnet current set points set to 0A, and allowed to tune
up based purely on the RR scheme as described above,
in which the four costs (j=1,2,3,4) being minimized:

Cj = (Ij − 0.013)
2
, (32)

were the square of the difference between initial beam
current 0.013A and total current making it through var-
ious parts of the transport region, at which diagnostics
are available. With reference to Figure 3, the current is
sampled at four locations, I1, following Q6, I2 following
Q10, I3 following Q18 and I4 at the end of the trans-
port region. The magnets (i=1,...,22) were then updated
according to:

Qi(n+ 1) = Qi(n) +
√
αωi∆ cos (ωi∆n+ kSi(n)) , (33)

where Si = C4 + C3 + C2 + C1 for Q1 − Q6, Si = C4 +
C3 + C2 for Q7 − Q10, Si = C4 + C3 for Q11 − Q18

and Si = C4 for Q19 − Q22, so that magnets only saw
costs which they were able to influence. For the tuning
parameters, we chose k = 250000, so that the amplified
costs kSj in (33) took values between 0 and 300. The
ωi were chosen as ω0ri, with ω0 = 1000 and ri uniformly
distributed between 2.5 and 3.7, ∆ = 2π

20ω22
, and α = 15.

With these values, ωmin

kCmax
> 20.

Figure 4 shows the evolution of the surviving beam
current at the end of the transport region during the
RR tuning scheme. Figure 5 shows the evolution of the
magnet current inputs. Figure 6 shows the RMS beam
size through various parts of the transport region at the
end of RR tuning, and Figure 7 compares the RR found
magnet settings to that of the tune up in 2011.

This example demonstrates some of the strengths and
limitations of the scheme, and the importance of cost
function choice. Although the cost has been minimized
and almost all current is making it to the end of the
transport region, the beam is beginning to diverge and
in this form would not be matched to the DTL following
the transport region. In practice it is of course better to
start with physics-model based initial parameters, this
simulation was conducted starting with all magnet set-
tings at zero in order to fairly demonstrate the model-
independent abilities of the RR scheme. The next simu-
lations start with the 2011 tune up for the magnet set-
tings and use current monitors following two tanks of
the DTL, in which case surviving beam corresponds with
well-matched beam.

B. Magnet and RF Buncher Cavity Tuning

To demonstrate the use of this scheme for fine tuning of
machine settings, we used machine settings found during
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FIG. 3. Simplified schematic of the LANSCE H+ injector and transport region.
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FIG. 4. The surviving current at the end of the beam trans-
port over 2500 iteration steps is shown for an initial beam
current of 13mA.
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FIG. 5. Evolution of the magnet current settings to the mag-
nets over 2500 iteration steps.
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FIG. 6. RMS beam size at the end of the iterative tuning
scheme.
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FIG. 7. Magnet settings at the end of the iterative tuning
scheme compared to 2011 tune up settings.
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FIG. 8. The surviving current at the end of the beam trans-
port over 2000 iteration steps is shown for an initial beam
current of 15mA.

the 2011 tune up procedure, but with a slightly differ-
ent beam and incorrectly phased buncher cavities. The
magnets were initialized to the values recorded from one
of the 2011 machine turn on tuning periods. We set the
phase settings for the buncher and pre-buncher to zero,
which typically must be re-tuned at each turn on, by a
phase scan, to take care of arbitrary phase shift.



8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

Quad Number HiL

M
ag

n
et

G
ra

d
ie

n
t
HT
�m
L Tune Qi-Blue�Dashed RR Qi-Red�Solid

FIG. 9. New magnet settings after optimization.
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We used only the surviving current at the end of the
second tank of the drift tube linac to create our cost, our
tuning procedure for the parameters was:

Qi(n+ 1) = Qi(n) +
√
αiωi∆ cos (ωin∆ + kC(n)) , (34)

where αi = αm for the magnets and αi = αb for the
buncher phases. In both cases

C(n) = (Iend − 15mA)
2
.

For the tuning parameters, we chose k = 605000, αm =
25, αb = 550. The ωi were chosen as ω0ri, with ω0 =
2000 and ri uniformly distributed between 2.5 and 4.3,
∆ = 2π

20ω24
. With these values, ωmin

kCmax
> 35.

With an initial beam current of 15mA, the typical sur-
viving current after machine tune up is roughly 80% or
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FIG. 12. Surviving beam current along the machine with
2011 tune-based magnet settings and arbitrary phase (red)
and following RR tune (blue).

x, xp Phase Space, Original-Red, New-Blue

-6 -4 -2 0 642
x (mm)

x p (
m

ra
d)

-10

0

10

5

-5

y (mm)

y p (
m

ra
d)

-6 -4 -2 0 642-20
-15
-10

10
15

-5

y, yp Phase Space, Original-Red, New-Blue

0
5
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12mA. After 2000 simultaneous iterations on these 24
parameters (22 quads, 2 buncher phases), the surviving
current at the end of Tank 2 was 12.25mA. The results
of the optimization procedure are shown in Figures 8 -
12. From Figures 9, 10 we see that only minor adjust-
ments are made to magnet settings compared to the RF
phases. Figure 11 shows that the transverse beam size
has further focused throughout the transport region and
the transverse match to the DTL has slightly improved.
Figure 12 compares surviving beam current at the end of
Tank 2 of the DTL before and after tuning.
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C. Adaptation to Time Varying Phase Delay and
Beam Characteristics

In order to demonstrate the adaptive tuning abilities of
the scheme, we started with matched beam settings and
varied both the characteristics of the input beam and

added a time-varying phase drift to each buncher cavity.
Figures 13 shows the initial and final beam properties

at the entrance to the transport region, during which
RR adaptive tuning maintains beam focus and matching.
Figure 14 shows the phase shift of the bunchers with and
without tuning. These changes took place starting at
step 1000 and finished at step 19000, with beam proper-
ties staying constant before and after the interval. Also,
during this beam changing process, the phase of the first
buncher was made to drift by 30 deg and that of the sec-
ond by 35 deg, as seen in Figure 14.

The drift of beam characteristics and buncher phase
shifts took place over 18000 time steps, which for a con-
servative magnet/phase update rate of 1Hz translates
into drastically changing accelerator and beam proper-
ties over the course of just 5 hours. All tuning parame-
ters were maintained exactly the same as in the previous
example.

Figure 15 shows the evolution of the magnet gradients
throughout the process and Figure 16 compares the ini-
tial and final beam profiles. In Figure 17 we see that
adaptive RR tuning is able to maintain ∼ 12mA of sur-
viving beam during the time-varying beam and phase,
whereas almost all of the beam is lost without tuning.

V. ANALYTIC BACKGROUND

We briefly recall the functional analysis result of
Kurzweil and Jarnik [18], which allows one to relate the
trajectories of a highly oscillatory system to those of a
simplified Lie bracket averaged system.

Theorem 2 [18] For T ∈ [0,∞), and a compact set K ⊂
Rn, consider a sequence (k ∈ N) of sets of n coupled
differential equations (x = (x1, . . . , xn)):

ẋ = f(x, t) +

n∑
i=1

gi(x, t)ϕi,k(t), x(0) = x0, (35)

where ẋ denotes ∂x
∂t and the functions f(x, t), gi(x, t),

and ϕi,k(t) are continuous and Lipschitz, and their first
and second derivatives are continuous and bounded. If
the functions ϕi,k(t) are continuous and their integrals
satisfy:

Φi,k(t) =

∫ t

0

ϕi,k(τ)dτ → 0 uniformly as k →∞,

(36)
and there exists measurable functions λi,j(t) such that

lim
k→∞

∫ t

0

ϕj,k(τ)Φi,k(τ)dτ =

∫ t

0

λi,j(τ)dτ, uniformly.

(37)
Then, for all t ∈ [0, T ] and x ∈ K, the sequence of solu-
tions of (35):

xk(t) = x0 +

∫ t

0

(
f(xk, τ) +

n∑
i=1

gi(xk, τ)ϕi,k(τ)

)
dτ

(38)
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converges uniformly with respect to k, over (x, t) ∈ K ×
[0, T ] to the solution x(t) satisfying:

ẋ = f(x, t)−
n∑

i,j=1

λi,j(t) (Dgi(x, t)) gj(x, t), x(0) = x0.

(39)

Corollary 1 For T ∈ [0,∞), and any compact set K ⊂
Rn such that the functions f(x, t), hi(x, t), gi(x, t) satisfy
the assumptions of Theorem 2, for any δ > 0, there exists
M such that for all k > M , the trajectory x(t) of the
system

ẋ = f(x, t) +

n∑
i=1

hi(x, t)k̂
ν
i cos

(
k̂2νi t

)
−

n∑
i=1

gi(x, t)k̂
ν
i sin

(
k̂2νi t

)
, (40)

and the trajectory x̄(t) of the system

˙̄x = f(x̄, t)− 1

2

n∑
i 6=j

[
∂gj
∂x̄

hi −
∂hi
∂x̄

gj

]
, x̄(0) = x(0),

(41)
satisfy the convergent trajectories property:

max
t∈[0,T ]

‖x(t)− x̄(t)‖ < δ, (42)

where k ∈ N, ri ∈ R such that ri 6= rj, and k̂i = rik.

Proof 2 Theorem 2 is satisfied for

ϕi,k = k̂νi cos
(
k̂2νi t

)
, Φi,k(t) =

1

k̂νi
sin(k̂2νi t)

ϕ̂i,k = −k̂νi sin
(
k̂2νi t

)
, Φ̂i,k(t) =

1

k̂νi
cos(k̂2νi t)

and

λi,j =


1
2 : mixed terms ϕi,kΦ̂j,k, ϕ̂i,kΦj,k s.t. i = j

0 : mixed terms ϕi,kΦ̂j,k, ϕ̂i,kΦj,k s.t. i 6= j

0 : all non−mixed terms ϕi,kΦj,k, ϕ̂i,kΦ̂j,k

VI. CONCLUSIONS AND FUTURE WORK

Because of the global optimization ability of MOGAs
and the simple, fast, abilities of RR, we think that a
combination of RR and MOGA techniques can be a very
powerful numerical optimization method, in which once
the neighborhood of a global optimal solution has been
determined by MOGA, RR may be implemented for fine
tuning, and finally in hardware to compensate for un-
modeled system characteristics. In the future, following
upgrades to the LANSCE digital control system and net-
work, we plan to test this algorithm on various accelera-
tor components.
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