DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Type I clathrates as novel silicon anodes: An electrochemical and structural investigation

Abstract

In this study, silicon clathrates contain cage-like structures that can encapsulate various guest atoms or molecules. Here we present an electrochemical evaluation of type I silicon clathrates based on Ba8AlySi46-y for the anode material in lithium-ion batteries. Post-cycling characterization with NMR and XRD show no discernible structural or volume changes even after electrochemical insertion of 44 Li into the clathrate structure. The observed properties are in stark contrast with lithiation of other silicon anodes, which become amorphous and suffer from larger volume changes. The lithiation/delithiation processes are proposed to occur in single phase reactions at approximately 0.2 and 0.4 V vs. Li/Li+, respectively, distinct from other diamond cubic or amorphous silicon anodes. Reversible capacities as high as 499 mAh g-1 at a 5 mA g-1 rate were observed for silicon clathrate with composition Ba8Al8.54Si37.46, corresponding to Li:Si of 1.18:1. The results show that silicon clathrates could be promising durable anodes for lithium-ion batteries.

Authors:
 [1];  [1];  [1];  [1];  [2];  [1];  [1];  [1];  [2];  [3];  [3];  [3];  [1]
  1. Arizona State Univ., Tempe, AZ (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  3. Southwest Research Institute, San Antonio, TX (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1185934
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Science
Additional Journal Information:
Journal Volume: 2; Journal Issue: 6; Journal ID: ISSN 2198-3844
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Li, Ying, Raghavan, Rahul, Wagner, Nicholas A., Davidowski, Stephen K., Baggetto, Loic, Zhao, Ran, Cheng, Qian, Yarger, Jeffery L., Veith, Gabriel M., Ellis-Terrell, Carol, Miller, Michael A., Chan, Kwai S., and Chan, Candace K. Type I clathrates as novel silicon anodes: An electrochemical and structural investigation. United States: N. p., 2015. Web. doi:10.1002/advs.201500057.
Li, Ying, Raghavan, Rahul, Wagner, Nicholas A., Davidowski, Stephen K., Baggetto, Loic, Zhao, Ran, Cheng, Qian, Yarger, Jeffery L., Veith, Gabriel M., Ellis-Terrell, Carol, Miller, Michael A., Chan, Kwai S., & Chan, Candace K. Type I clathrates as novel silicon anodes: An electrochemical and structural investigation. United States. https://doi.org/10.1002/advs.201500057
Li, Ying, Raghavan, Rahul, Wagner, Nicholas A., Davidowski, Stephen K., Baggetto, Loic, Zhao, Ran, Cheng, Qian, Yarger, Jeffery L., Veith, Gabriel M., Ellis-Terrell, Carol, Miller, Michael A., Chan, Kwai S., and Chan, Candace K. Tue . "Type I clathrates as novel silicon anodes: An electrochemical and structural investigation". United States. https://doi.org/10.1002/advs.201500057. https://www.osti.gov/servlets/purl/1185934.
@article{osti_1185934,
title = {Type I clathrates as novel silicon anodes: An electrochemical and structural investigation},
author = {Li, Ying and Raghavan, Rahul and Wagner, Nicholas A. and Davidowski, Stephen K. and Baggetto, Loic and Zhao, Ran and Cheng, Qian and Yarger, Jeffery L. and Veith, Gabriel M. and Ellis-Terrell, Carol and Miller, Michael A. and Chan, Kwai S. and Chan, Candace K.},
abstractNote = {In this study, silicon clathrates contain cage-like structures that can encapsulate various guest atoms or molecules. Here we present an electrochemical evaluation of type I silicon clathrates based on Ba8AlySi46-y for the anode material in lithium-ion batteries. Post-cycling characterization with NMR and XRD show no discernible structural or volume changes even after electrochemical insertion of 44 Li into the clathrate structure. The observed properties are in stark contrast with lithiation of other silicon anodes, which become amorphous and suffer from larger volume changes. The lithiation/delithiation processes are proposed to occur in single phase reactions at approximately 0.2 and 0.4 V vs. Li/Li+, respectively, distinct from other diamond cubic or amorphous silicon anodes. Reversible capacities as high as 499 mAh g-1 at a 5 mA g-1 rate were observed for silicon clathrate with composition Ba8Al8.54Si37.46, corresponding to Li:Si of 1.18:1. The results show that silicon clathrates could be promising durable anodes for lithium-ion batteries.},
doi = {10.1002/advs.201500057},
journal = {Advanced Science},
number = 6,
volume = 2,
place = {United States},
year = {Tue May 05 00:00:00 EDT 2015},
month = {Tue May 05 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 40 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Controlled thermal decomposition of NaSi to derive silicon clathrate compounds
journal, January 2009

  • Horie, Hiro-omi; Kikudome, Takashi; Teramura, Kyosuke
  • Journal of Solid State Chemistry, Vol. 182, Issue 1
  • DOI: 10.1016/j.jssc.2008.10.007

Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries
journal, May 2010

  • Song, Taeseup; Xia, Jianliang; Lee, Jin-Hyon
  • Nano Letters, Vol. 10, Issue 5, p. 1710-1716
  • DOI: 10.1021/nl100086e

Synthesis and X-Ray Characterization of Silicon Clathrates
journal, July 1999

  • Ramachandran, Ganesh K.; Dong, Jianjun; Diefenbacher, Jason
  • Journal of Solid State Chemistry, Vol. 145, Issue 2
  • DOI: 10.1006/jssc.1999.8295

An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si
journal, January 2007

  • Li, Jing; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 154, Issue 3
  • DOI: 10.1149/1.2409862

Silicon-oxycarbide based thin film anodes for lithium ion batteries
journal, July 2011


An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO)
journal, June 2003


High-performance lithium-ion anodes using a hierarchical bottom-up approach
journal, March 2010

  • Magasinski, A.; Dixon, P.; Hertzberg, B.
  • Nature Materials, Vol. 9, Issue 4, p. 353-358
  • DOI: 10.1038/nmat2725

Electrochemical Potential Spectroscopy: A New Electrochemical Measurement
journal, January 1979

  • Thompson, A. H.
  • Journal of The Electrochemical Society, Vol. 126, Issue 4
  • DOI: 10.1149/1.2129095

Synthesis, Crystal Structure, and Physical Properties of the Type-I Clathrate Ba 8−δ Ni x y Si 46– xy
journal, March 2012

  • Aydemir, U.; Candolfi, C.; Ormeci, A.
  • Inorganic Chemistry, Vol. 51, Issue 8
  • DOI: 10.1021/ic2027626

NMR in the silicon clathrate compounds NaxBaySi46 and NaxSi136
journal, February 1997


NMR and X-ray Spectroscopy of Sodium−Silicon Clathrates
journal, May 2001

  • He, Jiliang; Klug, Dennis D.; Uehara, Kentaro
  • The Journal of Physical Chemistry B, Vol. 105, Issue 17, p. 3475-3485
  • DOI: 10.1021/jp010255e

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

High-Pressure Synthesis of a New Silicon Clathrate Superconductor, Ba 8 Si 46
journal, January 2000

  • Yamanaka, Shoji; Enishi, Eiji; Fukuoka, Hiroshi
  • Inorganic Chemistry, Vol. 39, Issue 1
  • DOI: 10.1021/ic990778p

Clathrate Structure of Silicon Na8Si46 and NaxSi136 (x < 11)
journal, December 1965


Solid-State NMR and Electrochemical Dilatometry Study on Li[sup +] Uptake/Extraction Mechanism in SiO Electrode
journal, January 2007

  • Kim, Taeahn; Park, Sangjin; Oh, Seung M.
  • Journal of The Electrochemical Society, Vol. 154, Issue 12
  • DOI: 10.1149/1.2790282

XPS studies on Ba, BaO and the oxidation of Ba
journal, August 1980


Electronic structures of Na 8 Si 46 and Ba 8 Si 46
journal, April 2000

  • Moriguchi, Koji; Yonemura, Mitsuharu; Shintani, Akira
  • Physical Review B, Vol. 61, Issue 15
  • DOI: 10.1103/PhysRevB.61.9859

Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries
journal, July 2011

  • Liu, Nian; Hu, Liangbing; McDowell, Matthew T.
  • ACS Nano, Vol. 5, Issue 8
  • DOI: 10.1021/nn2017167

Chemical and surface core-level shifts of barium studied by photoemission
journal, August 1987


Real-Time NMR Investigations of Structural Changes in Silicon Electrodes for Lithium-Ion Batteries
journal, July 2009

  • Key, Baris; Bhattacharyya, Rangeet; Morcrette, Mathieu
  • Journal of the American Chemical Society, Vol. 131, Issue 26
  • DOI: 10.1021/ja8086278

Paramagnetic trivalent silicon centers in gamma irradiated metal‐oxide‐silicon structures
journal, January 1984

  • Lenahan, P. M.; Dressendorfer, P. V.
  • Applied Physics Letters, Vol. 44, Issue 1
  • DOI: 10.1063/1.94566

NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries
journal, December 2010

  • Trill, Jan-Henning; Tao, Chuangqi; Winter, Martin
  • Journal of Solid State Electrochemistry, Vol. 15, Issue 2
  • DOI: 10.1007/s10008-010-1260-0

Silicon Nanotube Battery Anodes
journal, November 2009

  • Park, Mi-Hee; Kim, Min Gyu; Joo, Jaebum
  • Nano Letters, Vol. 9, Issue 11, p. 3844-3847
  • DOI: 10.1021/nl902058c

Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes
journal, April 2009


In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon
journal, January 2004

  • Hatchard, T. D.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 6
  • DOI: 10.1149/1.1739217

Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems
journal, January 2000


Orientation-Dependent Interfacial Mobility Governs the Anisotropic Swelling in Lithiated Silicon Nanowires
journal, January 2012

  • Yang, Hui; Huang, Shan; Huang, Xu
  • Nano Letters, Vol. 12, Issue 4
  • DOI: 10.1021/nl204437t

Neutron Diffraction Study of the Type I Clathrate Ba 8 Al x Si 46– x : Site Occupancies, Cage Volumes, and the Interaction between the Guest and the Host Framework
journal, December 2011

  • Roudebush, John H.; de la Cruz, Clarina; Chakoumakos, Bryan C.
  • Inorganic Chemistry, Vol. 51, Issue 3
  • DOI: 10.1021/ic202095e

Electrochemical study of lithium insertion into carbon-rich polymer-derived silicon carbonitride ceramics
journal, December 2010


High-Resolution X-Ray Photoelectron Spectroscopy as a Probe of Local Atomic Structure: Application to Amorphous Si O 2 and the Si-Si O 2 Interface
journal, November 1979


Synthesis, Structure, and High-Temperature Thermoelectric Properties of Boron-Doped Ba 8 Al 14 Si 31 Clathrate I Phases
journal, September 2008

  • Condron, Cathie L.; Kauzlarich, Susan M.; Ikeda, Teruyuki
  • Inorganic Chemistry, Vol. 47, Issue 18
  • DOI: 10.1021/ic800772m

Li NMR Spectroscopy on Crystalline Li12Si7: Experimental Evidence for the Aromaticity of the Planar Cyclopentadienyl-Analogous Si56− Rings
journal, October 2011

  • Kuhn, Alexander; Sreeraj, Puravankara; Pöttgen, Rainer
  • Angewandte Chemie International Edition, Vol. 50, Issue 50
  • DOI: 10.1002/anie.201105081

Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation
journal, August 2011

  • Liu, Xiao Hua; Zheng, He; Zhong, Li
  • Nano Letters, Vol. 11, Issue 8, p. 3312-3318
  • DOI: 10.1021/nl201684d

Structural characterization of the lithium silicides Li15Si4, Li13Si4, and Li7Si3 using solid state NMR
journal, January 2012

  • Dupke, Sven; Langer, Thorsten; Pöttgen, Rainer
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 18
  • DOI: 10.1039/c2cp24131e

Silicon clathrates as anode materials for lithium ion batteries?
journal, January 2013

  • Yang, Jianjun; Tse, John S.
  • Journal of Materials Chemistry A, Vol. 1, Issue 26
  • DOI: 10.1039/c3ta11050h

Resolving the Different Silicon Clusters in Li12Si7 by 29Si and 6,7Li Solid-State NMR Spectroscopy
journal, November 2011

  • Köster, Thomas K. -J.; Salager, Elodie; Morris, Andrew J.
  • Angewandte Chemie International Edition, Vol. 50, Issue 52
  • DOI: 10.1002/anie.201105998

Synthesis of the Clathrate-I Phase Ba 8− x Si 46 via Redox Reactions
journal, May 2011

  • Liang, Ying; Böhme, Bodo; Reibold, Marianne
  • Inorganic Chemistry, Vol. 50, Issue 10
  • DOI: 10.1021/ic2001859

Improved Electrochemical Capacity of Precursor-Derived Si(B)CN-Carbon Nanotube Composite as Li-Ion Battery Anode
journal, September 2012

  • Bhandavat, R.; Singh, G.
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 10
  • DOI: 10.1021/am3015795

Ba oxides: Core level binding energies and defect-related Fermi level pinning
journal, January 1990


Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes
journal, May 2012

  • Zhang, Huigang; Braun, Paul V.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl204551m

Vibrational modes in silicon clathrate compounds: A key to understanding superconductivity
journal, July 2002


A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries
journal, March 2010

  • Kim, Hyejung; Seo, Minho; Park, Mi-Hee
  • Angewandte Chemie International Edition, Vol. 49, Issue 12
  • DOI: 10.1002/anie.200906287

Superconductivity of Metal Deficient Silicon Clathrate Compounds, Ba 8 - x Si 46 (0 < x ≤ 1.4)
journal, May 2003

  • Fukuoka, Hiroshi; Kiyoto, Junichi; Yamanaka, Shoji
  • Inorganic Chemistry, Vol. 42, Issue 9
  • DOI: 10.1021/ic020676q

Phase stability and chemical composition dependence of the thermoelectric properties of the type-I clathrate Ba8AlxSi46−x (8≤x≤15)
journal, May 2011

  • Tsujii, Naohito; Roudebush, John H.; Zevalkink, Alex
  • Journal of Solid State Chemistry, Vol. 184, Issue 5, p. 1293-1303
  • DOI: 10.1016/j.jssc.2011.03.038

Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms
journal, January 2011

  • Key, Baris; Morcrette, Mathieu; Tarascon, Jean-Marie
  • Journal of the American Chemical Society, Vol. 133, Issue 3
  • DOI: 10.1021/ja108085d

Synthesis and Characterization of K 8− x (H 2 ) y Si 46
journal, February 2010

  • Neiner, Doinita; Okamoto, Norihiko L.; Yu, Ping
  • Inorganic Chemistry, Vol. 49, Issue 3
  • DOI: 10.1021/ic9004592

Fracture of crystalline silicon nanopillars during electrochemical lithium insertion
journal, February 2012

  • Lee, S. W.; McDowell, M. T.; Berla, L. A.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 11
  • DOI: 10.1073/pnas.1201088109

Structure and Thermoelectric Characterization of Ba 8 Al 14 Si 31
journal, November 2006

  • Condron, Cathie L.; Martin, J.; Nolas, G. S.
  • Inorganic Chemistry, Vol. 45, Issue 23
  • DOI: 10.1021/ic061241w

NMR Studies of Silicon Clathrate Compounds
journal, April 2000

  • Maniwa, Yutaka; Sakamoto, Hirokazu; Tou, Hideki
  • Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, Vol. 341, Issue 2
  • DOI: 10.1080/10587250008026188

Nano-porous SiO/carbon composite anode for lithium-ion batteries
journal, March 2009

  • Liu, Wei-Ren; Yen, Yu-Chan; Wu, Hung-Chun
  • Journal of Applied Electrochemistry, Vol. 39, Issue 9
  • DOI: 10.1007/s10800-009-9854-x

Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes
journal, June 2009

  • Ruffo, Riccardo; Hong, Seung Sae; Chan, Candace K.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 26, p. 11390-11398
  • DOI: 10.1021/jp901594g

Polysilane/Acenaphthylene Blends Toward Si–O–C Composite Anodes for Rechargeable Lithium-Ion Batteries
journal, January 2011

  • Fukui, Hiroshi; Ohsuka, Hisashi; Hino, Takakazu
  • Journal of The Electrochemical Society, Vol. 158, Issue 5
  • DOI: 10.1149/1.3567956

Die verbindungen AII8BIII16BIV30 (AII ≡ Sr, Ba; BIII≡ Al, Ga; BIV ≡ Si, Ge, Sn) und ihre käfigstrukturen
journal, April 1986

  • Eisenmann, Brigitte; Schäfer, Herbert; Zagler, Roland
  • Journal of the Less Common Metals, Vol. 118, Issue 1
  • DOI: 10.1016/0022-5088(86)90609-0

n- and p-Type behaviour of the gold-substituted type-I clathrate, Ba8AuxSi46–x (x = 5.4 and 5.9)
journal, January 2005


Electrochemical Cycling of Sodium-Filled Silicon Clathrate
journal, September 2013

  • Wagner, Nicholas A.; Raghavan, Rahul; Zhao, Ran
  • ChemElectroChem, Vol. 1, Issue 2
  • DOI: 10.1002/celc.201300104

Structural Changes in Silicon Anodes during Lithium Insertion/Extraction
journal, January 2004

  • Obrovac, M. N.; Christensen, Leif
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 5
  • DOI: 10.1149/1.1652421

High-Pressure Synthesis of LiSi: Three-Dimensional Network of Three-Bonded Si? Ions
journal, October 1993

  • Evers, J�rgen; Oehlinger, Gilbert; Sextl, Gerhard
  • Angewandte Chemie International Edition in English, Vol. 32, Issue 10
  • DOI: 10.1002/anie.199314421

Electrochemical Lithiation of Silicon Clathrate-II
journal, January 2012

  • Langer, Thorsten; Dupke, Sven; Trill, Henning
  • Journal of The Electrochemical Society, Vol. 159, Issue 8
  • DOI: 10.1149/2.082208jes

Improved Electrochemical Capacity of Precursor-Derived Si(B)CN-Carbon Nanotube Composite as Li-Ion Battery Anode
journal, September 2012

  • Bhandavat, R.; Singh, G.
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 10
  • DOI: 10.1021/am3015795

Synthesis of the Clathrate-I Phase Ba 8− x Si 46 via Redox Reactions
journal, May 2011

  • Liang, Ying; Böhme, Bodo; Reibold, Marianne
  • Inorganic Chemistry, Vol. 50, Issue 10
  • DOI: 10.1021/ic2001859

Neutron Diffraction Study of the Type I Clathrate Ba 8 Al x Si 46– x : Site Occupancies, Cage Volumes, and the Interaction between the Guest and the Host Framework
journal, December 2011

  • Roudebush, John H.; de la Cruz, Clarina; Chakoumakos, Bryan C.
  • Inorganic Chemistry, Vol. 51, Issue 3
  • DOI: 10.1021/ic202095e

Synthesis, Crystal Structure, and Physical Properties of the Type-I Clathrate Ba 8−δ Ni x y Si 46– xy
journal, March 2012

  • Aydemir, U.; Candolfi, C.; Ormeci, A.
  • Inorganic Chemistry, Vol. 51, Issue 8
  • DOI: 10.1021/ic2027626

Synthesis, Structure, and High-Temperature Thermoelectric Properties of Boron-Doped Ba 8 Al 14 Si 31 Clathrate I Phases
journal, September 2008

  • Condron, Cathie L.; Kauzlarich, Susan M.; Ikeda, Teruyuki
  • Inorganic Chemistry, Vol. 47, Issue 18
  • DOI: 10.1021/ic800772m

Synthesis and Characterization of K 8− x (H 2 ) y Si 46
journal, February 2010

  • Neiner, Doinita; Okamoto, Norihiko L.; Yu, Ping
  • Inorganic Chemistry, Vol. 49, Issue 3
  • DOI: 10.1021/ic9004592

High-Pressure Synthesis of a New Silicon Clathrate Superconductor, Ba 8 Si 46
journal, January 2000

  • Yamanaka, Shoji; Enishi, Eiji; Fukuoka, Hiroshi
  • Inorganic Chemistry, Vol. 39, Issue 1
  • DOI: 10.1021/ic990778p

Pair Distribution Function Analysis and Solid State NMR Studies of Silicon Electrodes for Lithium Ion Batteries: Understanding the (De)lithiation Mechanisms
journal, January 2011

  • Key, Baris; Morcrette, Mathieu; Tarascon, Jean-Marie
  • Journal of the American Chemical Society, Vol. 133, Issue 3
  • DOI: 10.1021/ja108085d

Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries
journal, May 2010

  • Song, Taeseup; Xia, Jianliang; Lee, Jin-Hyon
  • Nano Letters, Vol. 10, Issue 5, p. 1710-1716
  • DOI: 10.1021/nl100086e

Anisotropic Swelling and Fracture of Silicon Nanowires during Lithiation
journal, August 2011

  • Liu, Xiao Hua; Zheng, He; Zhong, Li
  • Nano Letters, Vol. 11, Issue 8, p. 3312-3318
  • DOI: 10.1021/nl201684d

Orientation-Dependent Interfacial Mobility Governs the Anisotropic Swelling in Lithiated Silicon Nanowires
journal, January 2012

  • Yang, Hui; Huang, Shan; Huang, Xu
  • Nano Letters, Vol. 12, Issue 4
  • DOI: 10.1021/nl204437t

Three-Dimensional Metal Scaffold Supported Bicontinuous Silicon Battery Anodes
journal, May 2012

  • Zhang, Huigang; Braun, Paul V.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl204551m

Silicon Nanotube Battery Anodes
journal, November 2009

  • Park, Mi-Hee; Kim, Min Gyu; Joo, Jaebum
  • Nano Letters, Vol. 9, Issue 11, p. 3844-3847
  • DOI: 10.1021/nl902058c

Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries
journal, July 2011

  • Liu, Nian; Hu, Liangbing; McDowell, Matthew T.
  • ACS Nano, Vol. 5, Issue 8
  • DOI: 10.1021/nn2017167

High-performance lithium-ion anodes using a hierarchical bottom-up approach
journal, March 2010

  • Magasinski, A.; Dixon, P.; Hertzberg, B.
  • Nature Materials, Vol. 9, Issue 4, p. 353-358
  • DOI: 10.1038/nmat2725

Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

Structural characterization of the lithium silicides Li15Si4, Li13Si4, and Li7Si3 using solid state NMR
journal, January 2012

  • Dupke, Sven; Langer, Thorsten; Pöttgen, Rainer
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 18
  • DOI: 10.1039/c2cp24131e

Superconductivity in Doped s p 3 Semiconductors: The Case of the Clathrates
journal, December 2003


Works referencing / citing this record:

Surface Properties of Battery Materials Elucidated Using Scanning Electrochemical Microscopy: The Case of Type I Silicon Clathrate
journal, December 2019

  • Tarnev, Tsvetan; Wilde, Patrick; Dopilka, Andrew
  • ChemElectroChem, Vol. 7, Issue 3
  • DOI: 10.1002/celc.201901688

Multifaceted Sn–Sn bonding in the solid state. Synthesis and structural characterization of four new Ca–Li–Sn compounds
journal, January 2019

  • Ovchinnikov, Alexander; Bobev, Svilen
  • Dalton Transactions, Vol. 48, Issue 38
  • DOI: 10.1039/c9dt02803j

Silicon clathrates for lithium ion batteries: A perspective
journal, December 2016

  • Warrier, Pramod; Koh, Carolyn A.
  • Applied Physics Reviews, Vol. 3, Issue 4
  • DOI: 10.1063/1.4958711