DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evidence for the temperature dependence of phase transformation behavior of silicon at nanoscale

Abstract

This study uses the in-situ high-temperature nanoindentation coupled with electrical measurements to investigate the temperature dependence (25 to 200 C) of the phase transformation behavior of crystalline silicon (dc-Si) at the nanoscale. Along with in-situ indentation and electrical data, ex-situ characterizations such as Raman and cross-sectional transmission electron microscopy (XTEM) have been used to reveal the dominant mode of deformation under the indenter. In contrast to the previous studies, the dominant mode of deformation under the nanoindenter at elevated temperatures is not the dc-Si to metallic phase ( -Sn) transformation. Instead, XTEM images from 150 C indents reveal that the dominant mode of deformation is twinning along {111} planes. While the in-situ high-temperature electrical measurements show an increase in the current due to metallic phase formation up to 125 C, it is absent 150 C, revealing that the formation of the metallic phase is negligible in this regime. Thus, this work provides clear insight into the temperature dependent deformation mechanisms in dc-Si at the nanoscale.

Authors:
;  [1];  [1];  [2];  [1];  [1];  [1]
  1. Australian National Univ., Canberra, ACT (Australia)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1185893
Alternate Identifier(s):
OSTI ID: 1228159
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 117; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Mangalampalli S. R. N. Kiran, Tran, Tuan, Smillie, Lachlan, Haberl, Bianca, Subianto, D., Williams, James S., and Bradby, Jodie E. Evidence for the temperature dependence of phase transformation behavior of silicon at nanoscale. United States: N. p., 2015. Web. doi:10.1063/1.4921534.
Mangalampalli S. R. N. Kiran, Tran, Tuan, Smillie, Lachlan, Haberl, Bianca, Subianto, D., Williams, James S., & Bradby, Jodie E. Evidence for the temperature dependence of phase transformation behavior of silicon at nanoscale. United States. https://doi.org/10.1063/1.4921534
Mangalampalli S. R. N. Kiran, Tran, Tuan, Smillie, Lachlan, Haberl, Bianca, Subianto, D., Williams, James S., and Bradby, Jodie E. Wed . "Evidence for the temperature dependence of phase transformation behavior of silicon at nanoscale". United States. https://doi.org/10.1063/1.4921534. https://www.osti.gov/servlets/purl/1185893.
@article{osti_1185893,
title = {Evidence for the temperature dependence of phase transformation behavior of silicon at nanoscale},
author = {Mangalampalli S. R. N. Kiran and Tran, Tuan and Smillie, Lachlan and Haberl, Bianca and Subianto, D. and Williams, James S. and Bradby, Jodie E.},
abstractNote = {This study uses the in-situ high-temperature nanoindentation coupled with electrical measurements to investigate the temperature dependence (25 to 200 C) of the phase transformation behavior of crystalline silicon (dc-Si) at the nanoscale. Along with in-situ indentation and electrical data, ex-situ characterizations such as Raman and cross-sectional transmission electron microscopy (XTEM) have been used to reveal the dominant mode of deformation under the indenter. In contrast to the previous studies, the dominant mode of deformation under the nanoindenter at elevated temperatures is not the dc-Si to metallic phase ( -Sn) transformation. Instead, XTEM images from 150 C indents reveal that the dominant mode of deformation is twinning along {111} planes. While the in-situ high-temperature electrical measurements show an increase in the current due to metallic phase formation up to 125 C, it is absent 150 C, revealing that the formation of the metallic phase is negligible in this regime. Thus, this work provides clear insight into the temperature dependent deformation mechanisms in dc-Si at the nanoscale.},
doi = {10.1063/1.4921534},
journal = {Journal of Applied Physics},
number = ,
volume = 117,
place = {United States},
year = {Wed May 27 00:00:00 EDT 2015},
month = {Wed May 27 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High-pressure phases of group-IV, III–V, and II–VI compounds
journal, July 2003


On the cyclic indentation behavior of crystalline silicon with a sharp tip
journal, November 2007

  • Fujisawa, N.; Williams, J. S.; Swain, M. V.
  • Journal of Materials Research, Vol. 22, Issue 11
  • DOI: 10.1557/JMR.2007.0406

Ab initio study of silicon in the R 8 phase
journal, September 1997

  • Pfrommer, Bernd G.; Co⁁té, Michel; Louie, Steven G.
  • Physical Review B, Vol. 56, Issue 11
  • DOI: 10.1103/PhysRevB.56.6662

First-principles pseudopotential study of the structural phases of silicon
journal, April 1995


Crystal Structures at High Pressures of Metallic Modifications of Silicon and Germanium
journal, February 1963


Raman scattering in metallic Si and Ge up to 50 GPa
journal, April 1992


Crystal data for high-pressure phases of silicon
journal, October 1986


Reversible pressure-induced structural transitions between metastable phases of silicon
journal, November 1994


Structure and properties of silicon XII: A complex tetrahedrally bonded phase
journal, August 1995


Solid-solid phase transitions and soft phonon modes in highly condensed Si
journal, June 1985


Ab initio survey of the electronic structure of tetrahedrally bonded phases of silicon
journal, July 2008


Experimental evidence for semiconducting behavior of Si-XII
journal, February 2011


Patterning of silicon by indentation and chemical etching
journal, September 2007

  • Rao, R.; Bradby, J. E.; Williams, J. S.
  • Applied Physics Letters, Vol. 91, Issue 12
  • DOI: 10.1063/1.2779111

Electrical resistance of metallic contacts on silicon and germanium during indentation
journal, April 1992

  • Pharr, G. M.; Oliver, W. C.; Cook, R. F.
  • Journal of Materials Research, Vol. 7, Issue 4
  • DOI: 10.1557/JMR.1992.0961

Influence of spherical indentor radius on the indentation-induced transformation behaviour of silicon
journal, May 1995

  • Weppelmann, E. R.; Field, J. S.; Swain, M. V.
  • Journal of Materials Science, Vol. 30, Issue 9
  • DOI: 10.1007/BF01184600

Phase transition in diamond-structure crystals during hardness measurements
journal, November 1972

  • Gridneva, I. V.; Milman, Yu. V.; Trefilov, V. I.
  • Physica Status Solidi (a), Vol. 14, Issue 1
  • DOI: 10.1002/pssa.2210140121

Raman microspectroscopy of nanocrystalline and amorphous phases in hardness indentations
journal, October 1999


In situ observation of the indentation-induced phase transformation of silicon thin films
journal, March 2012


Direct observation of phase transformation anisotropy in indented silicon studied by confocal Raman spectroscopy
journal, May 2011


Effect of crystallographic orientation on phase transformations during indentation of silicon
journal, March 2009

  • Gerbig, Y. B.; Stranick, S. J.; Morris, D. J.
  • Journal of Materials Research, Vol. 24, Issue 3
  • DOI: 10.1557/jmr.2009.0122

Why Silicon Is Hard
journal, September 1993


Ultra-microindentation of silicon at elevated temperatures
journal, November 1996


Electron microscope investigation of the microplastic deformation mechanisms of silicon by indentation
journal, November 1972


Two New Forms of Silicon
journal, January 1963


Thermal evolution of the metastable r8 and bc8 polymorphs of silicon
journal, January 2015


Structural characterization of pressure-induced amorphous silicon
journal, April 2009


Kinetics of solid phase crystallization in amorphous silicon
journal, January 1988


The martensitic transformation in silicon—I experimental observations
journal, February 1990


Odd electron diffraction patterns in silicon nanowires and silicon thin films explained by microtwins and nanotwins
journal, January 2009

  • Cayron, Cyril; Den Hertog, Martien; Latu-Romain, Laurence
  • Journal of Applied Crystallography, Vol. 42, Issue 2
  • DOI: 10.1107/S0021889808042131

Hidden defects in silicon nanowires
journal, December 2011


Thermal stability of metastable silicon phases produced by nanoindentation
journal, March 2004

  • Ge, Daibin; Domnich, Vladislav; Gogotsi, Yury
  • Journal of Applied Physics, Vol. 95, Issue 5
  • DOI: 10.1063/1.1642739

Ultra-microhardness testing procedure with Vickers indenter
journal, January 2002


An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments
journal, June 1992

  • Oliver, W. C.; Pharr, G. M.
  • Journal of Materials Research, Vol. 7, Issue 06, p. 1564-1583
  • DOI: 10.1557/JMR.1992.1564

Effect of temperature on metastable phases induced in silicon during nanoindentation
journal, January 2008

  • Singh, Rajnish K.; Munroe, Paul; Hoffman, Mark
  • Journal of Materials Research, Vol. 23, Issue 1
  • DOI: 10.1557/JMR.2008.0023

Nanoindentation-induced phase transformations in silicon at elevated temperatures
journal, March 2009


Hot nanoindentation in inert environments
journal, July 2010

  • Trenkle, Jonathan C.; Packard, Corinne E.; Schuh, Christopher A.
  • Review of Scientific Instruments, Vol. 81, Issue 7
  • DOI: 10.1063/1.3436633

In situ electrical characterization of phase transformations in Si during indentation
journal, February 2003


Low-temperature formation of SiO2 layers using a two-step atmospheric pressure plasma-enhanced deposition-oxidation process
journal, October 2007

  • Kakiuchi, Hiroaki; Ohmi, Hiromasa; Harada, Makoto
  • Applied Physics Letters, Vol. 91, Issue 16
  • DOI: 10.1063/1.2801516

Effect of indentation unloading conditions on phase transformation induced events in silicon
journal, May 2003

  • Juliano, Tom; Gogotsi, Yury; Domnich, Vladislav
  • Journal of Materials Research, Vol. 18, Issue 5
  • DOI: 10.1557/JMR.2003.0164

Ultra-micro-indentation of silicon and compound semiconductors with spherical indenters
journal, June 1999

  • Williams, J. S.; Chen, Y.; Wong-Leung, J.
  • Journal of Materials Research, Vol. 14, Issue 6
  • DOI: 10.1557/JMR.1999.0310

Temperature dependent deformation mechanisms in pure amorphous silicon
journal, March 2014

  • Kiran, M. S. R. N.; Haberl, B.; Williams, J. S.
  • Journal of Applied Physics, Vol. 115, Issue 11
  • DOI: 10.1063/1.4869136

Deformation mode in silicon, slip or twinning?
journal, November 1987


The martensitic transformation in silicon—III. comparison with other work
journal, February 1990


Nanoindentation-induced deformation of Ge
journal, April 2002

  • Bradby, J. E.; Williams, J. S.; Wong-Leung, J.
  • Applied Physics Letters, Vol. 80, Issue 15
  • DOI: 10.1063/1.1469660

Mechanical deformation in silicon by micro-indentation
journal, May 2001

  • Bradby, J. E.; Williams, J. S.; Wong-Leung, J.
  • Journal of Materials Research, Vol. 16, Issue 5
  • DOI: 10.1557/JMR.2001.0209

Works referencing / citing this record:

The high pressure phase transformation behavior of silicon nanowires
journal, September 2018

  • Huston, L. Q.; Lugstein, A.; Williams, J. S.
  • Applied Physics Letters, Vol. 113, Issue 12
  • DOI: 10.1063/1.5048033

In-situ high temperature micro-Raman investigation of annealing behavior of high-pressure phases of Si
journal, June 2019

  • Mannepalli, Sowjanya; Mangalampalli, Kiran S. R. N.
  • Journal of Applied Physics, Vol. 125, Issue 22
  • DOI: 10.1063/1.5099325

Temperature-dependent nanoindentation response of materials
journal, February 2018

  • Chavoshi, Saeed Zare; Xu, Shuozhi
  • MRS Communications, Vol. 8, Issue 01
  • DOI: 10.1557/mrc.2018.19

Nanoindentation Induced Deformation and Pop-in Events in a Silicon Crystal: Molecular Dynamics Simulation and Experiment
journal, August 2017


Extended Applications of the Depth-Sensing Indentation Method
journal, November 2020

  • Olasz, Dániel; Lendvai, János; Szállás, Attila
  • Micromachines, Vol. 11, Issue 11
  • DOI: 10.3390/mi11111023