DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of magnetization on fusion product trapping and secondary neutron spectra

Abstract

In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1] more »;  [1];  [1];  [1];  [1];  [1];  [2] « less
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1185030
Report Number(s):
SAND-2014-20704J
Journal ID: ISSN 1070-664X; 553936
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 22; Journal Issue: 05; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; triton; neutrons; magnetic fields; plasma temperature; amorphous metals

Citation Formats

Knapp, Patrick F., Schmit, Paul F., Hansen, Stephanie B., Gomez, Matthew R., Hahn, Kelly D., Sinars, Daniel Brian, Peterson, Kyle J., Slutz, Stephen A., Sefkow, Adam B., Awe, Thomas James, Harding, Eric, Jennings, Christopher A., Desjarlais, M. P., Chandler, Gordon A., Cooper, Gary Wayne, Cuneo, Michael Edward, Geissel, Matthias, Harvey-Thompson, Adam James, Porter, John L., Rochau, Gregory A., Rovang, Dean C., Ruiz, Carlos L., Savage, Mark E., Smith, Ian C., Stygar, William A., and Herrmann, Mark. Effects of magnetization on fusion product trapping and secondary neutron spectra. United States: N. p., 2015. Web. doi:10.1063/1.4920948.
Knapp, Patrick F., Schmit, Paul F., Hansen, Stephanie B., Gomez, Matthew R., Hahn, Kelly D., Sinars, Daniel Brian, Peterson, Kyle J., Slutz, Stephen A., Sefkow, Adam B., Awe, Thomas James, Harding, Eric, Jennings, Christopher A., Desjarlais, M. P., Chandler, Gordon A., Cooper, Gary Wayne, Cuneo, Michael Edward, Geissel, Matthias, Harvey-Thompson, Adam James, Porter, John L., Rochau, Gregory A., Rovang, Dean C., Ruiz, Carlos L., Savage, Mark E., Smith, Ian C., Stygar, William A., & Herrmann, Mark. Effects of magnetization on fusion product trapping and secondary neutron spectra. United States. https://doi.org/10.1063/1.4920948
Knapp, Patrick F., Schmit, Paul F., Hansen, Stephanie B., Gomez, Matthew R., Hahn, Kelly D., Sinars, Daniel Brian, Peterson, Kyle J., Slutz, Stephen A., Sefkow, Adam B., Awe, Thomas James, Harding, Eric, Jennings, Christopher A., Desjarlais, M. P., Chandler, Gordon A., Cooper, Gary Wayne, Cuneo, Michael Edward, Geissel, Matthias, Harvey-Thompson, Adam James, Porter, John L., Rochau, Gregory A., Rovang, Dean C., Ruiz, Carlos L., Savage, Mark E., Smith, Ian C., Stygar, William A., and Herrmann, Mark. Thu . "Effects of magnetization on fusion product trapping and secondary neutron spectra". United States. https://doi.org/10.1063/1.4920948. https://www.osti.gov/servlets/purl/1185030.
@article{osti_1185030,
title = {Effects of magnetization on fusion product trapping and secondary neutron spectra},
author = {Knapp, Patrick F. and Schmit, Paul F. and Hansen, Stephanie B. and Gomez, Matthew R. and Hahn, Kelly D. and Sinars, Daniel Brian and Peterson, Kyle J. and Slutz, Stephen A. and Sefkow, Adam B. and Awe, Thomas James and Harding, Eric and Jennings, Christopher A. and Desjarlais, M. P. and Chandler, Gordon A. and Cooper, Gary Wayne and Cuneo, Michael Edward and Geissel, Matthias and Harvey-Thompson, Adam James and Porter, John L. and Rochau, Gregory A. and Rovang, Dean C. and Ruiz, Carlos L. and Savage, Mark E. and Smith, Ian C. and Stygar, William A. and Herrmann, Mark},
abstractNote = {In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.},
doi = {10.1063/1.4920948},
journal = {Physics of Plasmas},
number = 05,
volume = 22,
place = {United States},
year = {Thu May 14 00:00:00 EDT 2015},
month = {Thu May 14 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Magnetically insulated inertial fusion: A new approach to controlled thermonuclear fusion
journal, January 1986


High-gain, low-intensity ICF targets for a charged-particle beam fusion driver
journal, January 1981


Parameter space for magnetized fuel targets in inertial confinement fusion
journal, March 1983


Compression of Plasma to Megabar Range using Imploding Liner
journal, March 1999


A High-Density Field Reversed Configuration Plasma for Magnetized Target Fusion
journal, February 2004

  • Intrator, T. P.; Park, J. Y.; Degnan, J. H.
  • IEEE Transactions on Plasma Science, Vol. 32, Issue 1
  • DOI: 10.1109/TPS.2004.823974

Ignition conditions for magnetized target fusion in cylindrical geometry
journal, January 2000


Ignition conditions for magnetically insulated tamped ICF targets in cylindrical geometry
journal, February 2001


Implosion and ignition of magnetized cylindrical targets driven by heavy-ion beams
journal, December 2002


Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

High-Gain Magnetized Inertial Fusion
journal, January 2012


Design of magnetized liner inertial fusion experiments using the Z facility
journal, July 2014

  • Sefkow, A. B.; Slutz, S. A.; Koning, J. M.
  • Physics of Plasmas, Vol. 21, Issue 7
  • DOI: 10.1063/1.4890298

Pulsed-power-driven high energy density physics and inertial confinement fusion research
journal, May 2005

  • Matzen, M. Keith; Sweeney, M. A.; Adams, R. G.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1891746

Overview and Status of the Upgraded Z Pulsed Power Driver
conference, May 2008

  • Savage, Mark; LeChien, Keith; Stygar, William
  • 2008 IEEE International Power Modulators and High Voltage Conference, 2008 IEEE International Power Modulators and High-Voltage Conference
  • DOI: 10.1109/IPMC.2008.4743586

Magnetically Driven Implosions for Inertial Confinement Fusion at Sandia National Laboratories
journal, December 2012

  • Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.
  • IEEE Transactions on Plasma Science, Vol. 40, Issue 12
  • DOI: 10.1109/TPS.2012.2223488

Pulsed-coil magnet systems for applying uniform 10–30 T fields to centimeter-scale targets on Sandia's Z facility
journal, December 2014

  • Rovang, D. C.; Lamppa, D. C.; Cuneo, M. E.
  • Review of Scientific Instruments, Vol. 85, Issue 12
  • DOI: 10.1063/1.4902566

Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion
journal, October 2014


Understanding Fuel Magnetization and Mix Using Secondary Nuclear Reactions in Magneto-Inertial Fusion
journal, October 2014


Proton Radiography of Inertial Fusion Implosions
journal, February 2008


Charged-Particle Probing of X-ray-Driven Inertial-Fusion Implosions
journal, January 2010


Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser
journal, May 2012

  • Hohenberger, M.; Chang, P. -Y.; Fiksel, G.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.3696032

Monoenergetic-Proton-Radiography Measurements of Implosion Dynamics in Direct-Drive Inertial-Confinement Fusion
journal, June 2008


Experimental determination of fuel density‐radius product of inertial confinement fusion targets using secondary nuclear fusion reactions
journal, September 1986

  • Azechi, H.; Miyanaga, N.; Stapf, R. O.
  • Applied Physics Letters, Vol. 49, Issue 10
  • DOI: 10.1063/1.97093

Neutron spectra from inertial confinement fusion targets for measurement of fuel areal density and charged particle stopping powers
journal, September 1987

  • Cable, M. D.; Hatchett, S. P.
  • Journal of Applied Physics, Vol. 62, Issue 6
  • DOI: 10.1063/1.339850

Using nuclear data and Monte Carlo techniques to study areal density and mix in D2 implosions
journal, March 2005

  • Kurebayashi, S.; Frenje, J. A.; Séguin, F. H.
  • Physics of Plasmas, Vol. 12, Issue 3
  • DOI: 10.1063/1.1771656

Tail-ion transport and Knudsen layer formation in the presence of magnetic fields
journal, November 2013

  • Schmit, P. F.; Molvig, Kim; Nakhleh, C. W.
  • Physics of Plasmas, Vol. 20, Issue 11
  • DOI: 10.1063/1.4831958

Diagnosing suprathermal ion populations in Z-pinch plasmas using fusion neutron spectra
journal, June 2013

  • Knapp, P. F.; Sinars, D. B.; Hahn, K. D.
  • Physics of Plasmas, Vol. 20, Issue 6
  • DOI: 10.1063/1.4810805

Charged-particle stopping powers in inertial confinement fusion plasmas
journal, May 1993


ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data
journal, December 2011


Fusion neutron energies and spectra
journal, July 1973


Demonstration of thermonuclear conditions in magnetized liner inertial fusion experimentsa)
journal, May 2015

  • Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4919394

Diagnosing magnetized liner inertial fusion experiments on Za)
journal, May 2015

  • Hansen, S. B.; Gomez, M. R.; Sefkow, A. B.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921217

Works referencing / citing this record:

Direct measurement of the inertial confinement time in a magnetically driven implosion
journal, April 2017

  • Knapp, P. F.; Martin, M. R.; Dolan, D. H.
  • Physics of Plasmas, Vol. 24, Issue 4
  • DOI: 10.1063/1.4981206

Average neutron time-of-flight instrument response function inferred from single D-T neutron events within a plastic scintillator
journal, October 2018

  • Styron, J. D.; Ruiz, C. L.; Hahn, K. D.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5038883

Origins and effects of mix on magnetized liner inertial fusion target performance
journal, January 2019

  • Knapp, P. F.; Gomez, M. R.; Hansen, S. B.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5064548

Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator
journal, May 2016