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SUMMARY

Although recent research revealed an impact of
westernization on diversity and composition of the
human gut microbiota, the exact consequences on
metacommunity characteristics are insufficiently un-
derstood, and the underlying ecological mechanisms
have not been elucidated. Here, we have compared
the fecal microbiota of adults from two non-industri-
alized regions in Papua New Guinea (PNG) with that
of United States (US) residents. Papua New Guin-
eans harbor communities with greater bacterial
diversity, lower inter-individual variation, vastly
different abundance profiles, and bacterial lineages
undetectable in US residents. A quantification of
the ecological processes that govern community
assembly identified bacterial dispersal as the domi-
nant process that shapes the microbiome in PNG
but not in the US. These findings suggest that the
microbiome alterations detected in industrialized
societies might arise from modern lifestyle factors
limiting bacterial dispersal, which has implications
for human health and the development of strategies
aimed to redress the impact of westernization.

INTRODUCTION

The human gastrointestinal tract is colonized by an abundant

and diverse microbial consortium (the gut microbiota) that im-

pacts host physiology and health. Recent research in animal

models has demonstrated an essential contribution of the gut

microbiota in non-communicable diseases that have higher

prevalence in westernized societies (western diseases), such

as inflammatory bowel disease, autoimmune diseases (i.e.,

multiple sclerosis, type 1 diabetes, and rheumatoid arthritis),
obesity-associated metabolic aberrancies, allergies, and colon

cancer (Berer et al., 2011; Devkota et al., 2012; Koeth et al.,

2013; Noval Rivas et al., 2013; Ochoa-Repáraz et al., 2010;

Trompette et al., 2014; Wen et al., 2008). Epidemiological data

further support that lifestyle practices (caesarian sections,

antibiotic use, and formula feeding of infants) that affect the

assembly of the microbiota are associated with an increased

risk of disease (Conradi et al., 2013; Marra et al., 2009; Risnes

et al., 2011; Tenconi et al., 2007). These observations have led

scientists to hypothesize that aberrant (dysbiotic) microbiomes

(Noverr and Huffnagle, 2005) and/or the loss of specific symbi-

onts (Blaser and Falkow, 2009) predispose westerners to non-

communicable diseases. On the other hand, non-industrialized

societies are burdened with a high incidence of infectious dis-

eases, including life-threatening diarrhea (Pop et al., 2014). The

importance of the gut microbiome for non-communicable dis-

eases in westernized societies and the prevalence of infectious

diseases in non-industrialized communities warrant studies

that compare the microbiome in both settings.

To determine how lifestyle, and especially westernization, res-

onates in the structure of the human gut microbiome, scientists

have begun to systematically compare the fecal microbiota of

humans from non-industrialized societies to those with a west-

ernized lifestyle (De Filippo et al., 2010; Schnorr et al., 2014;

Yatsunenko et al., 2012). Studies to date have compared the

gut microbiome of Europeans and Americans to that of children

in Burkina Faso (De Filippo et al., 2010), children and adults in

Malawi and Amazonian Amerindians (Yatsunenko et al., 2012),

and adult Hadza hunter-gatherers in Tanzania (Schnorr et al.,

2014). Collectively, these studies have revealed higher fecal bac-

teria a diversity (within individuals) and lower b diversity (between

individuals) in non-industrialized societies. These diversity pat-

terns were accompanied by major compositional differences,

likely reflecting distinct dietary habits, such as higher proportions

of fiber-utilizing bacteria and lower abundances of bacterial

lineages associated with intake of animal-derived products.

Although these studies have begun to unravel the biogeographic
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variations of the human microbiome and the impact of western-

ization, the exact repercussions are still insufficiently under-

stood, and we lack a conceptual understanding on how modern

lifestyle alters the gut microbiota.

An understanding of the factors that drive distinct microbiome

configurations across human populations will require the appli-

cation of ecological theory. The collection of microbes associ-

ated with a human population can be conceived as a co-evolved

metacommunity, in which individuals represent local, island-like

habitats occupied by spatially separated microbial assemblies

linked through the transmission and dispersal of symbionts

(Costello et al., 2012; Dethlefsen et al., 2007; Leach, 2013; Mihal-

jevic, 2012). An application of Vellend’s general synthesis in

community ecology (Vellend, 2010) toward microbial ecosys-

tems postulates that diversity at local scales is shaped by a com-

bination of only four processes: selection, drift, diversification,

and dispersal (Costello et al., 2012; Nemergut et al., 2013). As

in other ecological communities, it is likely that these processes

operate in combination to govern the assembly of the gut micro-

biota (Walter and Ley, 2011). The temporal characteristics of the

adult human fecal microbiota, as well as theoretical model calcu-

lations, indicate that neutral processes are unlikely to contribute

significantly to gut microbiota assembly (Jeraldo et al., 2012;

Martı́nez et al., 2013b). Still, the relative contribution of the

ecological processes and the impact of geography, environ-

ment, and lifestyle remain largely undetermined. Clearly, an

ecologic perspective based on theory can provide a framework

by which to interpret microbiome configurations in different hu-

man populations and infer how environment and lifestyle impact

these patterns. Such an approach can be combined with quan-

titative analyses developed by community ecologists to charac-

terize the simultaneous influence of ecological processes in

shaping communities (Stegen et al., 2012, 2013).

The goal of this study was to apply such an ecological frame-

work and compare the fecal microbiome of individuals from

Papua New Guinea living a traditional lifestyle with that of United

States (US) residents. Papua New Guinea (PNG) is one of the

most diverse countries in the world, with 823 languages spoken

according to the 2000 PNG census (about one-quarter of the

world’s languages; UNESCO, 2002; Frawley, 2003) and a similar

number of ethnic groups. PNG remains one of the least urban-

ized countries in the world, and for several PNG populations,

contact with outside communities remains limited. The majority

of Papua New Guineans live a traditional, subsistence agricul-

ture-based lifestyle. PNG has poor general health and socio-

economic predictors: infant and maternal mortality rates are

high and the life expectancy is low. Like other tropical developing

countries, prevalence of infectious diseases is high. Leading

causes of death in PNG include pneumonia, malaria, tubercu-

losis, neonatal sepsis, diarrhea, and meningitis (Riley, 2009).

On the other hand, non-communicable diseases such as multi-

ple sclerosis, rheumatic arthritis, lupus erythematosus, and

type 1 diabetes have been rarely described in PNG (Currie

et al., 1989; Fisher, 1988; Hulcombe et al., 1999; Karvonen

et al., 2000; Kemiki et al., 2001; Ogle et al., 2001; Saweri et al.,

1993; Scrimgeour et al., 1987). The fecal microbiota of different

regions within PNG has recently been compared by targeted

qPCR analysis, revealing some of the patterns (e.g., high
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Prevotella/Bacteroides ratio) found in other non-westernized

populations (Greenhill et al., 2015). However, a systematic com-

parison of the PNG microbiome to that of a westernized popula-

tion has not been performed.

In this study, we used 16S rRNA-tag Illumina sequencing to

compare the fecal microbiota of Papua New Guineans residing

in two rural communities to individuals living in theUS (Figure 1A).

Emphasis was given to standardize methods of fecal collection,

DNA extraction, and gut microbiota characterization with the

goal of comparing community composition and diversity mea-

sures and determining unique and shared lineages. To gain

insight into the ecological processes that shape the microbiome

in the different geographic locations, we quantified the relative

influences of community assembly processes using an analytical

framework specifically conceived for bacterial metacommunities

(Stegen et al., 2013).

RESULTS

Synopsis of Lifestyle in PNG and US Participants
Study participants included individuals from two traditional soci-

eties of PNG: the Asaro and the Sausi. The Asaro live in the

highlands (Figure 1A), approximately a 30-min drive from the

provincial capital of Goroka, and are one of the larger ethnic

groups in PNG with approximately 50,000 people. The Sausi

live in the lowlands in the Ramu Valley, Madang province, and

consist of approximately 1,000 people. The two study sites are

45 km apart and are connected by pedestrian tracks (2 or

3 dayswalk in steep terrain) and by road (235 km; 4–6 hr traveling

time). Contact between the villages does occur but is infrequent.

Both populations live in traditional settings (Figure 1B). No

sewage, wastewater, or drinking water treatment facilities exist.

Drinking water is derived primarily from rivers, streams, or rain-

water and is mainly consumed without boiling or any other treat-

ments. Both communities rely on subsistence agriculture for

their food supply, with households having their own gardens

(Figure 1C). Persistent under-nutrition is rare in PNG, as carbo-

hydrate sources are generally available. Dietary information

collected though surveys showed a large overlap in the diet of

the Asaro and Sausi participants (Table S1). The staple foods

are sweet potato, taro, and plantain, which are traditionally

cooked in open fires (Figures 1D and 1E). Meat-derived protein

(principally pork and fish) is consumed less frequently (typically

twice weekly; Table S1). Antibiotic use is high in PNG (Duke,

2000) due to the high burden of infectious diseases, poorly regu-

lated administration, and the lack of diagnostic capacity, which

leads to empirical treatments. More information on PNG study

participants is included in the Supplemental Information.

Twenty participants at each location in PNG (40 in total) were

included in the study. The Asaro (Figure 1F) participants had a

mean age of 35 years (17–50 years), and two-thirds of them

were females. The Sausi individuals had a mean age of 32 years

(23–50 years), 80% of which were females.

Fecal samples from 22 subjects (10 males and 12 females; 27

years old on average), part of an independent study conducted

at the University of Nebraska (M.X.M.-G., I.M., A.M.E., R.W. Hut-

kins, and J.W., unpublished data), were used as western con-

trols. All individuals in this cohort were currently residing at



Figure 1. Geography and Traditional Lifestyle Features of PNG

(A) Geographic locations of Asaro and Sausi study sites.

(B) Traditional huts in Eastern Highlands province.

(C) Garden of an individual household in Eastern Highlands province.

(D and E) Staple foods such as taro and sweet potatoes, as well as plantain, banana, and leafy greens among others, which are traditionally cooked in open fire on

plantain leaves.

(F) Asaro people are well known for their traditional mudmen attire.

World map downloaded from http://www.freeworldmaps.net; island of New Guinea downloaded from Google Earth; photographs (C)–(G) by A.R.G. See also

Table S1.
Lincoln, Nebraska, an urban area. These individuals were born in

Colombia (five), Costa Rica (three), Guatemala (two), United

States (two), Ghana (one), China (two), Honduras (one), Thailand

(two), Nepal (two), Mexico (one), Brazil (one), and Nicaragua

(one). The non-US-born participants had been residing in the

US for 1.4 ± 0.8 years by the time of sampling. All were college

graduates with reliable sources of income. Participants had

standard westernized omnivorous diets.

The PNG Fecal Microbiota Has Higher Biodiversity and
Lower Inter-individual Variation
The fecal microbiota was characterized by sequencing of 16S

rRNA gene tags (V5-V6 region) with Illumina MiSeq technology.

Sequencing resulted in 16,072 ± 2,250 quality-controlled and

chimera-checked reads per sample. OTU clustering (98%cutoff)

yielded a total of 1,520 OTUs for the entire data set, 1,251 OTUs

associated with the PNG data set, and 931 with the US samples,

indicating higher g diversity (Hunter, 2002) in PNG.

Rarefied a diversity metrics showed that the fecal microbiome

of the PNG cohort had higher biodiversity (Shannon index;
p = 0.01) and a significantly higher average number of bacterial

OTUs (p = 0.02; 224 ± 30 in PNG versus 197 ± 50 in US; Fig-

ure 2A). No difference in a diversity was observed between sam-

ples of the Asaro and Sausi communities (observed OTUs

p = 0.81; Shannon diversity index p = 0.75; Figure 2B). In terms

of b diversity based on Bray-Curtis dissimilarity index, fecal bac-

teria community profiles across Papua New Guineans was more

homogeneous than that of US individuals (lower b diversity; p <

0.001; Figure 2C), whereas no differences were determined be-

tween the Asaro and Sausi fecal communities (p = 0.96; Fig-

ure 2D). The different geographic origins of the US residents

did not contribute to higher b diversity, asmicrobiome dissimilar-

ities among individuals of the same country of origin did not differ

from those of individuals born in different countries (p = 0.90; Fig-

ure S1A). NMDS ordination plots based on the Bray-Curtis dis-

tances (Figure 2E) showed separate clustering of US and PNG

samples (Figure 2E), whereas within the US cohort, samples of

the same country of origin did not cluster together (Figures

S1B and S1C). In addition, higher dispersion of US samples

was observed (Figure 2E), confirming their higher b diversity.
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A

C D

B E Figure 2. Bacterial Biodiversity of the Fecal

Samples of PNG and US Participants

Diversity of the fecal microbiome was evaluated

using OTUs defined by 98% sequence similarity

cutoff.

(A and B) Comparison of rarefied Shannon di-

versity in the fecal microbiota of PNG and US in-

dividuals (A) and between the Asaro and Sausi

individuals (B).

(C and D) b diversity of the bacterial communities

computed with Bray-Curtis diversity indices

within the PNG and US fecal samples (C)

and within/between the Asaro and Sausi partici-

pants (D).

(E) NMDS ordination plot of fecal bacterial

communities based on the Bray-Curtis distance

metric.

(A–D) Mean ± SD; (A–C) Student’s t test; (D)

ANOVA; *p < 0.05; **p < 0.01; ***p < 0.001. See

also Figure S1.
Abundance Profiles
Ordination analyses revealed distinct clustering of PNG and US

fecal communities but no segregation of Asaro and Sausi com-

munities (Figure 2E). In order to determine the bacterial groups

that segregated PNG and US gut bacterial communities, micro-

biomes were compared at different taxonomic scales. No differ-

ences were detected at the phylum level (Table S2); however,

substantial differences were detected at lower taxonomic levels

(Figure 3A; Tables S2 and S3). Altogether, 25 families, 45 genera,

and 230 OTUs differed in abundance between the PNG and US

cohorts (Figure 3A; Tables S2 and S3). In contrast, we did not

detect any taxa with differential abundances between Asaro

and Sausi samples.

Within the Bacteroidetes phylum, Prevotella abundance was

significantly higher in PNG, whereas the proportions of Alistipes,

Bacteroides, Parabacteroides, Odoribacter, and Barnesiella

were all significantly higher in the US (Figure 3A). In the Actino-

bacteria phylum, there was a significantly lower abundance of

the genus Bifidobacterium in PNG individuals. The proportions

of Coriobacteriaceae were similar between PNG and US partic-

ipants, but several genera within this family showed distinct

abundance profiles; significantly higher abundance of Slackia

and Propionibacterium were determined in Papua New Guin-

eans, whereas Eggerthella and Gordonibacter were higher in

the US cohort. Within the Firmicutes, a significantly higher abun-

dance of Streptococcus was detected in PNG samples, which

constituted 21% ± 11% of the total sequences per participant

(Figure 3A; Table S2). Moreover, a substantial phylogenetic di-

versity (68 OTUs) was observed within this genus in Papua

New Guineans, but not US subjects (Figure S2). Other differ-

ences in the makeup of the Firmicutes were significantly higher

proportions of Staphylococcus, Eubacterium, Erysipelotricha-

ceae Incertae sedis, Clostridium senso stricto, Sarcina, Entero-

coccus, and Lactobacillus and significantly lower abundance

of Faecalibacterium; Blautia; Clostridium XIVb, XIVa, and IV;

Ruminococcus; Lachnospiraceae Incertae sedis; Gemella; Turi-

cibacter; and Phascolarctobacterium in PNG. Regarding the
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Proteobacteria, PNG individuals had significantly higher abun-

dance of the family Enterobacteriaceae and Helicobacteriaceae

and the genera Helicobacter and Pseudomonas, whereas the

family Comamonadaceae and the genera Bilophila, Aquabacte-

rium, and Acidovorax were significantly enriched in US

volunteers.

The Most-Abundant Phylotypes Were Shared by PNG
and US Individuals
Previous analyses of the fecal microbiota of US and European in-

dividuals have revealed 50–80 core bacterial species that are

shared by >50% of subjects (Qin et al., 2010; Schloissnig

et al., 2013; Tap et al., 2009) and collectively constitute the

vast majority (99%) of the bacterial population within individuals

(Schloissnig et al., 2013). However, whether a human core fecal

microbiota exists on a global scale or distinct cores characterize

geographically separated human populations has not been eval-

uated. We therefore determined the number of OTUs that were

jointly detected across cohorts and the average abundance

that these OTUs represented in each cohort as a function of

the fraction of subjects.

Of the 1,520 OTUs detected in this data set, 664 were

detected in both PNG and the US. Notably, these shared

OTUs represented the majority of the individual fecal micro-

biota in both cohorts (Figure 3B), comprising an average

of 97% ± 2% and 87% ± 5% of the sequences in US and

PNG individuals, respectively. To determine whether a high

proportion of the microbiome was also shared between other

westernized and non-industrialized microbiomes, we analyzed

published data sets of the Hadza hunter gatherers, Amerin-

dians, and Malawians and their respective controls (Schnorr

et al., 2014; Yatsunenko et al., 2012). This analysis confirmed

that shared OTUs dominate the microbiome in both western

and non-industrialized settings (Figure S3; Table S4). Interest-

ingly, in all data sets, the OTUs concurrently detected across

cohorts constituted a higher proportion of the microbiome of

westernized cohorts (Figures 3B and S3), which is in agreement
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Figure 3. Compositional Comparison of the Microbiome of PNG and US Individuals

(A) Barplots indicate the ratio of the average relative abundance of significantly different genera across the US and PNG populations.

(B) PNG and US microbiomes were analyzed to determine OTUs that were shared between the cohorts. The average fraction of shared OTUs (dashed lines) and

the average proportion of total sequences that they represent (non-dashed lines) is plotted as a function of the fraction of individuals within that cohort.

(C) Heatmap indicating presence/absence patterns of shared and cohort-specific OTUs in PNG and US fecal samples. OTUs that belonged to the core

microbiome were identified for the US and the PNG data set (present inR50% of individuals in each cohort). Samples (rows) in the heatmap were clustered in R

using Ward hierarchical clustering algorithm based on binomial distances (calculated with vegan package).

See also Figures S2–S4 and Tables S2, S3, S4, and S5.
with the reduced a diversity (Figure 2A). The number of com-

mon OTUs across cohorts and the average relative proportion

that they represent decreased as a function of the number of

individuals included in the analysis (Figure 3B), reflecting the

individualized nature of the human gut microbiome. In our

PNG/US comparison, out of the 664 jointly detected OTUs,

only 14 were detected in all US individuals and ten in all PNG

individuals.

We next identified core members detected in 50% of individ-

uals of each cohort (PNG and US). This analysis revealed a

core of 186 OTUs in PNG, whereas US individuals shared a

core of 169 OTUs. Core members accounted for an average of

78% ± 9% and 86% ± 12% of the total sequences in the individ-

uals’ microbiomes, respectively (Table S4). Two hundred and

twenty-two of these OTUs, encompassing more than 40 distinct

genera, were detected in both data sets (Figures 3C and S4;

Table S4). Eighty-five OTUs were core members in both cohorts

(detected inR50% of PNG andR50% US residents; Table S4),

comprising an average of 49% ± 12% and 61% ± 14% of the

sequences among individuals in the PNG and US cohorts

(Table S4).
Identification of Core Members Exclusive to PNG or US
Cohorts
Forty-seven of the 186 core OTUs in PNGwere completely unde-

tectable in the US samples (Figure 3C). Together, these OTUs

comprised an average of 6.6% of the sequences obtained

from Papua New Guineans. Thirty-nine OTUs belong to the

genus Streptococcus (related to the species S. lutetiensis/infan-

tarius and equinus), one as Lactobacillus (related to L. reuteri),

one as Helicobacter (related to H. macacae), five belonged to

the Lachnospiraceae family, and one to the Clostridiales with

no close matches to described species (Figure 3C; Table S3).

The OTU related to L. reuteri, and several OTUs related to

S. lutetiensis/infantarius, and S. equinus were detected in all 40

PNG individuals. Only four core OTUs of the US population

were not detected in PNG (Figure 3C). These OTUs represented

the genusPseudomonas (related toP. aeruginosa), two clostridia

(related to C. leptum and C. spiroforme), and one member of the

Coriobacteriaceae family (Figure 3C; Table S3).

To investigate whether the core OTUs exclusively detected in

PNG could represent specific lineages of the non-westernized

fecal microbiota, we examined whether related lineages could
Cell Reports 11, 527–538, April 28, 2015 ª2015 The Authors 531



Figure 4. Summary of the Contribution of the Ecological Processes

that Determine Gut Community Assembly in PNG and US Micro-

biomes

Pie charts illustrate the fraction that selection, dispersal, and undominated

processes contribute to the community assembly when considering only

presence/absence OTU patterns (unweighted) and their abundance

(weighted) observed in the data set. See also Figure S5.
be detected in the Hadza hunter-gatherers (Schnorr et al., 2014),

Malawi and Amerindian (Yatsunenko et al., 2012), and children

from Burkina Faso (De Filippo et al., 2010; see details in the Sup-

plemental Information). This analysis revealed that, althoughHel-

icobacter and Lactobacillus lineages were also detected in other

non-industrialized microbiomes (and absent in the western con-

trols), they consist of species other than the ones exclusively

associated with the PNG cohort (Table S5).

Differences in the Relative Importance of Fundamental
Assembly Processes Might Contribute to the Observed
Diversity Patterns in the Gut Microbiomes in PNG and
the US
In an effort to gain insight into the mechanisms that drive the

distinct ecological patterns and community features, we em-

ployed a specifically developed analytical framework for the

elucidation of assembly processes in bacterial ecosystems

(Chase et al., 2011; Stegen et al., 2013). Using a combination

of null models, we estimated the relative influences of homoge-

neous selection, variable selection, dispersal limitation, and ho-

mogenizing dispersal. Homogeneous selection results when a

consistent selective environment among local scales causes

community composition to be similar, whereas variable selection

(sensu; Vellend 2010) results when differences in selective envi-

ronments among local scales case differences in community

composition. Homogenizing dispersal (sensu; Stegen et al.,

2013) results when microbial dispersal causes community

composition to be similar among local scales, whereas dispersal

limitation (sensu; Stegen et al., 2013) results when limited ex-

change of microbes causes divergence in community composi-

tion. The model further estimates the fraction in which neither

selection nor dispersal is the primary cause of between-commu-

nity compositional differences (referred to as undominated).

Process estimates were generated based on OTU presence/

absence patterns (unweighted) or OTU relative abundances

(weighted). In terms of OTU presence/absence, PNG micro-

biomes had a larger influence of homogenizing dispersal,

whereas in the US, variable selection was higher when com-

pared to PNG (Figure 4). With respect to relative abundances,
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there was a strong signal of dispersal limitation for both groups,

but the US microbiome was again more impacted by variable

selection. Whereas this inference holds for both weighted and

unweightedmicrobiome characterization, therewas a distinction

in the type of dispersal; homogenizing dispersal was most influ-

ential over the presence/absence of taxa whereas dispersal lim-

itation influenced relative abundances (Figure 4). Dispersal rates

in PNG are thus high enough to influence which taxa are present,

potentially increasing the occurrence of rare species, but too low

to determine the relative abundances of those taxa.

Our findings indicate that the relative contribution of the

ecological processes that structure the gut microbiome

(dispersal and variable selection) differs between PNG and the

US. However, the question remains whether this is caused

mainly through increased dispersal rates in PNG (linked to life-

style) or higher variable selection in the US cohort (linked to its

increased cultural, dietary, and genetic heterogeneity). The latter

may be especially pronounced in our study, as the US partici-

pants were of various geographic and ethnic origins. To gain

additional insight into the factors that influence the relative

contribution of community assembly processes in westernized

and non-industrialized microbiomes, we performed the same

null-modeling approach on the Hadza/Italy data set (Schnorr

et al., 2014). In this data set, geography, culture, diet, and ge-

netics of the western cohort are likely to be more homogenous,

as all participants are Italian. Although the estimates of the com-

munity assembly processes differed in magnitude to the ones

observed for the PNG/US data set, similar findings were ob-

tained regarding the dominant processes in each cohort; signif-

icantly higher homogenizing dispersal characterized the Hadza

community, whereas there was a stronger signal of variable

selection in Italian individuals (Figure S5).

DISCUSSION

Here, we compared the fecal microbiota of rural Papua New

Guineans to that of US residents. Several of our findings are in

agreement with previous comparisons of westernized and non-

westernized fecal microbiomes, suggesting a general impact of

westernization on the gut microbiome. We argue that metacom-

munity theory can offer a framework to explain the observed

biogeographic patterns and provides the first evidence suggest-

ing that the distinct ecological configurations in non-industrial-

ized and westernized microbiomes are caused by differences

in the relative influence of assembly processes.

The PNG fecal microbiota had significantly higher OTU rich-

ness compared to the US, both at a population (g diversity)

and individual (a diversity) level, whereas variation among indi-

viduals (b diversity) was lower. Analogous findings have been

shown in other non-westernized populations in Africa and South

America (De Filippo et al., 2010; Schnorr et al., 2014; Yatsunenko

et al., 2012). Several factors could contribute to these findings. A

higher intake of plant-derived carbohydrates and dietary fiber in

non-westernized societies could result in higher a diversity

(Sonnenburg and Sonnenburg, 2014). Accordingly, the addition

of whole grains to a standard US diet can increase the

diversity of the fecal microbiota (Martı́nez et al., 2013a). Although

the use of antibiotics is often regarded a cause of reduced



biodiversity in westernized microbiomes (Schnorr et al., 2014),

this is an unlikely explanation for our findings, as antibiotic use

is common in PNG. A major yet unexplored contributor to the

observed diversity patterns could be that differences in lifestyle

impact ecological processes that shape the gut microbiota.

When interpreted in the light of metacommunity theory, the

diversity patterns in PNG and the US, as well as in other compar-

isons of westernized and non-industrializedmicrobiomes (De Fil-

ippo et al., 2010; Schnorr et al., 2014; Yatsunenko et al., 2012),

are concordant with differences in rates of microbial dispersal

(which relates to horizontal transmission). Dispersal (the move-

ment of organisms across space; Vellend, 2010) constitutes a

major process through which diversity accumulates in local mi-

crobial communities (Cadotte, 2006; Costello et al., 2012),

thereby increasing a diversity (Chase and Myers, 2011). Further,

dispersal reinforces homogenization of local communities, thus

decreasing b diversity (Cadotte, 2006). Therefore, the observed

ecological patterns might be driven by the substantial differ-

ences in sanitation, water treatment, and other hygienic prac-

tices that were specifically conceived in westernized societies

to reduce human exposure to feces and decrease the incidence

and spreading of infectious diseases. These practices have likely

affected not only the transmission of pathogens but also gut

symbionts. The results from our null-modeling analysis now pro-

vide empirical evidence for an elevated relative importance of

dispersal in the assembly of the non-industrialized microbiomes.

This occurred despite the PNG data set covering two geograph-

ically separated locations, which onewould expect to reduce the

influence of homogenizing dispersal. Therefore, both the diver-

sity patterns (low a diversity and high b diversity) and the quan-

titative analysis of assembly processes suggest that westernized

lifestyle might alter the gut microbiome by reducing dispersal of

symbionts.

However, dissimilar community configurations among west-

ernized and non-industrialized microbiomes might also arise

due to differences in heterogeneity of the studied populations.

Westernized societies are characterized by greater variability in

host genetics, cultural backgrounds, and dietary habits when

compared with non-westernized populations, and in our study,

the US cohort consisted of individuals from various geographic

and ethnic origins. This heterogeneity likely imposes variable

selective pressures that could contribute to the observed

increased b diversity. In accordance, our null-model analysis re-

vealed higher variable selection in the US residents. However,

four considerations question the role of variable selection as

the main driver of the profound dissimilarities between western-

ized and non-industrialized microbiomes. First, microbiome

comparisons between different industrialized countries (Japan,

Italy, Spain, Denmark, France, and the US) have revealed no

major differences across nations (Arumugam et al., 2011), sug-

gesting that genetic and cultural factors exert minor effects.

Second, in our study, b diversity was not different among US res-

idents of the same country of origin and those born in different

countries. Third, despite profound geographic, genetic, and

cultural differences, the microbiomes of Malawians and Vene-

zuelan-Amerindians cluster together (and separate from the US

controls; Yatsunenko et al., 2012). Finally, the Italian cohort

analyzed by Schnorr and coworkers, although composed of in-
dividuals of the same cultural background, still showed higher

b diversity when compared to Hadza hunter-gatherers (Schnorr

et al., 2014). These considerations support the dominant role

of modern lifestyle in causing the observed gut microbiome pat-

terns despite the confounding influence of host genetics, culture,

and dietary habits. However, it is likely that various factors act

together to influence the ecological processes that structure

the microbiome. An intriguing hypothesis is that dispersal limita-

tion (induced by westernized lifestyle) and high variable selection

(induced by broader genetic and cultural heterogeneity)

converge to generate the observed alterations in western micro-

biomes. Dispersal limitation alone reduces homogenization

among the metacommunity (increasing b diversity), whereas

inter-individual differences in selective environments do not

only increase b diversity but also limit successful colonization

of microbes following dispersal, thereby decreasing a diversity.

Lineages unable to adapt to heterogeneous selective pressures

may disappear from the population, and dispersal rates across

individuals might be too low to ‘‘rescue’’ species from extinction

(Costello et al., 2012). Although this hypothesis is consistent with

the data, the elucidation of the exact factors that drive differ-

ences among westernized and non-industrialized societies will

require studies that control for confounding factors.

Abundance profiles of bacterial taxa greatly differed between

PNG and US samples. Several of these differences have been

reported in previous comparisons of westernized and non-west-

ernized societies, indicating that some of these changes are

driven by lifestyle. Overall, westernization consistently increased

proportions of Faecalibacterium, Ruminococcus, Bifidobacte-

rium, Bacteroides, Blautia, Bilophila, and Alistipes, whereas Pre-

votella is generally increased in non-industrialized societies (De

Filippo et al., 2010; Schnorr et al., 2014; Yatsunenko et al.,

2012). The altered Prevotella/Bacteroides ratio could be caused

by diet, as intake of lipids, cholesterol, amino acids, and dairy

have been linked to the enrichment of Bacteroides (Wu et al.,

2011), whereas Prevotella is favored by sugars (Wu et al.,

2011) and diets rich in complex carbohydrates (De Filippo

et al., 2010; Schnorr et al., 2014). Increased abundance of Alis-

tipes and Bilophila has been also linked to animal-based diets

(David et al., 2014; Wu et al., 2011). In addition, lower fecal pro-

portions of bifidobacteria have been observed in vegans (David

et al., 2014), and the lower abundance of this genus in non-west-

ernized societies might be attributed to the absence of dairy

products from their diet (Schnorr et al., 2014). Overall, non-west-

ernized microbiomes resemble those of vegetarians and vegans

(David et al., 2014;Wu et al., 2011). A notable finding in this study

was the elevated proportion of streptococci in PNG (see the Sup-

plemental Information for additional details).

Thus far, the focus of studies comparing the gutmicrobiome of

humans living in westernized versus non-industrialized societies

has centered upon differences in the abundance of taxa (De Fil-

ippo et al., 2010; Schnorr et al., 2014; Yatsunenko et al., 2012).

We have now included an additional perspective by comparing

microbiomes in terms of membership. Despite the substantial

differences in community structure, shared OTUs in PNG and

the US constituted a majority of the total sequences and we ob-

tained similar findings for other westernized and non-western-

ized populations. Collectively, these findings are consistent
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with the strong influence of homogenizing dispersal inferred

through our null-modeling analyses and indicate that, despite

large geographic distances and cultural differences, the human

gut microbiome is dominated by globally distributed species

(although sub-species- and strain-level differences were not as-

sessed in our study). International travel has been suggested as

a possible mechanism for the global transmission of gut mi-

crobes (Dethlefsen et al., 2007). However, given the limited con-

tact of some populations (i.e., Venezuelan Amazonia and

Tanzania Hadza land) with westerners, the findings support the

view of gut bacteria as real symbionts that have remained stably

host associated even after human populations became sepa-

rated (Falush et al., 2003). Despite the high conservation of

membership, plasticity of the gut microbiome in response to

environmental conditions and lifestyle is apparent, as shown

by the substantial differences in abundance profiles and the

strong signal for variable selection in our null-modeling analyses.

Although bacterial membership was to a large degree

conserved between PNG and the US, each cohort had exclu-

sively associated core OTUs. Interestingly, there were a larger

number of exclusive OTUs associated to the PNG cohort,

congruent with the higher bacterial diversity (Figure 2) and the

lower proportion of shared OTUswithin the fecal microbiota (Fig-

ures 3C and S4). An OTU related to Lactobacillus reuteri was

detected in all PNG subjects. This species used to be regularly

isolated from human fecal samples in studies conducted around

1960 in western societies; however, it has been detected only

rarely in more-recent studies (Walter et al., 2011). Therefore,

our findings support the hypothesis that westernization led to a

loss of certain bacterial lineages (Blaser and Falkow, 2009). A

Helicobacter-macacae-like OTU was also exclusively detected

in PNG samples as a coremember. Deliberate eradication ofHel-

icobacter pylori has led to a significant reduction of this species in

westernized countries (Blaser and Falkow, 2009), and other spe-

cies of this genusmight also have been affected. However, PNG-

specific core OTUs were not detected in data sets from other

non-westernized samples and we therefore cannot conclude

that they represent members of an ancestral microbiome. Meth-

odological differences across studies might hinder the detection

of PNG-specific species-level OTUs in other data sets, and

further studies using standardized techniques are needed. Over-

all, our comparisons suggest that the Helicobacter genus is less

prevalent in individuals living in westernized societies, as this

genus was exclusively detected in the non-industrialized data

sets analyzed. The dissimilarities between the westernized and

non-westernized microbiota might have important health impli-

cations (further details in the Supplemental Information).

Overall Conclusions
The findings obtained in this study provide novel insight into the

ecology and biogeography of the human gut microbiome, and

their interpretation in the light of metacommunity theory provides

a possible explanation by which human lifestyle, and specifically

westernization, impacts microbiome configurations. Humans

harbor a gut microbiome whose dominant members are largely

globally distributed, supporting the concept of humans as holo-

bionts that, independent of geographic location, acquire for the

most part the same bacterial symbionts. However, community
534 Cell Reports 11, 527–538, April 28, 2015 ª2015 The Authors
structure and abundance profiles vary significantly among

geographically separated human populations, suggesting that

environmental selection at local scales (especially diet) has a

major impact on the gutmicrobiome. This plasticity might consti-

tute a mechanism by which the human holobiont can rapidly

adapt to environmental changes that require metabolic capabil-

ities beyond what is encoded by the human genome. In addition,

westernization has been consistently associated with lower a di-

versity and higher b diversity. We propose a model in which

microbial dispersal (which can relate to both horizontal transmis-

sion of symbionts and environmental exposure; de Vrieze, 2014)

exerts a prominent role in structuring the gut microbiome in non-

industrialized societies, whereas microbiome alterations associ-

ated with westernization are caused through dispersal limitation

in combination with high inter-individual differences in selective

environments (Figure 5). Theory predicts that a combination of

low dispersal with distinct selective environments will reduce

rates of successful colonization, which might, together with

antibiotics and insufficient dietary support through low fiber

intake (Sonnenburg and Sonnenburg, 2014), lead to the extinc-

tion of bacterial lineages. The importance of dispersal for

microbiome assembly and maintaining diversity has substantial

implications for human health in non-industrialized and western-

ized populations alike. High microbial dispersal is at the core of

the epidemic levels of infectious diseases in low-income com-

munities such as PNG, whereas lifestyle practices that decrease

dispersal in westernized societies might preclude the acquisition

of microbes or microbial consortia that protect from non-

communicable diseases. An important implication of our findings

would be the need to develop strategies by which to reduce

pathogen transmission while supporting symbiont dispersal.

Clearly, the characterization of the gut microbiota in non-west-

ernized populations provides information that might aid in the

development of strategies to reintroduce bacterial lineages

that have been eradicated in westernized human populations.

Studies such as ours are timely, as human populations that live

a non-westernized lifestyle are in decline.

EXPERIMENTAL PROCEDURES

Study Participants

Ethics approval was granted by the Papua New Guinea Institute of Medical

Research Institutional Review Board (no. 1030) and the Papua New Guinea

Medical Research Advisory Committee (MRAC no. 11.05). The two PNG study

sites, which differed from those studied previously (Greenhill et al., 2015), were

selected on account of (1) having a large proportion of the population that live a

traditional, subsistence-agriculture-based lifestyle, (2) being geographically

distinct from one another, and (3) being accessible by road for the Papua

New Guinea Institute of Medical Research (PNGIMR)-based research team.

At both study sites, an experienced study nurse conducted a community infor-

mation session to inform leaders and the general community of the study.

Thereafter, volunteers were sought and selected based on convenience. Writ-

ten informed consent was obtained from each participant. Twenty participants

at each location in PNG (40 in total) were included in the study, and socio-

demographic and dietary questionnaires were answered by all participants

of the Sausi village and 8 of the 20 Asaro village participants. The socio-demo-

graphic characterization of participants included age, gender, marital status,

highest level of education reached, and occupation. Food questionnaires

included a description of the meals consumed in the previous 24 hr plus

sources of carbohydrate, protein, and other nutrients (fruits, leafy greens,

nuts, and beans) as well as the weekly frequency consumption of protein.



Figure 5. Model of the Ecological Processes that Drive Diversity Patterns of the Fecal Microbiota in PNG and the US

The human gut microbiome can be viewed as a metacommunity, with human individuals representing local communities connected through dispersal and

transmission of microbes. Lower dispersal in the USmight lead to a decrease of a diversity. The increased b diversity in westernizedmicrobiomes results from the

combination of lower homogenizing dispersal and higher variable selection. Relative proportions of bacterial groups differ vastly between the US and PNG,

indicating that structure of local assemblages is shaped by selection, likely caused by dietary differences (although host genetics cannot be excluded). Facets of

westernized diet, especially low levels of complex, plant-derived carbohydrates, might also contribute to the loss of bacterial lineages that rely on dietary

substrates for growth.
The western controls were recruited as part of an independent study con-

ducted at the University of Nebraska. Exclusion criteria of the Nebraska partic-

ipants included being less than 19 years of age, being underweight or obese

(having a BMI < 18.5 kg/m2 or R30 kg/m2), antibiotic usage within 3 months

prior to sample collection, have an acute or chronic existing illness, prior

gastrointestinal surgery (except for appendectomy or hernia repair), recent

unexplained bleeding, pregnant or lactating, participation in another experi-

mental trial 30 days prior to sample collection, vaccinated within 6 months

prior to sample collection, or undergoing treatment with steroids or an immu-

nosuppressant. Individual meetings were conducted with the potential partic-

ipants to explain the study protocol, and written consent was obtained for

every participant in the US cohort. Ethics approval for the US cohort was

granted by the Institutional Review Board of the University of Nebraska (IRB

protocol no. 20120612289COLLB).

Sample Collection and Processing

PNG participants were provided with sterile specimen jars for fecal collection.

Participants were informed of the need for fresh samples; thus samples were

given to the study nurse within 1 hr of defecation. Samples were placed in

an insulated container with ice bricks to keep the sample at approximately

4�C–8�C during transit to the laboratory, which was up to 10 hr after sample

collection. Immediately upon receipt in the laboratory, samples were diluted

1:10 in PBS and stored at�80�C. Samples were then shipped in liquid nitrogen

to the University of Nebraska for analysis. Fecal samples from US participants

were processed as close as possible to the fecal samples collected from the

US individuals to reduce bias in comparisons.

DNA Extraction from Feces

DNA extraction from all fecal slurries were conducted by the same person us-

ing a standardized approach that combined enzymatic andmechanical lysis of

cells as described previously (Martı́nez et al., 2009), with minor modifications.

Briefly, 1 ml of fecal homogenate was transferred to sterile bead beating tubes

containing 300 mg of zirconium beads (Biospec Products). Cells were recov-

ered by centrifugation (8,000 3 g for 5 min at room temperature) and washed

three times in ice-cold PBS. Next, 750 ml of the QIAGEN lysis buffer for Gram-

positive bacteria was added to the cell pellet (20mMTris [pH 8.0], 2 mMEDTA,

1.2% v/v Triton X-100, and 20 mg/ml lysozyme). This lysis buffer was used to

ensure DNA recovery from Gram-positive cells (e.g., bifidobacteria), which are
often underrepresented in the analyses of bacterial communities. The inclusion

of this step led to a lower representation of genera and species within Bacter-

oidetes (Table S2), although all species within this phylum that were previously

detected using a less-harsh cell lysis (Martı́nez et al., 2013b) were still detect-

able (see Table S3). Solutions were homogenized and incubated at 37�C for

20 min. Eighty-five microliters of 10% SDS solution and 30 ml proteinase K

(20 mg/ml) were added, and samples were incubated for 30 min at 60�C.
Five hundred microliters of phenol-chloroform-isoamyl alcohol (25:24:1) was

added, and the samples were homogenized in a MiniBeadbeater-8 (BioSpec

Products) at maximum speed for 2 min. Next, the samples were placed on

ice and centrifuged at 10,000 g for 5 min. The aqueous layer was extracted

twice with phenol-chloroform-isoamyl alcohol (25:24:1) and twice with chloro-

form-isoamyl alcohol. DNA was recovered by standard ethanol precipitation

and dissolved in 100 ml of Tris-HCl buffer (10 mM; pH 8.0).

16S rRNA Gene Illumina Sequencing

PCR (targeting V5-V6 region of the 16S rRNA gene with primers 784F

[50-RGGATTAGATACCC-30] and 1064R [50-CGACRRCCATGCANCACCT-30 ]),
and amplicon sequencing was performed at the University of Minnesota

Genomics Center as described previously (Krumbeck et al., 2015). All PNG

and US samples were included in the same sequencing run.

Microbial Community Analysis

Quality control, merging of pair ends, OTU clustering, and taxonomic assigna-

tion was done as described (Krumbeck et al., 2015). Samples exceeding

20,000 high-quality reads were subsampled to this number using Mothur

v.1.31.1 (Schloss et al., 2009) to minimize potential biases due to sequencing

depth across samples. After quality control and chimera removal, samples

contained an average of 16,072 ± 2,255 sequences.

Comparison to Other Non-industrialized Microbiomes

16S rRNA-sequencing data from studies on the Hadza hunter-gatherers

(Schnorr et al., 2014), Malawian and Venezuelan-Amerindians (Yatsunenko

et al., 2012), and children from Burkina Faso (De Filippo et al., 2010) and

westernized controls were downloaded from the MG-RAST (project ID

7058), MG-RAST (under ‘‘qiime:850’’ accession numbers), and the European

Nucleotide Archive (project ERP000133), respectively. The sequences from

Hadza hunter-gatherers (Schnorr et al., 2014) of 230–238 bases (V4 region
Cell Reports 11, 527–538, April 28, 2015 ª2015 The Authors 535



of 16S rRNA gene) were analyzed analogous to sequences from this study

using the UPARSE pipeline. Samples of individuals from the study by Yatsu-

nenko et al. (2012) of 23 Amerindian, 21 Malawian, and 21 US subjects that

matched the age group of the PNG individuals were used in the analysis

(ages 20–55 years). The sequences were first quality filtered with the fastq_

quality_filter script of the FASTX_toolkit (parameters used: -q 30 -p 90), length

filtered (sequenceswith 90–105 bases were kept), and subsampled to 100,000

sequences per file. Thereafter, sequences were analyzed in an analogous

manner to our reads in UPARSE. The Burkina Faso data set was first filtered

by length of the reads (250–400 bp) and then subjected to the UPARSE

pipeline.

Calculation of Ecological Processes Estimates

For each data set (PNG/US and Hadza/Italy; Schnorr et al., 2014), OTU repre-

sentative sequences were aligned in QIIME (Caporaso et al., 2010) with default

parameters and distance matrices were constructed. Next, the procedures

described by Stegen et al. (2013) were followed to calculate the ecological pro-

cesses estimates. Briefly, b-mean-nearest taxon distances (b-MNTD)—the

mean distance between each taxon and its nearest neighbor—was computed.

Null-model expectations of this parameter were calculated by random shuf-

fling of OTUs and their abundances across phylogenetic tips. Microbial com-

munities were compared pairwise, and b-nearest taxon indices (b-NTI)—the

difference between the calculated b-MNTD and the null-model estimate—

were determined. b-NTI values were quantified by either accounting for

(weighted) or not accounting for (unweighted) taxa relative abundances.

Values of b-NTI >+2 or <�2 represent community turnover governed by vari-

able or homogeneous selection, respectively. The fractions of all b-NTI values

that were >+2 or <�2 were used as estimates of variable and homogeneous

selection, respectively; these processes were estimated separately using

weighted or unweighted b-NTI. Pairwise comparisons with jb-NTIj < 2 were

further subjected to either Bray-Curtis-based Raup-Crick (as in Stegen

et al., 2013) or presence/absence Raup-Crick (as in Chase et al., 2011, and

Stegen et al., 2013). Both metrics were used in combination with b-NTI to es-

timate the contribution of homogenizing dispersal and dispersal limitation as in

Stegen et al. (2013); the fraction of pairwise comparisons with jb-NTIj < 2 and

Raup-Crick <�0.95 estimated the homogenizing dispersal influence; the frac-

tion of pairwise comparisons with jb-NTIj < 2 and Raup-Crick > +0.95 esti-

mated the dispersal limitation influence; the fraction of pairwise comparisons

with jb-NTIj < 2 and jRCbrayj < 0.95 represented the component of composi-

tional turnover undominated by a single process (note that this ‘‘undominated’’

component was referred to as ‘‘drift’’ in Stegen et al., 2013). We note that null-

model deviations measure how different observed data are from an expecta-

tion; our approach does not fit a model to data—a distinct advantage relative

to alternative approaches—such that it does not generate confidence intervals

or a goodness-of-fit measurement.

Statistical Analysis

Rarefied a diversity indices (observed species; Shannon) were calculated in

QIIME (Caporaso et al., 2010; with 1,000 min number of sequences, 6,000

max number of sequences to cover the minimum number of sequences in all

samples, and steps of 500 sequences). b diversity indices (Bray-Curtis) were

calculated in QIIME. Ordination plots for b diversity metrics were generated

by non-parametric multidimensional scaling (NMDS) ordination in R (R Core

Team, 2014), based on Bray-Curtis distance calculated with the VEGAN pack-

age (Oksanen et al., 2013), with scaled and centered results. PCoA plot was

generated based on the binary Jaccard distance. Significant differences be-

tween the PNG and US cohorts in taxonomic and diversity data were

compared with Student’s t tests or Wilcoxon signed-rank test in R, depending

on whether the variable was normally distributed or not. For taxonomic data,

FDR correction of the p values was conducted in R.

ACCESSION NUMBERS

Quality-controlled sequences used for analysis were deposited in the MG-

RAST database and are available under accession numbers 4576511.3–

4576572.3.
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