DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A comprehensive laboratory study on the immersion freezing behavior of illite NX particles. A comparison of 17 ice nucleation measurement techniques

Abstract

Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques. Within the framework of INUIT (Ice Nuclei Research Unit), we distributed an illite-rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature (T), cooling rate and nucleation time. A total of 17 measurement methods were involved in the data intercomparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while 10 other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersionmore » freezing data set was evaluated using the ice nucleation active surface-site density, ns, to develop a representative ns(T) spectrum that spans a wide temperature range (-37 °C < T < -11 °C) and covers 9 orders of magnitude in ns. In general, the 17 immersion freezing measurement techniques deviate, within a range of about 8 °C in terms of temperature, by 3 orders of magnitude with respect to ns. In addition, we show evidence that the immersion freezing efficiency expressed in ns of illite NX particles is relatively independent of droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature dependence and weak time and size dependence of the immersion freezing efficiency of illite-rich clay mineral particles enabled the ns parameterization solely as a function of temperature. We also characterized the ns(T) spectra and identified a section with a steep slope between -20 and -27 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below -27 °C. While the agreement between different instruments was reasonable below ~ -27 °C, there seemed to be a different trend in the temperature-dependent ice nucleation activity from the suspension and dry-dispersed particle measurements for this mineral dust, in particular at higher temperatures. For instance, the ice nucleation activity expressed in ns was smaller for the average of the wet suspended samples and higher for the average of the dry-dispersed aerosol samples between about -27 and -18 °C. Only instruments making measurements with wet suspended samples were able to measure ice nucleation above -18 °C. A possible explanation for the deviation between -27 and -18 °C is discussed. Multiple exponential distribution fits in both linear and log space for both specific surface area-based ns(T) and geometric surface area-based ns(T) are provided. These new fits, constrained by using identical reference samples, will help to compare IN measurement methods that are not included in the present study and IN data from future IN instruments.« less

Authors:
 [1];  [2];  [3];  [4];  [3];  [3];  [5];  [4];  [6];  [3];  [1];  [6];  [1];  [4];  [1];  [1];  [3];  [1];  [3];  [6] more »;  [2];  [7];  [8];  [9];  [8];  [7];  [10];  [8];  [8];  [11];  [12];  [2];  [9];  [12];  [11];  [13];  [11];  [13];  [7];  [12];  [9];  [11] « less
  1. Karlsruhe Inst. of Technology (KIT) (Germany)
  2. Leibniz Inst. for Tropospheric Research (ITR), Leipzig (Germany)
  3. Goethe Univ., Frankfurt (Germany)
  4. Bieleffeld Univ. (Germany)
  5. Univ. of Mainz (Germany)
  6. Technical Univ. Darmstadt (Germany)
  7. Univ. of Zurich (Switzerland)
  8. Colorado State Univ., Fort Collins, CO (United States)
  9. North Carolina State Univ., Raleigh, NC (United States)
  10. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  11. Meteorological Research Inst. (MRI), Tsukuba (Japan)
  12. Univ. of Leeds (United Kingdom)
  13. Univ. of Colorado, Boulder, CO (United States)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1182884
Report Number(s):
PNNL-SA-104923
Journal ID: ISSN 1680-7324; KP1701000
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 15; Journal Issue: 5; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Hiranuma, Naruki, Augustin-Bauditz, Stefanie, Bingemer, Heinz, Budke, Carsten, Curtius, J., Danielczok, Anja, Diehl, K., Dreischmeier, Katharina, Ebert, Martin, Frank, F., Hoffmann, Nadine, Kandler, Kondrad, Kiselev, Alexei, Koop, Thomas, Leisner, Thomas, Mohler, Ottmar, Nillius, Bjorn, Peckhaus, Andreas, Rose, Diana, Weinbruch, Stephan, Wex, Heike, Boose, Yvonne, DeMott, Paul J., Hader, John D., Hill, Thomas, Kanji, Zamin, Kulkarni, Gourihar R., Levin, Ezra, McCluskey, Christina, Murakami, Masataka, Murray, Benjamin J., Niedermeier, Dennis, Petters, Markus D., O'Sullivan, Daniel, Saito, Atsushi, Schill, Gregory, Tajiri, Takuya, Tolbert, Margaret A., Welti, Andre, Whale, Thomas, Wright, Timothy, and Yamashita, Katsuya. A comprehensive laboratory study on the immersion freezing behavior of illite NX particles. A comparison of 17 ice nucleation measurement techniques. United States: N. p., 2015. Web. doi:10.5194/acp-15-2489-2015.
Hiranuma, Naruki, Augustin-Bauditz, Stefanie, Bingemer, Heinz, Budke, Carsten, Curtius, J., Danielczok, Anja, Diehl, K., Dreischmeier, Katharina, Ebert, Martin, Frank, F., Hoffmann, Nadine, Kandler, Kondrad, Kiselev, Alexei, Koop, Thomas, Leisner, Thomas, Mohler, Ottmar, Nillius, Bjorn, Peckhaus, Andreas, Rose, Diana, Weinbruch, Stephan, Wex, Heike, Boose, Yvonne, DeMott, Paul J., Hader, John D., Hill, Thomas, Kanji, Zamin, Kulkarni, Gourihar R., Levin, Ezra, McCluskey, Christina, Murakami, Masataka, Murray, Benjamin J., Niedermeier, Dennis, Petters, Markus D., O'Sullivan, Daniel, Saito, Atsushi, Schill, Gregory, Tajiri, Takuya, Tolbert, Margaret A., Welti, Andre, Whale, Thomas, Wright, Timothy, & Yamashita, Katsuya. A comprehensive laboratory study on the immersion freezing behavior of illite NX particles. A comparison of 17 ice nucleation measurement techniques. United States. https://doi.org/10.5194/acp-15-2489-2015
Hiranuma, Naruki, Augustin-Bauditz, Stefanie, Bingemer, Heinz, Budke, Carsten, Curtius, J., Danielczok, Anja, Diehl, K., Dreischmeier, Katharina, Ebert, Martin, Frank, F., Hoffmann, Nadine, Kandler, Kondrad, Kiselev, Alexei, Koop, Thomas, Leisner, Thomas, Mohler, Ottmar, Nillius, Bjorn, Peckhaus, Andreas, Rose, Diana, Weinbruch, Stephan, Wex, Heike, Boose, Yvonne, DeMott, Paul J., Hader, John D., Hill, Thomas, Kanji, Zamin, Kulkarni, Gourihar R., Levin, Ezra, McCluskey, Christina, Murakami, Masataka, Murray, Benjamin J., Niedermeier, Dennis, Petters, Markus D., O'Sullivan, Daniel, Saito, Atsushi, Schill, Gregory, Tajiri, Takuya, Tolbert, Margaret A., Welti, Andre, Whale, Thomas, Wright, Timothy, and Yamashita, Katsuya. Fri . "A comprehensive laboratory study on the immersion freezing behavior of illite NX particles. A comparison of 17 ice nucleation measurement techniques". United States. https://doi.org/10.5194/acp-15-2489-2015. https://www.osti.gov/servlets/purl/1182884.
@article{osti_1182884,
title = {A comprehensive laboratory study on the immersion freezing behavior of illite NX particles. A comparison of 17 ice nucleation measurement techniques},
author = {Hiranuma, Naruki and Augustin-Bauditz, Stefanie and Bingemer, Heinz and Budke, Carsten and Curtius, J. and Danielczok, Anja and Diehl, K. and Dreischmeier, Katharina and Ebert, Martin and Frank, F. and Hoffmann, Nadine and Kandler, Kondrad and Kiselev, Alexei and Koop, Thomas and Leisner, Thomas and Mohler, Ottmar and Nillius, Bjorn and Peckhaus, Andreas and Rose, Diana and Weinbruch, Stephan and Wex, Heike and Boose, Yvonne and DeMott, Paul J. and Hader, John D. and Hill, Thomas and Kanji, Zamin and Kulkarni, Gourihar R. and Levin, Ezra and McCluskey, Christina and Murakami, Masataka and Murray, Benjamin J. and Niedermeier, Dennis and Petters, Markus D. and O'Sullivan, Daniel and Saito, Atsushi and Schill, Gregory and Tajiri, Takuya and Tolbert, Margaret A. and Welti, Andre and Whale, Thomas and Wright, Timothy and Yamashita, Katsuya},
abstractNote = {Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental parameters associated with these techniques. Within the framework of INUIT (Ice Nuclei Research Unit), we distributed an illite-rich sample (illite NX) as a representative surrogate for atmospheric mineral dust particles to investigators to perform immersion freezing experiments using different IN measurement methods and to obtain IN data as a function of particle concentration, temperature (T), cooling rate and nucleation time. A total of 17 measurement methods were involved in the data intercomparison. Experiments with seven instruments started with the test sample pre-suspended in water before cooling, while 10 other instruments employed water vapor condensation onto dry-dispersed particles followed by immersion freezing. The resulting comprehensive immersion freezing data set was evaluated using the ice nucleation active surface-site density, ns, to develop a representative ns(T) spectrum that spans a wide temperature range (-37 °C < T < -11 °C) and covers 9 orders of magnitude in ns. In general, the 17 immersion freezing measurement techniques deviate, within a range of about 8 °C in terms of temperature, by 3 orders of magnitude with respect to ns. In addition, we show evidence that the immersion freezing efficiency expressed in ns of illite NX particles is relatively independent of droplet size, particle mass in suspension, particle size and cooling rate during freezing. A strong temperature dependence and weak time and size dependence of the immersion freezing efficiency of illite-rich clay mineral particles enabled the ns parameterization solely as a function of temperature. We also characterized the ns(T) spectra and identified a section with a steep slope between -20 and -27 °C, where a large fraction of active sites of our test dust may trigger immersion freezing. This slope was followed by a region with a gentler slope at temperatures below -27 °C. While the agreement between different instruments was reasonable below ~ -27 °C, there seemed to be a different trend in the temperature-dependent ice nucleation activity from the suspension and dry-dispersed particle measurements for this mineral dust, in particular at higher temperatures. For instance, the ice nucleation activity expressed in ns was smaller for the average of the wet suspended samples and higher for the average of the dry-dispersed aerosol samples between about -27 and -18 °C. Only instruments making measurements with wet suspended samples were able to measure ice nucleation above -18 °C. A possible explanation for the deviation between -27 and -18 °C is discussed. Multiple exponential distribution fits in both linear and log space for both specific surface area-based ns(T) and geometric surface area-based ns(T) are provided. These new fits, constrained by using identical reference samples, will help to compare IN measurement methods that are not included in the present study and IN data from future IN instruments.},
doi = {10.5194/acp-15-2489-2015},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 5,
volume = 15,
place = {United States},
year = {Fri Mar 06 00:00:00 EST 2015},
month = {Fri Mar 06 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 155 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Heterogeneous ice nucleation: exploring the transition from stochastic to singular freezing behavior
journal, January 2011

  • Niedermeier, D.; Shaw, R. A.; Hartmann, S.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 16
  • DOI: 10.5194/acp-11-8767-2011

Time dependence of immersion freezing: an experimental study on size selected kaolinite particles
journal, January 2012

  • Welti, A.; Lüönd, F.; Kanji, Z. A.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 20
  • DOI: 10.5194/acp-12-9893-2012

Sublimation in a Wilson chamber
journal, June 1947

  • Cwilong, B. M.
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 190, Issue 1020, p. 137-143
  • DOI: 10.1098/rspa.1947.0066

Representing time-dependent freezing behaviour in immersion mode ice nucleation
journal, January 2014

  • Herbert, R. J.; Murray, B. J.; Whale, T. F.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 16
  • DOI: 10.5194/acp-14-8501-2014

Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume
journal, January 2012

  • Bingemer, H.; Klein, H.; Ebert, M.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 2
  • DOI: 10.5194/acp-12-857-2012

Measurement of Ice Nucleation-Active Bacteria on Plants and in Precipitation by Quantitative PCR
journal, December 2013

  • Hill, Thomas C. J.; Moffett, Bruce F.; DeMott, Paul J.
  • Applied and Environmental Microbiology, Vol. 80, Issue 4
  • DOI: 10.1128/AEM.02967-13

Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols
journal, September 1995


Facile Method for Determining the Aspect Ratios of Mineral Dust Aerosol by Electron Microscopy
journal, May 2014


Deep convective clouds with sustained supercooled liquid water down to -37.5 °C
journal, May 2000

  • Rosenfeld, Daniel; Woodley, William L.
  • Nature, Vol. 405, Issue 6785
  • DOI: 10.1038/35013030

Minimal cooling rate dependence of ice nuclei activity in the immersion mode: COOLING RATE DEPENDENCE FOR IN ACTIVITY
journal, September 2013

  • Wright, Timothy P.; Petters, Markus D.; Hader, John D.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 18
  • DOI: 10.1002/jgrd.50810

A Classical-Theory-Based Parameterization of Heterogeneous Ice Nucleation by Mineral Dust, Soot, and Biological Particles in a Global Climate Model
journal, August 2010

  • Hoose, Corinna; Kristjánsson, Jón Egill; Chen, Jen-Ping
  • Journal of the Atmospheric Sciences, Vol. 67, Issue 8
  • DOI: 10.1175/2010JAS3425.1

Two-step crystal nucleation via capillary condensation
journal, January 2013


Water activity as the determinant for homogeneous ice nucleation in aqueous solutions
journal, August 2000

  • Koop, Thomas; Luo, Beiping; Tsias, Athanasios
  • Nature, Vol. 406, Issue 6796
  • DOI: 10.1038/35020537

Deposition ice nucleation on soot at temperatures relevant for the lower troposphere
journal, January 2006

  • Dymarska, Magdalena; Murray, Benjamin J.; Sun, Limin
  • Journal of Geophysical Research, Vol. 111, Issue D4
  • DOI: 10.1029/2005JD006627

Impact of Particle Generation Method on the Apparent Hygroscopicity of Insoluble Mineral Particles
journal, August 2010

  • Sullivan, Ryan C.; Moore, Meagan J. K.; Petters, Markus D.
  • Aerosol Science and Technology, Vol. 44, Issue 10
  • DOI: 10.1080/02786826.2010.497514

Evaporation freezing by contact nucleation inside-out
journal, January 2005


A new Technique for Counting Ice-Forming Nuclei in Aerosols
journal, August 1957


Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies
journal, July 1988


Ice nucleation and droplet formation by bare and coated soot particles
journal, January 2011

  • Friedman, Beth; Kulkarni, Gourihar; Beránek, Josef
  • Journal of Geophysical Research, Vol. 116, Issue D17
  • DOI: 10.1029/2011JD015999

A Particle-Surface-Area-Based Parameterization of Immersion Freezing on Desert Dust Particles
journal, October 2012

  • Niemand, Monika; Möhler, Ottmar; Vogel, Bernhard
  • Journal of the Atmospheric Sciences, Vol. 69, Issue 10
  • DOI: 10.1175/JAS-D-11-0249.1

Laboratory investigations of the impact of mineral dust aerosol on cold cloud formation
journal, January 2010

  • Koehler, K. A.; Kreidenweis, S. M.; DeMott, P. J.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 23
  • DOI: 10.5194/acp-10-11955-2010

The University of Toronto Continuous Flow Diffusion Chamber (UT-CFDC): A Simple Design for Ice Nucleation Studies
journal, June 2009


Kaolinite particles as ice nuclei: learning from the use of different kaolinite samples and different coatings
journal, January 2014


Influence of particle size on the ice nucleating ability of mineral dusts
journal, January 2009

  • Welti, A.; Lüönd, F.; Stetzer, O.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 18
  • DOI: 10.5194/acp-9-6705-2009

Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments
journal, January 2012


Heterogeneous freezing of water droplets containing kaolinite particles
journal, January 2011

  • Murray, B. J.; Broadley, S. L.; Wilson, T. W.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 9
  • DOI: 10.5194/acp-11-4191-2011

Homogeneous and heterogeneous ice nucleation at LACIS: operating principle and theoretical studies
journal, January 2011

  • Hartmann, S.; Niedermeier, D.; Voigtländer, J.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 4
  • DOI: 10.5194/acp-11-1753-2011

Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps
journal, January 2011

  • Chou, C.; Stetzer, O.; Weingartner, E.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 10
  • DOI: 10.5194/acp-11-4725-2011

The Supercooling of Water
journal, August 1953


A new theory of heterogeneous ice nucleation for application in cloud and climate models
journal, December 2000

  • Khvorostyanov, Vitaly I.; Curry, Judith A.
  • Geophysical Research Letters, Vol. 27, Issue 24
  • DOI: 10.1029/1999GL011211

BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation
journal, January 2015


Kinetics of the homogeneous freezing of water
journal, January 2010

  • Murray, B. J.; Broadley, S. L.; Wilson, T. W.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 35
  • DOI: 10.1039/c003297b

Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds
journal, April 2009


Clay Mineralogy
journal, January 1953


Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles
journal, January 2014

  • Hiranuma, N.; Hoffmann, N.; Kiselev, A.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 5
  • DOI: 10.5194/acp-14-2315-2014

Sensitivities of immersion freezing: Reconciling classical nucleation theory and deterministic expressions: SENSITIVITIES OF IMMERSION FREEZING
journal, June 2013

  • Ervens, Barbara; Feingold, Graham
  • Geophysical Research Letters, Vol. 40, Issue 12
  • DOI: 10.1002/grl.50580

The fast Ice Nucleus chamber FINCH
journal, November 2008


Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles
journal, January 2013


Ice nucleation properties of fine ash particles from the Eyjafjallajökull eruption in April 2010
journal, January 2011


Heterogeneous ice nucleation on phase-separated organic-sulfate particles: effect of liquid vs. glassy coatings
journal, January 2013


The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere
journal, January 2011

  • Iannone, R.; Chernoff, D. I.; Pringle, A.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 3
  • DOI: 10.5194/acp-11-1191-2011

The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds
journal, June 2013

  • Atkinson, James D.; Murray, Benjamin J.; Woodhouse, Matthew T.
  • Nature, Vol. 498, Issue 7454
  • DOI: 10.1038/nature12278

Efficiency of immersion mode ice nucleation on surrogates of mineral dust
journal, January 2007

  • Marcolli, C.; Gedamke, S.; Peter, T.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 19
  • DOI: 10.5194/acp-7-5081-2007

Characteristics of immersion freezing nuclei at the South Pole station in Antarctica
journal, January 2011

  • Ardon-Dryer, K.; Levin, Z.; Lawson, R. P.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 8
  • DOI: 10.5194/acp-11-4015-2011

Laboratory measurements and model sensitivity studies of dust deposition ice nucleation
journal, January 2012

  • Kulkarni, G.; Fan, J.; Comstock, J. M.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 16
  • DOI: 10.5194/acp-12-7295-2012

Ice nucleation by particles immersed in supercooled cloud droplets
journal, January 2012

  • Murray, B. J.; O'Sullivan, D.; Atkinson, J. D.
  • Chemical Society Reviews, Vol. 41, Issue 19
  • DOI: 10.1039/c2cs35200a

Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA
journal, January 2003

  • Möhler, O.; Stetzer, O.; Schaefers, S.
  • Atmospheric Chemistry and Physics, Vol. 3, Issue 1
  • DOI: 10.5194/acp-3-211-2003

Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble material
journal, January 2014

  • Garimella, S.; Huang, Y. -W.; Seewald, J. S.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 12
  • DOI: 10.5194/acp-14-6003-2014

Resurgence in Ice Nuclei Measurement Research
journal, December 2011

  • DeMott, Paul J.; Möhler, Ottmar; Stetzer, Olaf
  • Bulletin of the American Meteorological Society, Vol. 92, Issue 12
  • DOI: 10.1175/2011BAMS3119.1

The immersion mode ice nucleation behavior of mineral dusts: A comparison of different pure and surface modified dusts
journal, October 2014

  • Augustin-Bauditz, S.; Wex, H.; Kanter, S.
  • Geophysical Research Letters, Vol. 41, Issue 20
  • DOI: 10.1002/2014GL061317

Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles
journal, January 2015

  • DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-393-2015

The Zurich Ice Nucleation Chamber (ZINC)-A New Instrument to Investigate Atmospheric Ice Formation
journal, January 2008

  • Stetzer, Olaf; Baschek, Björn; Lüönd, Felix
  • Aerosol Science and Technology, Vol. 42, Issue 1
  • DOI: 10.1080/02786820701787944

A Novel Adiabatic-Expansion-Type Cloud Simulation Chamber
journal, January 2013

  • Tajiri, Takuya; Yamashita, Katsuya; Murakami, Masataka
  • Journal of the Meteorological Society of Japan. Ser. II, Vol. 91, Issue 5
  • DOI: 10.2151/jmsj.2013-509

Natural ice-particle nuclei
journal, January 1949

  • Palmer, H. P.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 75, Issue 323
  • DOI: 10.1002/qj.49707532303

Interpretation of freezing nucleation experiments: singular and stochastic; sites and surfaces
journal, January 2014


Experimental quantification of contact freezing in an electrodynamic balance
journal, January 2013

  • Hoffmann, N.; Kiselev, A.; Rzesanke, D.
  • Atmospheric Measurement Techniques, Vol. 6, Issue 9
  • DOI: 10.5194/amt-6-2373-2013

Change of the refractive index of illite particles by reduction of the Fe content of the octahedral sheet
journal, October 2008

  • Friedrich, Frank; Steudel, Annett; Weidler, Peter G.
  • Clays and Clay Minerals, Vol. 56, Issue 5
  • DOI: 10.1346/CCMN.2008.0560503

Some experiments on the condensation of water vapour at temperatures below 0°c
journal, January 1949

  • Fournier D'albe, E. M.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 75, Issue 323
  • DOI: 10.1002/qj.49707532302

Studies of heterogeneous freezing by three different desert dust samples
journal, January 2009

  • Connolly, P. J.; Möhler, O.; Field, P. R.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 8
  • DOI: 10.5194/acp-9-2805-2009

The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty
journal, January 2013

  • Riechers, Birte; Wittbracht, Frank; Hütten, Andreas
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 16
  • DOI: 10.1039/c3cp42437e

Immersion Freezing of Supermicron Mineral Dust Particles: Freezing Results, Testing Different Schemes for Describing Ice Nucleation, and Ice Nucleation Active Site Densities
journal, November 2014

  • Wheeler, M. J.; Mason, R. H.; Steunenberg, K.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 19
  • DOI: 10.1021/jp507875q

New cloud chamber experiments on the heterogeneous ice nucleation ability of oxalic acid in the immersion mode
journal, January 2011

  • Wagner, R.; Möhler, O.; Saathoff, H.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 5
  • DOI: 10.5194/acp-11-2083-2011

Contribution of pollen to atmospheric ice nuclei concentrations
journal, January 2014

  • Hader, J. D.; Wright, T. P.; Petters, M. D.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 11
  • DOI: 10.5194/acp-14-5433-2014

Exploring the Mechanisms of Ice Nucleation on Kaolinite: From Deposition Nucleation to Condensation Freezing
journal, January 2014

  • Welti, André; Kanji, Zamin A.; Lüönd, F.
  • Journal of the Atmospheric Sciences, Vol. 71, Issue 1
  • DOI: 10.1175/JAS-D-12-0252.1

A computationally efficient description of heterogeneous freezing: A simplified version of the Soccer ball model: NIEDERMEIER ET AL.
journal, January 2014

  • Niedermeier, Dennis; Ervens, Barbara; Clauss, Tina
  • Geophysical Research Letters, Vol. 41, Issue 2
  • DOI: 10.1002/2013GL058684

Laboratory studies of ice formation via deposition mode nucleation onto mineral dust and n-hexane soot samples
journal, January 2006

  • Kanji, Zamin A.; Abbatt, Jonathan P. D.
  • Journal of Geophysical Research, Vol. 111, Issue D16
  • DOI: 10.1029/2005JD006766

A Wind Tunnel Study on the Shape, Oscillation, and Internal Circulation of Large Raindrops with Sizes between 2.5 and 7.5 mm
journal, March 2009

  • Szakáll, Miklós; Diehl, Karoline; Mitra, Subir K.
  • Journal of the Atmospheric Sciences, Vol. 66, Issue 3
  • DOI: 10.1175/2008JAS2777.1

Biological aerosol particles as a key determinant of ice nuclei populations in a forest ecosystem: BIOLOGICAL ICE NUCLEI IN FOREST
journal, September 2013

  • Tobo, Yutaka; Prenni, Anthony J.; DeMott, Paul J.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 17
  • DOI: 10.1002/jgrd.50801

Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities
journal, January 2014


Ice nucleation by fertile soil dusts: relative importance of mineral and biogenic components
journal, January 2014

  • O&apos;Sullivan, D.; Murray, B. J.; Malkin, T. L.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 4
  • DOI: 10.5194/acp-14-1853-2014

Quantifying surface areas of clays by atomic force microscopy
journal, May 2002

  • Bickmore, Barry R.; Nagy, Kathryn L.; Sandlin, Paul E.
  • American Mineralogist, Vol. 87, Issue 5-6
  • DOI: 10.2138/am-2002-5-622

Adsorption of Gases in Multimolecular Layers
journal, February 1938

  • Brunauer, Stephen; Emmett, P. H.; Teller, Edward
  • Journal of the American Chemical Society, Vol. 60, Issue 2, p. 309-319
  • DOI: 10.1021/ja01269a023

Heterogeneous freezing of ice on atmospheric aerosols containing ash, soot, and soil
journal, January 2009

  • Fornea, Adam P.; Brooks, Sarah D.; Dooley, Jeffrey B.
  • Journal of Geophysical Research, Vol. 114, Issue D13
  • DOI: 10.1029/2009JD011958

A Technique to Measure Ice Nuclei in the Contact Mode
journal, April 2014

  • Niehaus, Joseph; Bunker, Kristopher W.; China, Swarup
  • Journal of Atmospheric and Oceanic Technology, Vol. 31, Issue 4
  • DOI: 10.1175/JTECH-D-13-00156.1

Nucleation terminology
journal, January 1985


Ice nucleus measurement with a continuous flow chamber
journal, January 1984

  • Hussain, K.; Saunders, C. P. R.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 110, Issue 463
  • DOI: 10.1002/qj.49711046307

Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals
journal, January 2011

  • Kumar, P.; Sokolik, I. N.; Nenes, A.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 16
  • DOI: 10.5194/acp-11-8661-2011

Repeatability and randomness in heterogeneous freezing nucleation
journal, January 2008


Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust
journal, January 2012

  • Broadley, S. L.; Murray, B. J.; Herbert, R. J.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 1
  • DOI: 10.5194/acp-12-287-2012

The role of time in heterogeneous freezing nucleation: ROLE OF TIME IN ICE NUCLEATION
journal, May 2013

  • Wright, Timothy P.; Petters, Markus D.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 9
  • DOI: 10.1002/jgrd.50365

SEM Petrology Atlas
book, January 1984


Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments
journal, January 2012


BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation
journal, January 2014


Clay mineralogy
book, January 2003


The immersion mode ice nucleation behavior of mineral dusts: A comparison of different pure and surface modified dusts
other, January 2014

  • Augustin-Bauditz, S.; Wex, H.; Kanter, S.
  • Hoboken, NJ : Wiley
  • DOI: 10.34657/1340

The ice nucleation ability of one of the most abundant types of fungal spores found in the atmosphere
posted_content, October 2010


Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble material
posted_content, November 2013


Facile Method for Determining the Aspect Ratios of Mineral Dust Aerosol by Electron Microscopy
text, January 2014


clay mineralogy
book, January 2014


Deposition ice nucleation on soot at temperatures relevant for the lower troposphere.
text, January 2006

  • Dymarska, Magdalena; Murray, Benjamin J.; Sun, Lumin
  • American Geophysical Union
  • DOI: 10.14288/1.0041855

Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles
text, January 2013


Ice nucleation by fertile soil dusts: relative importance of mineral and biogenic components
text, January 2014


New cloud chamber experiments on the heterogeneous ice nucleation ability of oxalic acid in the immersion mode
posted_content, December 2010


Experimental quantification of contact freezing in an electrodynamic balance
text, January 2013


Clay Mineralogy
book, January 2001


Sublimation in a Wilson Chamber
journal, March 1945


Ice nuclei properties within a Saharan dust event at the Jungfraujoch in the Swiss Alps
text, January 2011


Influence of particle size on the ice nucleating ability of mineral dusts
text, January 2009


Repeatability and randomness in heterogeneous freezing nucleation
posted_content, February 2008


Clay Mineralogy
book, January 2001


Ice nucleation properties of fine ash particles from the Eyjafjallajokull eruption in April 2010
posted_content, June 2011


Efficiency of immersion mode ice nucleation on surrogates of mineral dust
text, January 2007


Sensitivities of immersion freezing: Reconciling classical nucleation theory and deterministic expressions: SENSITIVITIES OF IMMERSION FREEZING
journal, June 2013

  • Ervens, Barbara; Feingold, Graham
  • Geophysical Research Letters, Vol. 40, Issue 12
  • DOI: 10.1002/grl.50580

The role of time in heterogeneous freezing nucleation: ROLE OF TIME IN ICE NUCLEATION
journal, May 2013

  • Wright, Timothy P.; Petters, Markus D.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 9
  • DOI: 10.1002/jgrd.50365

Some experiments on the condensation of water vapour at temperatures below 0°c
journal, January 1949

  • Fournier D'albe, E. M.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 75, Issue 323
  • DOI: 10.1002/qj.49707532302

Adsorption of Gases in Multimolecular Layers
journal, February 1938

  • Brunauer, Stephen; Emmett, P. H.; Teller, Edward
  • Journal of the American Chemical Society, Vol. 60, Issue 2, p. 309-319
  • DOI: 10.1021/ja01269a023

Water activity as the determinant for homogeneous ice nucleation in aqueous solutions
journal, August 2000

  • Koop, Thomas; Luo, Beiping; Tsias, Athanasios
  • Nature, Vol. 406, Issue 6796
  • DOI: 10.1038/35020537

Facile Method for Determining the Aspect Ratios of Mineral Dust Aerosol by Electron Microscopy
journal, May 2014


The Supercooling of Water
journal, August 1953


A Continuous-Flow Diffusion Chamber for Airborne Measurements of Ice Nuclei
journal, May 2001


The immersion mode ice nucleation behavior of mineral dusts: A comparison of different pure and surface modified dusts
other, January 2014

  • Augustin-Bauditz, S.; Wex, H.; Kanter, S.
  • Hoboken, NJ : Wiley
  • DOI: 10.34657/1340

Time dependence of immersion freezing: an experimental study on size selected kaolinite particles
text, January 2012


Influence of particle size on the ice nucleating ability of mineral dusts
text, January 2009


Heterogeneous ice nucleation on phase-separated organic-sulfate particles: effect of liquid vs. glassy coatings
journal, January 2013


Efficiency of immersion mode ice nucleation on surrogates of mineral dust
journal, January 2007

  • Marcolli, C.; Gedamke, S.; Peter, T.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 19
  • DOI: 10.5194/acp-7-5081-2007

Repeatability and randomness in heterogeneous freezing nucleation
journal, January 2008


BINARY: an optical freezing array for assessing temperature and time dependence of heterogeneous ice nucleation
journal, January 2014


Facile Method for Determining the Aspect Ratios of Mineral Dust Aerosol by Electron Microscopy
dataset, January 2014


Works referencing / citing this record:

The study of atmospheric ice-nucleating particles via microfluidically generated droplets
journal, April 2018

  • Tarn, Mark D.; Sikora, Sebastien N. F.; Porter, Grace C. E.
  • Microfluidics and Nanofluidics, Vol. 22, Issue 5
  • DOI: 10.1007/s10404-018-2069-x

Background Free‐Tropospheric Ice Nucleating Particle Concentrations at Mixed‐Phase Cloud Conditions
journal, September 2018

  • Lacher, Larissa; DeMott, Paul J.; Levin, Ezra J. T.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 18
  • DOI: 10.1029/2018jd028338

Characteristics of Ice Nucleating Particles in and Around California Winter Storms
journal, November 2019

  • Levin, Ezra J. T.; DeMott, Paul J.; Suski, Kaitlyn J.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 21
  • DOI: 10.1029/2019jd030831

Glacially sourced dust as a potentially significant source of ice nucleating particles
journal, March 2019


Stochastic nucleation processes and substrate abundance explain time-dependent freezing in supercooled droplets
journal, January 2020

  • Knopf, Daniel A.; Alpert, Peter A.; Zipori, Assaf
  • npj Climate and Atmospheric Science, Vol. 3, Issue 1
  • DOI: 10.1038/s41612-020-0106-4

Random distribution active site model for ice nucleation in water droplets
journal, January 2019


Sea spray aerosol as a unique source of ice nucleating particles
journal, December 2015

  • DeMott, Paul J.; Hill, Thomas C. J.; McCluskey, Christina S.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 21
  • DOI: 10.1073/pnas.1514034112

Pore condensation and freezing is responsible for ice formation below water saturation for porous particles
journal, April 2019

  • David, Robert O.; Marcolli, Claudia; Fahrni, Jonas
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 17
  • DOI: 10.1073/pnas.1813647116

Ice nucleation ability of loess from the northwestern United States
journal, August 2019


Is Contact Nucleation Caused by Pressure Perturbation?
journal, December 2019

  • Yang, Fan; Cantrell, Will H.; Kostinski, Alexander B.
  • Atmosphere, Vol. 11, Issue 1
  • DOI: 10.3390/atmos11010001

Freezing on a Chip—A New Approach to Determine Heterogeneous Ice Nucleation of Micrometer-Sized Water Droplets
journal, April 2018

  • Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura
  • Atmosphere, Vol. 9, Issue 4
  • DOI: 10.3390/atmos9040140

Development, Characterization, and Validation of a Cold Stage-Based Ice Nucleation Array (PKU-INA)
journal, September 2018


Ice nucleation by combustion ash particles at conditions relevant to mixed-phase clouds
journal, January 2015

  • Umo, N. S.; Murray, B. J.; Baeza-Romero, M. T.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 9
  • DOI: 10.5194/acp-15-5195-2015

Not all feldspars are equal: a survey of ice nucleating properties across the feldspar group of minerals
journal, January 2016

  • Harrison, Alexander D.; Whale, Thomas F.; Carpenter, Michael A.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 17
  • DOI: 10.5194/acp-16-10927-2016

A comparative study of K-rich and Na/Ca-rich feldspar ice-nucleating particles in a nanoliter droplet freezing assay
journal, January 2016

  • Peckhaus, Andreas; Kiselev, Alexei; Hiron, Thibault
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 18
  • DOI: 10.5194/acp-16-11477-2016

The immersion freezing behavior of ash particles from wood and brown coal burning
journal, January 2016

  • Grawe, Sarah; Augustin-Bauditz, Stefanie; Hartmann, Susan
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 21
  • DOI: 10.5194/acp-16-13911-2016

Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide – Part 1: Immersion freezing
journal, January 2016

  • Boose, Yvonne; Welti, André; Atkinson, James
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 23
  • DOI: 10.5194/acp-16-15075-2016

Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism
journal, January 2016

  • Wagner, Robert; Kiselev, Alexei; Möhler, Ottmar
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 4
  • DOI: 10.5194/acp-16-2025-2016

Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior
journal, January 2016

  • Augustin-Bauditz, Stefanie; Wex, Heike; Denjean, Cyrielle
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 9
  • DOI: 10.5194/acp-16-5531-2016

Ice nucleating particles in the Saharan Air Layer
journal, January 2016

  • Boose, Yvonne; Sierau, Berko; García, M. Isabel
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 14
  • DOI: 10.5194/acp-16-9067-2016

Classical nucleation theory of immersion freezing: sensitivity of contact angle schemes to thermodynamic and kinetic parameters
journal, January 2017

  • Ickes, Luisa; Welti, André; Lohmann, Ulrike
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 3
  • DOI: 10.5194/acp-17-1713-2017

Agricultural harvesting emissions of ice-nucleating particles
journal, January 2018

  • Suski, Kaitlyn J.; Hill, Tom C. J.; Levin, Ezra J. T.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 18
  • DOI: 10.5194/acp-18-13755-2018

Coal fly ash: linking immersion freezing behavior and physicochemical particle properties
journal, January 2018

  • Grawe, Sarah; Augustin-Bauditz, Stefanie; Clemen, Hans-Christian
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 19
  • DOI: 10.5194/acp-18-13903-2018

A laboratory investigation of the ice nucleation efficiency of three types of mineral and soil dust
journal, January 2018

  • Paramonov, Mikhail; David, Robert O.; Kretzschmar, Ruben
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 22
  • DOI: 10.5194/acp-18-16515-2018

Heterogeneous ice nucleation on dust particles sourced from nine deserts worldwide – Part 2: Deposition nucleation and condensation freezing
journal, January 2019

  • Boose, Yvonne; Baloh, Philipp; Plötze, Michael
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 2
  • DOI: 10.5194/acp-19-1059-2019

Characterization of aerosol properties at Cyprus, focusing on cloud condensation nuclei and ice-nucleating particles
journal, January 2019

  • Gong, Xianda; Wex, Heike; Müller, Thomas
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 16
  • DOI: 10.5194/acp-19-10883-2019

The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar
journal, January 2019

  • Harrison, Alexander D.; Lever, Katherine; Sanchez-Marroquin, Alberto
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 17
  • DOI: 10.5194/acp-19-11343-2019

A review of experimental techniques for aerosol hygroscopicity studies
journal, January 2019

  • Tang, Mingjin; Chan, Chak K.; Li, Yong Jie
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 19
  • DOI: 10.5194/acp-19-12631-2019

Mineralogy and mixing state of north African mineral dust by online single-particle mass spectrometry
journal, January 2019

  • Marsden, Nicholas A.; Ullrich, Romy; Möhler, Ottmar
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 4
  • DOI: 10.5194/acp-19-2259-2019

Nucleation of nitric acid hydrates in Polar Stratospheric Clouds by meteoric material
posted_content, October 2017

  • James, Alexander D.; Brooke, James S. A.; Mangan, Thomas P.
  • Atmospheric Chemistry and Physics Discussions
  • DOI: 10.5194/acp-2017-816

Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-TOF single-particle mass spectrometer
journal, January 2018

  • Marsden, Nicholas A.; Flynn, Michael J.; Allan, James D.
  • Atmospheric Measurement Techniques, Vol. 11, Issue 1
  • DOI: 10.5194/amt-11-195-2018

The WeIzmann Supercooled Droplets Observation on a Microarray (WISDOM) and application for ambient dust
journal, January 2018

  • Reicher, Naama; Segev, Lior; Rudich, Yinon
  • Atmospheric Measurement Techniques, Vol. 11, Issue 1
  • DOI: 10.5194/amt-11-233-2018

An instrument for quantifying heterogeneous ice nucleation in multiwell plates using infrared emissions to detect freezing
journal, January 2018

  • Harrison, Alexander D.; Whale, Thomas F.; Rutledge, Rupert
  • Atmospheric Measurement Techniques, Vol. 11, Issue 10
  • DOI: 10.5194/amt-11-5629-2018

A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry
journal, January 2019

  • Froyd, Karl D.; Murphy, Daniel M.; Brock, Charles A.
  • Atmospheric Measurement Techniques, Vol. 12, Issue 11
  • DOI: 10.5194/amt-12-6209-2019

Numerical Representations of Marine Ice‐Nucleating Particles in Remote Marine Environments Evaluated Against Observations
journal, July 2019

  • McCluskey, C. S.; DeMott, P. J.; Ma, P. ‐L.
  • Geophysical Research Letters, Vol. 46, Issue 13
  • DOI: 10.1029/2018gl081861

Development of the DRoplet Ice Nuclei Counter Zurich (DRINCZ): Validation and application to field-collected snow samples
text, January 2019


Comparative measurements of ambient atmospheric concentrations of ice nucleating particles using multiple immersion freezing methods and a continuous flow diffusion chamber
journal, January 2017

  • DeMott, Paul J.; Hill, Thomas C. J.; Petters, Markus D.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 18
  • DOI: 10.5194/acp-17-11227-2017

Composition of ice particle residuals in mixed-phase clouds at Jungfraujoch (Switzerland): enrichment and depletion of particle groups relative to total aerosol
journal, January 2018

  • Eriksen Hammer, Stine; Mertes, Stephan; Schneider, Johannes
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 19
  • DOI: 10.5194/acp-18-13987-2018

Nucleation of nitric acid hydrates in polar stratospheric clouds by meteoric material
journal, January 2018

  • James, Alexander D.; Brooke, James S. A.; Mangan, Thomas P.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 7
  • DOI: 10.5194/acp-18-4519-2018

Heterogeneous ice nucleation properties of natural desert dust particles coated with a surrogate of secondary organic aerosol
journal, January 2019

  • Kanji, Zamin A.; Sullivan, Ryan C.; Niemand, Monika
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 7
  • DOI: 10.5194/acp-19-5091-2019

Classical nucleation theory of immersion freezing: Sensitivity of contact angle schemes to thermodynamic and kinetic parameters
posted_content, January 2016

  • Ickes, Luisa; Welti, André; Lohmann, Ulrike
  • Atmospheric Chemistry and Physics
  • DOI: 10.5194/acp-2015-969

A technique for quantifying heterogeneous ice nucleation in microlitre supercooled water droplets
journal, January 2015

  • Whale, T. F.; Murray, B. J.; O&apos;Sullivan, D.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 6
  • DOI: 10.5194/amt-8-2437-2015

Background Free‐Tropospheric Ice Nucleating Particle Concentrations at Mixed‐Phase Cloud Conditions
text, January 2018


Mineralogy and mixing state of north African mineral dust by online single-particle mass spectrometry
text, January 2019


Pore condensation and freezing is responsible for ice formation below water saturation for porous particles
text, January 2019

  • O., David, Robert; Claudia, Marcolli,; Jonas, Fahrni,
  • National Academy of Sciences
  • DOI: 10.21256/zhaw-3312

Sources of organic ice nucleating particles in soils
journal, January 2016

  • Hill, Tom C. J.; DeMott, Paul J.; Tobo, Yutaka
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 11
  • DOI: 10.5194/acp-16-7195-2016

A high-speed particle phase discriminator (PPD-HS) for the classification of airborne particles, as tested in a continuous flow diffusion chamber
journal, January 2019

  • Mahrt, Fabian; Wieder, Jörg; Dietlicher, Remo
  • Atmospheric Measurement Techniques, Vol. 12, Issue 6
  • DOI: 10.5194/amt-12-3183-2019

Pre-activation of ice nucleating particles by the pore condensation and freezing mechanism
text, January 2015


Ice nucleating particles in the Saharan Air Layer
text, January 2016


An improved approach for measuring immersion freezing in large droplets over a wide temperature range
journal, September 2016


A laboratory investigation of the ice nucleation efficiency of three types of mineral and soil dust
text, January 2018


Development of the DRoplet Ice Nuclei Counter Zurich (DRINCZ): validation and application to field-collected snow samples
journal, January 2019

  • David, Robert O.; Cascajo-Castresana, Maria; Brennan, Killian P.
  • Atmospheric Measurement Techniques, Vol. 12, Issue 12
  • DOI: 10.5194/amt-12-6865-2019

Background Free-Tropospheric Ice Nucleating Particle Concentrations at Mixed-Phase Cloud Conditions
text, January 2018


A technique for quantifying heterogeneous ice nucleation in microlitre supercooled water droplets
text, January 2015


Pre-activation of ice-nucleating particles by the pore condensation and freezing mechanism
text, January 2016


An improved approach for measuring immersion freezing in large droplets over a wide temperature range
journal, September 2016


Pore condensation and freezing is responsible for ice formation below water saturation for porous particles
journal, April 2019

  • David, Robert O.; Marcolli, Claudia; Fahrni, Jonas
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 17
  • DOI: 10.1073/pnas.1813647116

Ice nucleation ability of loess from the northwestern United States
journal, August 2019


Advances in Halloysite Nanotubes–Polysaccharide Nanocomposite Preparation and Applications
journal, June 2019


Protein aggregates nucleate ice: The example of apoferritin
text, January 2020


Ice nucleation by combustion ash particles at conditions relevant to mixed-phase clouds
journal, January 2015

  • Umo, N. S.; Murray, B. J.; Baeza-Romero, M. T.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 9
  • DOI: 10.5194/acp-15-5195-2015

Not all feldspars are equal: a survey of ice nucleating properties across the feldspar group of minerals
journal, January 2016

  • Harrison, Alexander D.; Whale, Thomas F.; Carpenter, Michael A.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 17
  • DOI: 10.5194/acp-16-10927-2016

Agricultural harvesting emissions of ice-nucleating particles
journal, January 2018

  • Suski, Kaitlyn J.; Hill, Tom C. J.; Levin, Ezra J. T.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 18
  • DOI: 10.5194/acp-18-13755-2018

The ice-nucleating ability of quartz immersed in water and its atmospheric importance compared to K-feldspar
journal, January 2019

  • Harrison, Alexander D.; Lever, Katherine; Sanchez-Marroquin, Alberto
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 17
  • DOI: 10.5194/acp-19-11343-2019

A review of experimental techniques for aerosol hygroscopicity studies
journal, January 2019

  • Tang, Mingjin; Chan, Chak K.; Li, Yong Jie
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 19
  • DOI: 10.5194/acp-19-12631-2019

Ice-nucleating particle concentrations of the past: insights from a 600-year-old Greenland ice core
journal, October 2020

  • Schrod, Jann; Kleinhenz, Dominik; Hörhold, Maria
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 21
  • DOI: 10.5194/acp-20-12459-2020

On mineral dust aerosol hygroscopicity
journal, November 2020


Leipzig Ice Nucleation chamber Comparison (LINC): Inter-comparison of four online ice nucleation counters
posted_content, April 2017

  • Burkert-Kohn, Monika; Wex, Heike; Welti, André
  • Atmospheric Chemistry and Physics Discussions
  • DOI: 10.5194/acp-2017-358

Nucleation of nitric acid hydrates in Polar Stratospheric Clouds by meteoric material
posted_content, October 2017

  • James, Alexander D.; Brooke, James S. A.; Mangan, Thomas P.
  • Atmospheric Chemistry and Physics Discussions
  • DOI: 10.5194/acp-2017-816

Characterization of aerosol properties at Cyprus, focusing on cloud condensation nuclei and ice nucleating particles
posted_content, March 2019

  • Gong, Xianda; Wex, Heike; Müller, Thomas
  • Atmospheric Chemistry and Physics Discussions
  • DOI: 10.5194/acp-2019-198

Mexican agricultural soil dust as a source of ice nucleating particles
journal, May 2022

  • Pereira, Diana L.; Gavilán, Irma; Letechipía, Consuelo
  • Atmospheric Chemistry and Physics, Vol. 22, Issue 10
  • DOI: 10.5194/acp-22-6435-2022

Automation and heat transfer characterization of immersion mode spectroscopy for analysis of ice nucleating particles
journal, January 2017

  • Beall, Charlotte M.; Stokes, M. Dale; Hill, Thomas C.
  • Atmospheric Measurement Techniques, Vol. 10, Issue 7
  • DOI: 10.5194/amt-10-2613-2017

The WeIzmann Supercooled Droplets Observation on a Microarray (WISDOM) and application for ambient dust
journal, January 2018

  • Reicher, Naama; Segev, Lior; Rudich, Yinon
  • Atmospheric Measurement Techniques, Vol. 11, Issue 1
  • DOI: 10.5194/amt-11-233-2018

An instrument for quantifying heterogeneous ice nucleation in multiwell plates using infrared emissions to detect freezing
journal, January 2018

  • Harrison, Alexander D.; Whale, Thomas F.; Rutledge, Rupert
  • Atmospheric Measurement Techniques, Vol. 11, Issue 10
  • DOI: 10.5194/amt-11-5629-2018

A pyroelectric thermal sensor for automated ice nucleation detection
journal, January 2020

  • Cook, Fred; Lord, Rachel; Sitbon, Gary
  • Atmospheric Measurement Techniques Discussions
  • DOI: 10.5194/amt-2019-401

A technique for quantifying heterogeneous ice nucleation in microlitre supercooled water droplets
journal, January 2015

  • Whale, T. F.; Murray, B. J.; O&apos;Sullivan, D.
  • Atmospheric Measurement Techniques, Vol. 8, Issue 6
  • DOI: 10.5194/amt-8-2437-2015

Complex plant-derived organic aerosol as ice-nucleating particles – more than the sums of their parts?
text, January 2020

  • Steinke, Isabelle; Hiranuma, Naruki; Funk, Roger
  • European Geosciences Union (EGU)
  • DOI: 10.5445/ir/1000125383