DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modulation of Magnetic Heating via Dipolar Magnetic Interactions in Monodisperse and Crystalline Iron Oxide Nanoparticles

Abstract

Here, we report on the study of heat dissipation power in monodisperse and crystalline magnetite nanoparticles as function of particle and aggregate sizes, magnetic field frequencies (up to 435 kHz) and amplitudes (up to 50 mT), media viscosity and particle concentration. These nanoparticles display specific absorption rate values of few hundreds of WgFe-1 at moderate frequencies (~100 kHz), increasing up to 3632 WgFe-1 at more extreme field conditions (430 kHz and 40 mT) for the largest size. We have found that Néelian relaxation processes are dominant for all nanoparticle sizes, whereas Brownian contribution dominates only for the largest size (22 nm) at high particle concentrations when dipolar interactions enhance the effective magnetic anisotropy. Besides, the particle concentration dependence of the specific absorption rate reflects the importance of magnetic dipolar interactions which strongly depend on aggregate and particle size. Our results show that dipolar interactions tune the effective magnetic anisotropy determining the Néelian and Brownian contributions into SAR values. The possibility of switching between heating mechanisms via dipolar interactions is of great importance towards controlling the heat exposure supplied by IONP as intracellular heating mediators.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [6];  [6];  [7];  [8];  [9]
  1. Univ. of Cantoblanco, Madrid (Spain). IMDEA nanoscience; Univ. of Cantoblanco, Madrid (Spain). Institute of Materials Science of Madrid-CSIC
  2. Univ. of Cantoblanco, Madrid (Spain). IMDEA nanoscience; Autonomous University of Madrid, Madrid (Spain)
  3. Univ. of Cantoblanco, Madrid (Spain). IMDEA Nanoscience
  4. Univ. of Cantoblanco, Madrid (Spain). IMDEA Nanoscience and Institute of Materials Science of Madrid-CSIC
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Univ. Complutense Madrid (Spain)
  6. Friedrich Schiller Univ., Jena (Germany)
  7. Univ. of Cantoblanco, Madrid (Spain). IMDEA Nanoscience; Autonomous University of Madrid, Madrid (Spain)
  8. Univ. of Cantoblanco, Madrid (Spain). Institute of Materials Science of Madrid-CSIC
  9. Univ. of Cantoblanco, Madrid (Spain). IMDEA nanoscience ; Univ. of Cantoblanco, Madrid (Spain). Associated Unit of Nanobiotechnology CNB-CSUC & IMDEA Nanoscience
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1162068
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 118; Journal Issue: 34; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; iron oxide nanoparticles; magnetic heating; magnetic dipolar interactions; magnetic effective anisotropy

Citation Formats

Salas, Gorka, Camarero, Julio, Cabrera, David, Takacs, Hélène, Varela, María, Ludwig, Robert, Dähring, Heidi, Hilger, Ingrid, Miranda, Rodolfo, Morales, María del Puerto, and Teran, Francisco Jose. Modulation of Magnetic Heating via Dipolar Magnetic Interactions in Monodisperse and Crystalline Iron Oxide Nanoparticles. United States: N. p., 2014. Web. doi:10.1021/jp5041234.
Salas, Gorka, Camarero, Julio, Cabrera, David, Takacs, Hélène, Varela, María, Ludwig, Robert, Dähring, Heidi, Hilger, Ingrid, Miranda, Rodolfo, Morales, María del Puerto, & Teran, Francisco Jose. Modulation of Magnetic Heating via Dipolar Magnetic Interactions in Monodisperse and Crystalline Iron Oxide Nanoparticles. United States. https://doi.org/10.1021/jp5041234
Salas, Gorka, Camarero, Julio, Cabrera, David, Takacs, Hélène, Varela, María, Ludwig, Robert, Dähring, Heidi, Hilger, Ingrid, Miranda, Rodolfo, Morales, María del Puerto, and Teran, Francisco Jose. Wed . "Modulation of Magnetic Heating via Dipolar Magnetic Interactions in Monodisperse and Crystalline Iron Oxide Nanoparticles". United States. https://doi.org/10.1021/jp5041234. https://www.osti.gov/servlets/purl/1162068.
@article{osti_1162068,
title = {Modulation of Magnetic Heating via Dipolar Magnetic Interactions in Monodisperse and Crystalline Iron Oxide Nanoparticles},
author = {Salas, Gorka and Camarero, Julio and Cabrera, David and Takacs, Hélène and Varela, María and Ludwig, Robert and Dähring, Heidi and Hilger, Ingrid and Miranda, Rodolfo and Morales, María del Puerto and Teran, Francisco Jose},
abstractNote = {Here, we report on the study of heat dissipation power in monodisperse and crystalline magnetite nanoparticles as function of particle and aggregate sizes, magnetic field frequencies (up to 435 kHz) and amplitudes (up to 50 mT), media viscosity and particle concentration. These nanoparticles display specific absorption rate values of few hundreds of WgFe-1 at moderate frequencies (~100 kHz), increasing up to 3632 WgFe-1 at more extreme field conditions (430 kHz and 40 mT) for the largest size. We have found that Néelian relaxation processes are dominant for all nanoparticle sizes, whereas Brownian contribution dominates only for the largest size (22 nm) at high particle concentrations when dipolar interactions enhance the effective magnetic anisotropy. Besides, the particle concentration dependence of the specific absorption rate reflects the importance of magnetic dipolar interactions which strongly depend on aggregate and particle size. Our results show that dipolar interactions tune the effective magnetic anisotropy determining the Néelian and Brownian contributions into SAR values. The possibility of switching between heating mechanisms via dipolar interactions is of great importance towards controlling the heat exposure supplied by IONP as intracellular heating mediators.},
doi = {10.1021/jp5041234},
journal = {Journal of Physical Chemistry. C},
number = 34,
volume = 118,
place = {United States},
year = {Wed Jul 23 00:00:00 EDT 2014},
month = {Wed Jul 23 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 73 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy
journal, July 2010


Iron oxide-based nanostructures for MRI and magnetic hyperthermia
journal, September 2012


Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage
journal, January 2009

  • Frey, Natalie A.; Peng, Sheng; Cheng, Kai
  • Chemical Society Reviews, Vol. 38, Issue 9
  • DOI: 10.1039/b815548h

Progress in the preparation of magnetic nanoparticles for applications in biomedicine
journal, November 2009


Relationship between physico-chemical properties of magnetic fluids and their heating capacity
journal, September 2013

  • Salas, Gorka; Veintemillas-Verdaguer, Sabino; Morales, Maria del Puerto
  • International Journal of Hyperthermia, Vol. 29, Issue 8
  • DOI: 10.3109/02656736.2013.826824

Different cell responses induced by exposure to maghemite nanoparticles
journal, January 2013

  • Luengo, Yurena; Nardecchia, Stefania; Morales, María Puerto
  • Nanoscale, Vol. 5, Issue 23
  • DOI: 10.1039/c3nr02148c

Efficient and safe internalization of magnetic iron oxide nanoparticles: Two fundamental requirements for biomedical applications
journal, May 2014

  • Calero, Macarena; Gutiérrez, Lucía; Salas, Gorka
  • Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 10, Issue 4
  • DOI: 10.1016/j.nano.2013.11.010

Visualization of custom-tailored iron oxide nanoparticles chemistry, uptake, and toxicity
journal, January 2012

  • Wilkinson, Kai; Ekstrand-Hammarström, Barbro; Ahlinder, Linnea
  • Nanoscale, Vol. 4, Issue 23
  • DOI: 10.1039/c2nr32572a

Cooperative Organization in Iron Oxide Multi-Core Nanoparticles Potentiates Their Efficiency as Heating Mediators and MRI Contrast Agents
journal, November 2012

  • Lartigue, Lénaic; Hugounenq, Pierre; Alloyeau, Damien
  • ACS Nano, Vol. 6, Issue 12
  • DOI: 10.1021/nn304477s

Theory of proton relaxation induced by superparamagnetic particles
journal, March 1999

  • Roch, Alain; Muller, Robert N.; Gillis, Pierre
  • The Journal of Chemical Physics, Vol. 110, Issue 11
  • DOI: 10.1063/1.478435

Dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy
journal, April 2011


Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates
journal, January 2013

  • Majeed, Muhammad Irfan; Lu, Qunwei; Yan, Wei
  • Journal of Materials Chemistry B, Vol. 1, Issue 22
  • DOI: 10.1039/c3tb20322k

Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique
journal, November 2005

  • Johannsen, M.; Gneveckow, U.; Eckelt, L.
  • International Journal of Hyperthermia, Vol. 21, Issue 7
  • DOI: 10.1080/02656730500158360

Exchange-coupled magnetic nanoparticles for efficient heat induction
journal, June 2011

  • Lee, Jae-Hyun; Jang, Jung-tak; Choi, Jin-sil
  • Nature Nanotechnology, Vol. 6, Issue 7
  • DOI: 10.1038/nnano.2011.95

Remote control of ion channels and neurons through magnetic-field heating of nanoparticles
journal, June 2010


Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia
journal, January 1993


Size-dependent properties of magnetic iron oxidenanocrystals
journal, January 2011

  • Demortière, A.; Panissod, P.; Pichon, B. P.
  • Nanoscale, Vol. 3, Issue 1
  • DOI: 10.1039/C0NR00521E

Ultra-large-scale syntheses of monodisperse nanocrystals
journal, November 2004

  • Park, Jongnam; An, Kwangjin; Hwang, Yosun
  • Nature Materials, Vol. 3, Issue 12
  • DOI: 10.1038/nmat1251

Monodisperse MFe 2 O 4 (M = Fe, Co, Mn) Nanoparticles
journal, January 2004

  • Sun, Shouheng; Zeng, Hao; Robinson, David B.
  • Journal of the American Chemical Society, Vol. 126, Issue 1
  • DOI: 10.1021/ja0380852

Surfactant Organic Molecules Restore Magnetism in Metal-Oxide Nanoparticle Surfaces
journal, April 2012

  • Salafranca, Juan; Gazquez, Jaume; Pérez, Nicolás
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl300665z

Controlled synthesis of uniform magnetite nanocrystals with high-quality properties for biomedical applications
journal, January 2012

  • Salas, Gorka; Casado, Cintia; Teran, Francisco J.
  • Journal of Materials Chemistry, Vol. 22, Issue 39
  • DOI: 10.1039/c2jm34402e

Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling
journal, March 2014

  • Serantes, David; Simeonidis, Konstantinos; Angelakeris, Makis
  • The Journal of Physical Chemistry C, Vol. 118, Issue 11
  • DOI: 10.1021/jp410717m

Adjustable Hyperthermia Response of Self-Assembled Ferromagnetic Fe-MgO Core-Shell Nanoparticles by Tuning Dipole-Dipole Interactions
journal, May 2012

  • Martinez-Boubeta, Carlos; Simeonidis, Konstantinos; Serantes, David
  • Advanced Functional Materials, Vol. 22, Issue 17
  • DOI: 10.1002/adfm.201200307

Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications
journal, April 2013

  • Martinez-Boubeta, Carlos; Simeonidis, Konstantinos; Makridis, Antonios
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep01652

Role of dipolar interaction in magnetic hyperthermia
journal, January 2014


Modeling magnetic nanoparticle dipole-dipole interactions inside living cells
journal, August 2011


How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and NMR relaxivity
journal, May 2012

  • Lévy, Michael; Wilhelm, Claire; Devaud, Martin
  • Contrast Media & Molecular Imaging, Vol. 7, Issue 4
  • DOI: 10.1002/cmmi.504

Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs
journal, August 2014


Heating magnetic fluid with alternating magnetic field
journal, November 2002


Fe-based nanoparticles as tunable magnetic particle hyperthermia agents
journal, September 2013

  • Simeonidis, K.; Martinez-Boubeta, C.; Balcells, Ll.
  • Journal of Applied Physics, Vol. 114, Issue 10
  • DOI: 10.1063/1.4821020

Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia
journal, March 2007

  • Fortin, Jean-Paul; Wilhelm, Claire; Servais, Jacques
  • Journal of the American Chemical Society, Vol. 129, Issue 9
  • DOI: 10.1021/ja067457e

Dynamics of magnetic nanoparticle in a viscous liquid: Application to magnetic nanoparticle hyperthermia
journal, July 2012

  • Usov, N. A.; Liubimov, B. Ya.
  • Journal of Applied Physics, Vol. 112, Issue 2
  • DOI: 10.1063/1.4737126

The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells
journal, February 2009


Accurate determination of the specific absorption rate in superparamagnetic nanoparticles under non-adiabatic conditions
journal, August 2012

  • Teran, F. J.; Casado, C.; Mikuszeit, N.
  • Applied Physics Letters, Vol. 101, Issue 6
  • DOI: 10.1063/1.4742918

Magnetic Iron Oxide Nanoparticles in 10−40 nm Range: Composition in Terms of Magnetite/Maghemite Ratio and Effect on the Magnetic Properties
journal, March 2011

  • Santoyo Salazar, Jaime; Perez, Lucas; de Abril, Oscar
  • Chemistry of Materials, Vol. 23, Issue 6
  • DOI: 10.1021/cm103188a

Critical radius for exchange bias in naturally oxidized Fe nanoparticles
journal, August 2006

  • Martínez-Boubeta, C.; Simeonidis, K.; Angelakeris, M.
  • Physical Review B, Vol. 74, Issue 5, Article No. 054430
  • DOI: 10.1103/PhysRevB.74.054430

Surface and Internal Spin Canting in γ-Fe 2 O 3 Nanoparticles
journal, November 1999

  • Morales, M. P.; Veintemillas-Verdaguer, S.; Montero, M. I.
  • Chemistry of Materials, Vol. 11, Issue 11
  • DOI: 10.1021/cm991018f

The Iron Oxides
book, July 2003


Estimation of blocking temperatures from ZFC/FC curves
journal, August 1999


Optimal Size of Nanoparticles for Magnetic Hyperthermia: A Combined Theoretical and Experimental Study
journal, October 2011

  • Mehdaoui, Boubker; Meffre, Anca; Carrey, Julian
  • Advanced Functional Materials, Vol. 21, Issue 23
  • DOI: 10.1002/adfm.201101243

Suitability of commercial colloids for magnetic hyperthermia
journal, May 2009

  • Kallumadil, Mathew; Tada, Masaru; Nakagawa, Takashi
  • Journal of Magnetism and Magnetic Materials, Vol. 321, Issue 10
  • DOI: 10.1016/j.jmmm.2009.02.075

Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization
journal, April 2011

  • Carrey, J.; Mehdaoui, B.; Respaud, M.
  • Journal of Applied Physics, Vol. 109, Issue 8
  • DOI: 10.1063/1.3551582

Dynamic magnetic hysteresis in single-domain particles with uniaxial anisotropy
journal, November 2010


Dynamic and static properties of interacting fine ferromagnetic particles
journal, December 1983


The theory of the Vogel-Fulcher law of spin glasses
journal, October 1981


Predicted time dependence of the switching field for magnetic materials
journal, July 1989


Works referencing / citing this record:

Biologically Targeted Magnetic Hyperthermia: Potential and Limitations
journal, August 2018


Experimental Evaluation on the Heating Efficiency of Magnetoferritin Nanoparticles in an Alternating Magnetic Field
journal, October 2019