DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Minimum thermal conductivity in superlattices: A first-principles formalism

Abstract

The thermal conductivity of silicon-germanium superlattices is computed here from density-functional perturbation theory using relaxation times that include both anharmonic and interface roughness effects. A decrease in the group velocity of low-frequency phonons in addition to the interface-disorder-induced scattering of high-frequency phonons drives the superlattice thermal conductivity to below the alloy limit. At short periods, interplay between decrease in group velocity and increase in phonon lifetimes with increase in superlattice period leads to a minimum in the cross-plane thermal conductivity. Increasing the mass mismatch between the constituent materials in the superlattice further lowers the thermal conductivity below the alloy limit, pointing to avenues for higher efficiency thermoelectric materials.

Authors:
 [1];  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1160689
Grant/Contract Number:  
SC0001299; FG02-09ER46577
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review. B, Condensed Matter and Materials Physics
Additional Journal Information:
Journal Volume: 87; Journal Issue: 14; Related Information: S3TEC partners with Massachusetts Institute of Technology (lead); Boston College; Oak Ridge National Laboratory; Rensselaer Polytechnic Institute; Journal ID: ISSN 1098-0121
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Garg, Jivtesh, and Chen, Gang. Minimum thermal conductivity in superlattices: A first-principles formalism. United States: N. p., 2013. Web. doi:10.1103/PhysRevB.87.140302.
Garg, Jivtesh, & Chen, Gang. Minimum thermal conductivity in superlattices: A first-principles formalism. United States. https://doi.org/10.1103/PhysRevB.87.140302
Garg, Jivtesh, and Chen, Gang. Fri . "Minimum thermal conductivity in superlattices: A first-principles formalism". United States. https://doi.org/10.1103/PhysRevB.87.140302. https://www.osti.gov/servlets/purl/1160689.
@article{osti_1160689,
title = {Minimum thermal conductivity in superlattices: A first-principles formalism},
author = {Garg, Jivtesh and Chen, Gang},
abstractNote = {The thermal conductivity of silicon-germanium superlattices is computed here from density-functional perturbation theory using relaxation times that include both anharmonic and interface roughness effects. A decrease in the group velocity of low-frequency phonons in addition to the interface-disorder-induced scattering of high-frequency phonons drives the superlattice thermal conductivity to below the alloy limit. At short periods, interplay between decrease in group velocity and increase in phonon lifetimes with increase in superlattice period leads to a minimum in the cross-plane thermal conductivity. Increasing the mass mismatch between the constituent materials in the superlattice further lowers the thermal conductivity below the alloy limit, pointing to avenues for higher efficiency thermoelectric materials.},
doi = {10.1103/PhysRevB.87.140302},
journal = {Physical Review. B, Condensed Matter and Materials Physics},
number = 14,
volume = 87,
place = {United States},
year = {Fri Apr 26 00:00:00 EDT 2013},
month = {Fri Apr 26 00:00:00 EDT 2013}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 114 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (Color online) Computed in-plane and cross-plane thermal conductivity of Si/Ge superlattices as a function of superlattice period (Å) at 300 K. Inset shows the computed thermal conductivity of superlattices with perfect interfaces from Ref. 22 at the same temperature.

Save / Share:

Works referenced in this record:

Computation of thermal conductivity of Si/Ge superlattices by molecular dynamics techniques
journal, October 2000


Role of Disorder and Anharmonicity in the Thermal Conductivity of Silicon-Germanium Alloys: A First-Principles Study
journal, January 2011


Intrinsic lattice thermal conductivity of semiconductors from first principles
journal, December 2007

  • Broido, D. A.; Malorny, M.; Birner, G.
  • Applied Physics Letters, Vol. 91, Issue 23
  • DOI: 10.1063/1.2822891

Interface roughness in Ge/Si superlattices
journal, July 1993

  • Headrick, R. L.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 11, Issue 4
  • DOI: 10.1116/1.586961

Thermal conductivity of symmetrically strained Si/Ge superlattices
journal, September 2000

  • Borca-Tasciuc, Theodorian; Liu, Weili; Liu, Jianlin
  • Superlattices and Microstructures, Vol. 28, Issue 3
  • DOI: 10.1006/spmi.2000.0900

Phonon superlattice transport
journal, November 1997


Isotope scattering of dispersive phonons in Ge
journal, January 1983


Coherent Phonon Heat Conduction in Superlattices
journal, November 2012


Heat transport in silicon from first-principles calculations
journal, August 2011


Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation
journal, May 2007

  • Belkin, Mikhail A.; Capasso, Federico; Belyanin, Alexey
  • Nature Photonics, Vol. 1, Issue 5
  • DOI: 10.1038/nphoton.2007.70

High Thermal Conductivity in Short-Period Superlattices
journal, December 2011

  • Garg, Jivtesh; Bonini, Nicola; Marzari, Nicola
  • Nano Letters, Vol. 11, Issue 12, p. 5135-5141
  • DOI: 10.1021/nl202186y

Thermal conductivity of Si–Ge superlattices
journal, June 1997

  • Lee, S. -M.; Cahill, David G.; Venkatasubramanian, Rama
  • Applied Physics Letters, Vol. 70, Issue 22
  • DOI: 10.1063/1.118755

Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures
journal, September 1963


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Phonon group velocity and thermal conduction in superlattices
journal, July 1999

  • Tamura, Shin-ichiro; Tanaka, Yukihiro; Maris, Humphrey J.
  • Physical Review B, Vol. 60, Issue 4
  • DOI: 10.1103/PhysRevB.60.2627

Lattice thermal conductivity in superlattices: molecular dynamics calculations with a heat reservoir method
journal, December 2003


Effect of interfacial species mixing on phonon transport in semiconductor superlattices
journal, February 2009


X-ray scattering analysis of interface roughness and diffusion
journal, May 1998

  • Baribeau, J. -M.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 16, Issue 3
  • DOI: 10.1116/1.589941

Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices
journal, June 1998


Perturbation expansion of variational principles at arbitrary order
journal, August 1995


Phonon Wave Heat Conduction in Thin Films and Superlattices
journal, November 1999


Anharmonic Phonon Lifetimes in Semiconductors from Density-Functional Perturbation Theory
journal, August 1995


Vibrations of a mixed crystal: Neutron scattering from Ni 55 Pd 45
journal, August 1974


Ab initio calculation of phonon dispersions in II-VI semiconductors
journal, February 1993


Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
journal, May 1997


Thermal Diffusivity Measurement of GaAs/AlGaAs Thin-Film Structures
journal, May 1994

  • Chen, G.; Tien, C. L.; Wu, X.
  • Journal of Heat Transfer, Vol. 116, Issue 2
  • DOI: 10.1115/1.2911404

Green’s-function approach to linear response in solids
journal, May 1987


Theory of interface scattering of phonons in superlattices
journal, October 2010


Thin-film thermoelectric devices with high room-temperature figures of merit
journal, October 2001

  • Venkatasubramanian, Rama; Siivola, Edward; Colpitts, Thomas
  • Nature, Vol. 413, Issue 6856, p. 597-602
  • DOI: 10.1038/35098012

Lattice thermal conductivity of silicon from empirical interatomic potentials
journal, July 2005


Ab initio calculation of the linewidth of various phonon modes in germanium and silicon
journal, April 2003


Microscale Heat Conduction in Dielectric Thin Films
journal, February 1993


Structure and phase stability of Ga x In 1 x P solid solutions from computational alchemy
journal, June 1994


Phonon dispersions in Ga x Al 1 x As alloys
journal, July 1990

  • Baroni, Stefano; de Gironcoli, Stefano; Giannozzi, Paolo
  • Physical Review Letters, Vol. 65, Issue 1
  • DOI: 10.1103/PhysRevLett.65.84

Heat transport in silicon from first principles calculations
text, January 2011


Works referencing / citing this record:

Thermoelectric Energy Harvesting for Powering Wearable Electronics
book, September 2017

  • Francioso, Luca; Pascali, Chiara De
  • Thermoelectric Energy Conversion: Basic Concepts and Device Applications
  • DOI: 10.1002/9783527698110.ch10

First-principles Modeling of Thermal Transport in Materials: Achievements, Opportunities, and Challenges
journal, December 2019

  • Ma, Tengfei; Chakraborty, Pranay; Guo, Xixi
  • International Journal of Thermophysics, Vol. 41, Issue 1
  • DOI: 10.1007/s10765-019-2583-4

Phonon wave interference and thermal bandgap materials
journal, June 2015


On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective
journal, February 2016


Impeding phonon transport through superlattices of organic–inorganic halide perovskites
journal, January 2017

  • Singh, Rahul; Balasubramanian, Ganesh
  • RSC Advances, Vol. 7, Issue 59
  • DOI: 10.1039/c7ra06794a

Coherent control of thermal phonon transport in van der Waals superlattices
journal, January 2018

  • Guo, Ruiqiang; Jho, Young-Dahl; Minnich, Austin J.
  • Nanoscale, Vol. 10, Issue 30
  • DOI: 10.1039/c8nr02150c

First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene
journal, January 2015

  • Gu, Xiaokun; Yang, Ronggui
  • Journal of Applied Physics, Vol. 117, Issue 2
  • DOI: 10.1063/1.4905540

Universal features of phonon transport in nanowires with correlated surface roughness
journal, March 2015

  • Maurer, L. N.; Aksamija, Z.; Ramayya, E. B.
  • Applied Physics Letters, Vol. 106, Issue 13
  • DOI: 10.1063/1.4916962

Two-dimensional MoS 2 -MoSe 2 lateral superlattice with minimized lattice thermal conductivity
journal, October 2018

  • Ding, Guangqian; He, Junjie; Gao, G. Y.
  • Journal of Applied Physics, Vol. 124, Issue 16
  • DOI: 10.1063/1.5051067

Towards ultimate impedance of phonon transport by nanostructure interface
journal, January 2019

  • Ohnishi, Masato; Shiomi, Junichiro
  • APL Materials, Vol. 7, Issue 1
  • DOI: 10.1063/1.5055570

Cross-plane thermal conduction in superlattices: Impact of multiple length scales on phonon transport
journal, January 2019

  • Malhotra, Abhinav; Kothari, Kartik; Maldovan, Martin
  • Journal of Applied Physics, Vol. 125, Issue 4
  • DOI: 10.1063/1.5065904

Ab initio based investigation of thermal transport in superlattices using the Boltzmann equation: Assessing the role of phonon coherence
journal, February 2019

  • Ye, Erika; Minnich, Austin J.
  • Journal of Applied Physics, Vol. 125, Issue 5
  • DOI: 10.1063/1.5075481

Specular reflection leads to maximum reduction in cross-plane thermal conductivity
journal, June 2019

  • Maldovan, Martin
  • Journal of Applied Physics, Vol. 125, Issue 22
  • DOI: 10.1063/1.5092341

Perspective on ab initio phonon thermal transport
journal, August 2019

  • Lindsay, Lucas; Katre, Ankita; Cepellotti, Andrea
  • Journal of Applied Physics, Vol. 126, Issue 5
  • DOI: 10.1063/1.5108651

Effects of Aperiodicity and Roughness on Coherent Heat Conduction in Superlattices
journal, October 2015


Advances in the measurement and computation of thermal phonon transport properties
journal, January 2015


Phononic thermal conductivity in silicene: the role of vacancy defects and boundary scattering
journal, March 2018

  • Barati, M.; Vazifehshenas, T.; Salavati-fard, T.
  • Journal of Physics: Condensed Matter, Vol. 30, Issue 15
  • DOI: 10.1088/1361-648x/aab422

Mode confinement, interface mass-smudging, and sample length effects on phonon transport in thin nanocomposite superlattices
journal, December 2018

  • Srivastava, G. P.; Thomas, Iorwerth O.
  • Journal of Physics: Condensed Matter, Vol. 31, Issue 5
  • DOI: 10.1088/1361-648x/aaf4c4

Cross-plane heat conduction in III–V semiconductor superlattices
journal, June 2019

  • Kothari, Kartik; Malhotra, Abhinav; Maldovan, Martin
  • Journal of Physics: Condensed Matter, Vol. 31, Issue 34
  • DOI: 10.1088/1361-648x/ab2172

The impact of hydrogenation on the thermal transport of silicene
journal, January 2017


Distinguishing between spatial coherence and temporal coherence of phonons
journal, June 2017


Revisiting PbTe to identify how thermal conductivity is really limited
journal, May 2018


Designing Nanostructures for Phonon Transport via Bayesian Optimization
journal, May 2017


Design and experimental analysis of a solar thermoelectric heating, ventilation, and air conditioning system as an integral element of a building envelope
journal, September 2018

  • Ahmad Gondal, Irfan
  • Building Services Engineering Research and Technology, Vol. 40, Issue 2
  • DOI: 10.1177/0143624418814067

Nanocomposites for thermoelectrics and thermal engineering
journal, September 2015


Subamorphous Thermal Conductivity of Crystalline Half-Heusler Superlattices
text, January 2018


Subamorphous Thermal Conductivity of Crystalline Half-Heusler Superlattices
text, January 2018


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.