DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction

Abstract

The role of Cu-ion doping in α-MnO2 electrocatalysts for the oxygen reduction reaction in alkaline electrolyte was investigated. Copper doped α-MnO2 nanowires (Cu-α-MnO2) were prepared with varying amounts of Cu2+ using a solvothermal method. The electrocatalytic dataindicates that Cu-α-MnO2 nanowires have higher terminal current densities, enhanced kinetic rate constants, and improved charge transfer resistances that trend with Cu-content, exceeding values attained by α-MnO2 alone. The observed improvement in catalytic behavior correlates with an increase in Mn3+ content for the Cu-α-MnO2 nanowires. The Mn3+/Mn4+ couple is themediator for the rate-limiting redox driven O2-/OH- exchange. It is proposed that O2 adsorbs viaan axial site (the eg orbital on the Mn3+ d4 ion) at the surface, or at edge defects, of the nanowireand that the increase in covalent nature of the nanowire with Cu-ion doping leads to stabilization of O2 adsorbates and faster rates of reduction. This work is applicable to other manganese oxide electrocatalysts and shows for the first time there is a correlation for manganese oxides between electrocatalytic activity for the ORR in alkaline electrolyte and an increase in Mn3+ character of the oxide.

Authors:
 [1];  [1];  [1];  [2];  [2];  [3];  [4]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Materials, Devices & Energy Technologies
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Materials Characterization & Performance
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Advanced Materials Laboratory
  4. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Physics based Microsystems
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1140890
Report Number(s):
SAND2014-1394J
Journal ID: ISSN 1932-7447; 503570
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 118; Journal Issue: 31; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Davis, Danae J., Lambert, Timothy N., Vigil, Julian A., Rodriguez, Mark A., Brumbach, Michael T., Coker, Eric N., and Limmer, Steven J. Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction. United States: N. p., 2014. Web. doi:10.1021/jp5039865.
Davis, Danae J., Lambert, Timothy N., Vigil, Julian A., Rodriguez, Mark A., Brumbach, Michael T., Coker, Eric N., & Limmer, Steven J. Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction. United States. https://doi.org/10.1021/jp5039865
Davis, Danae J., Lambert, Timothy N., Vigil, Julian A., Rodriguez, Mark A., Brumbach, Michael T., Coker, Eric N., and Limmer, Steven J. Wed . "Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction". United States. https://doi.org/10.1021/jp5039865. https://www.osti.gov/servlets/purl/1140890.
@article{osti_1140890,
title = {Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction},
author = {Davis, Danae J. and Lambert, Timothy N. and Vigil, Julian A. and Rodriguez, Mark A. and Brumbach, Michael T. and Coker, Eric N. and Limmer, Steven J.},
abstractNote = {The role of Cu-ion doping in α-MnO2 electrocatalysts for the oxygen reduction reaction in alkaline electrolyte was investigated. Copper doped α-MnO2 nanowires (Cu-α-MnO2) were prepared with varying amounts of Cu2+ using a solvothermal method. The electrocatalytic dataindicates that Cu-α-MnO2 nanowires have higher terminal current densities, enhanced kinetic rate constants, and improved charge transfer resistances that trend with Cu-content, exceeding values attained by α-MnO2 alone. The observed improvement in catalytic behavior correlates with an increase in Mn3+ content for the Cu-α-MnO2 nanowires. The Mn3+/Mn4+ couple is themediator for the rate-limiting redox driven O2-/OH- exchange. It is proposed that O2 adsorbs viaan axial site (the eg orbital on the Mn3+ d4 ion) at the surface, or at edge defects, of the nanowireand that the increase in covalent nature of the nanowire with Cu-ion doping leads to stabilization of O2 adsorbates and faster rates of reduction. This work is applicable to other manganese oxide electrocatalysts and shows for the first time there is a correlation for manganese oxides between electrocatalytic activity for the ORR in alkaline electrolyte and an increase in Mn3+ character of the oxide.},
doi = {10.1021/jp5039865},
journal = {Journal of Physical Chemistry. C},
number = 31,
volume = 118,
place = {United States},
year = {Wed Jul 09 00:00:00 EDT 2014},
month = {Wed Jul 09 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 108 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

New multi-electron high capacity anodes based on nanoparticle vanadium phosphides
journal, January 2011

  • Lambert, Timothy N.; Davis, Danae J.; Limmer, Steven J.
  • Chemical Communications, Vol. 47, Issue 34
  • DOI: 10.1039/c1cc13141a

Poly(3,4-ethylenedioxythiphene) (PEDOT)-Modified Anodes: Reduced Methanol Crossover in Direct Methanol Fuel Cells
journal, May 2010

  • Stanis, Ronald J.; Lambert, Timothy N.; Yaklin, Melissa A.
  • Energy & Fuels, Vol. 24, Issue 5
  • DOI: 10.1021/ef100034x

Graphene–Ni–α-MnO2 and –Cu–α-MnO2 nanowire blends as highly active non-precious metal catalysts for the oxygen reduction reaction
journal, January 2012

  • Lambert, Timothy N.; Davis, Danae J.; Lu, Wei
  • Chemical Communications, Vol. 48, Issue 64
  • DOI: 10.1039/c2cc32971a

Lithographically Defined Three-Dimensional Graphene Structures
journal, March 2012

  • Xiao, Xiaoyin; Beechem, Thomas E.; Brumbach, Michael T.
  • ACS Nano, Vol. 6, Issue 4, p. 3573-3579
  • DOI: 10.1021/nn300655c

Three dimensional nickel–graphene core–shell electrodes
journal, January 2012

  • Xiao, Xiaoyin; Michael, Joseph R.; Beechem, Thomas
  • Journal of Materials Chemistry, Vol. 22, Issue 45, p. 23749-23754
  • DOI: 10.1039/c2jm35506j

Silver-Graphene Nanoribbon Composite Catalyst for the Oxygen Reduction Reaction in Alkaline Electrolyte
journal, October 2013

  • Davis, Danae J.; Raji, Abdul-Rahman O.; Lambert, Timothy N.
  • Electroanalysis, Vol. 26, Issue 1
  • DOI: 10.1002/elan.201300254

Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts
journal, January 2012

  • Cheng, Fangyi; Chen, Jun
  • Chemical Society Reviews, Vol. 41, Issue 6, p. 2172-2192
  • DOI: 10.1039/c1cs15228a

Nanostructured Metal-Free Electrochemical Catalysts for Highly Efficient Oxygen Reduction
journal, August 2012


Strongly Coupled Inorganic/Nanocarbon Hybrid Materials for Advanced Electrocatalysis
journal, January 2013

  • Liang, Yongye; Li, Yanguang; Wang, Hailiang
  • Journal of the American Chemical Society, Vol. 135, Issue 6
  • DOI: 10.1021/ja3089923

Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction
journal, February 2009


Carbon-air electrode with regenerative short time overload capacity: Part 1. Effect of manganese dioxide
journal, November 1973

  • Żółtowski, P.; Dražić, D. M.; Vorkapić, L.
  • Journal of Applied Electrochemistry, Vol. 3, Issue 4
  • DOI: 10.1007/BF00613033

MnO 2 -Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media
journal, February 2010

  • Cheng, Fangyi; Su, Yi; Liang, Jing
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm901698s

Shape-Controlled Synthesis of MnO 2 Nanostructures with Enhanced Electrocatalytic Activity for Oxygen Reduction
journal, December 2009

  • Xiao, Wei; Wang, Deli; Lou, Xiong Wen
  • The Journal of Physical Chemistry C, Vol. 114, Issue 3
  • DOI: 10.1021/jp909386d

Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media
journal, May 2006

  • Lima, Fabio H. B.; Calegaro, Marcelo L.; Ticianelli, Edson A.
  • Journal of Electroanalytical Chemistry, Vol. 590, Issue 2
  • DOI: 10.1016/j.jelechem.2006.02.029

Electrochemical Characterization of Catalytic Activities of Manganese Oxides to Oxygen Reduction in Alkaline Aqueous Solution
journal, January 2002

  • Mao, Lanqun; Sotomura, Tadashi; Nakatsu, Kenichi
  • Journal of The Electrochemical Society, Vol. 149, Issue 4
  • DOI: 10.1149/1.1461378

The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution
journal, October 2003


Enhancing Electrocatalytic Oxygen Reduction on MnO 2 with Vacancies
journal, January 2013

  • Cheng, Fangyi; Zhang, Tianran; Zhang, Yi
  • Angewandte Chemie International Edition, Vol. 52, Issue 9
  • DOI: 10.1002/anie.201208582

MnOx/C composites as electrode materials. I. Synthesis, XRD and cyclic voltammetric investigation
journal, December 1999


Electrocatalysis of oxygen reduction on CuxMn3−xO4 (1.0≤x≤1.4) spinel particles/polypyrrole composite electrodes
journal, October 2008


α-MnO2 nanorods grown in situ on graphene as catalysts for Li–O2 batteries with excellent electrochemical performance
journal, January 2012

  • Cao, Yong; Wei, Zhikai; He, Jiao
  • Energy & Environmental Science, Vol. 5, Issue 12
  • DOI: 10.1039/c2ee23475k

Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn–air batteries
journal, January 2011

  • Lee, Jang-Soo; Lee, Taemin; Song, Hyun-Kon
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee01942b

Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis
journal, September 2012


Reduction electrocatalytique de l'oxygene sur electrodes solides d'oxydes mixtes contenant des ions manganese. I. Cas des manganites de cuivre CuxMn3?xO4 (0
journal, September 1977

  • Nguyen Cong, H.; Chartier, P.; Brenet, J.
  • Journal of Applied Electrochemistry, Vol. 7, Issue 5
  • DOI: 10.1007/BF00615943

Effect of Copper Doping on the Crystal Structure and Morphology of 1D Nanostructured Manganese Oxides
journal, November 2007

  • Lee, Sun Hee; Park, Dae Hoon; Hwang, Seong-Ju
  • Journal of Nanoscience and Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1166/jnn.2007.080

Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study
journal, January 2001


Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Alpha manganese dioxide for lithium batteries: A structural and electrochemical study
journal, February 1992


Oxygen Reduction Properties of Bifunctional α-Manganese Oxide Electrocatalysts in Aqueous and Organic Electrolytes
journal, October 2011

  • Benbow, E. M.; Kelly, S. P.; Zhao, L.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 44
  • DOI: 10.1021/jp2055443

Durability of carbon-supported manganese oxide nanoparticles for the oxygen reduction reaction (ORR) in alkaline medium
journal, March 2008


Preparation and physical properties of the solid solutions Cu1+xMn1−xO2 ()
journal, September 2005


Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries
journal, June 2011

  • Suntivich, Jin; Gasteiger, Hubert A.; Yabuuchi, Naoaki
  • Nature Chemistry, Vol. 3, Issue 7, p. 546-550
  • DOI: 10.1038/nchem.1069

Anomalous Pseudocapacitive Behavior of a Nanostructured, Mixed-Valent Manganese Oxide Film for Electrical Energy Storage
journal, June 2012

  • Song, Min-Kyu; Cheng, Shuang; Chen, Haiyan
  • Nano Letters, Vol. 12, Issue 7
  • DOI: 10.1021/nl300984y

Nanostructured manganese oxides and their composites with carbon nanotubes as electrode materials for energy storage devices
journal, January 2008

  • Subramanian, V.; Zhu, Hongwei; Wei, Bingqing
  • Pure and Applied Chemistry, Vol. 80, Issue 11
  • DOI: 10.1351/pac200880112327

Charge Storage Mechanism of MnO 2 Electrode Used in Aqueous Electrochemical Capacitor
journal, August 2004

  • Toupin, Mathieu; Brousse, Thierry; Bélanger, Daniel
  • Chemistry of Materials, Vol. 16, Issue 16
  • DOI: 10.1021/cm049649j

Influence of Microstucture on the Charge Storage Properties of Chemically Synthesized Manganese Dioxide
journal, September 2002

  • Toupin, Mathieu; Brousse, Thierry; Bélanger, Daniel
  • Chemistry of Materials, Vol. 14, Issue 9
  • DOI: 10.1021/cm020408q

Valence-band x-ray photoelectron spectroscopic studies of manganese and its oxides interpreted by cluster and band structure calculations
journal, January 2002

  • Audi, Ahmad Ali; Sherwood, Peter M. A.
  • Surface and Interface Analysis, Vol. 33, Issue 3
  • DOI: 10.1002/sia.1211

Preparation of Manganese Oxide Thin Films by Electrolysis/Chemical Deposition and Electrochromism
journal, January 2001

  • Chigane, Masaya; Ishikawa, Masami; Izaki, Masanobu
  • Journal of The Electrochemical Society, Vol. 148, Issue 7
  • DOI: 10.1149/1.1376637

Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism
journal, January 2000

  • Chigane, Masaya; Ishikawa, Masami
  • Journal of The Electrochemical Society, Vol. 147, Issue 6
  • DOI: 10.1149/1.1393515

Core-level satellites and outer core-level multiplet splitting in Mn model compounds
journal, July 2000

  • Nelson, A. J.; Reynolds, John G.; Roos, Joseph W.
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 18, Issue 4
  • DOI: 10.1116/1.582302

A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation
journal, October 2010

  • Gorlin, Yelena; Jaramillo, Thomas F.
  • Journal of the American Chemical Society, Vol. 132, Issue 39, p. 13612-13614
  • DOI: 10.1021/ja104587v

XPS study of MnO oxidation
journal, January 1989


Scaling Relationships for Adsorption Energies on Transition Metal Oxide, Sulfide, and Nitride Surfaces
journal, June 2008

  • Fernández, Eva M.; Moses, Poul G.; Toftelund, Anja
  • Angewandte Chemie International Edition, Vol. 47, Issue 25
  • DOI: 10.1002/anie.200705739

Works referencing / citing this record:

Transition-Metal-Doped α-MnO 2 Nanorods as Bifunctional Catalysts for Efficient Oxygen Reduction and Evolution Reactions
journal, March 2018

  • Lübke, Mechthild; Sumboja, Afriyanti; McCafferty, Liam
  • ChemistrySelect, Vol. 3, Issue 9
  • DOI: 10.1002/slct.201702514

Tunable dielectric response and electronic conductivity of potassium-ion-doped tunnel-structured manganese oxides
journal, June 2018

  • He, Gaihua; Duan, Yuping; Song, Lulu
  • Journal of Applied Physics, Vol. 123, Issue 21
  • DOI: 10.1063/1.5021614

3D Hierarchical Core-Shell Nanostructured Arrays on Carbon Fibers as Catalysts for Direct Urea Fuel Cells
journal, October 2017

  • Senthilkumar, N.; Gnana kumar, G.; Manthiram, A.
  • Advanced Energy Materials, Vol. 8, Issue 6
  • DOI: 10.1002/aenm.201702207

CuCo Bimetallic Oxide Quantum Dot Decorated Nitrogen-Doped Carbon Nanotubes: A High-Efficiency Bifunctional Oxygen Electrode for Zn-Air Batteries
journal, July 2017

  • Cheng, Hui; Li, Mei-Ling; Su, Chang-Yuan
  • Advanced Functional Materials, Vol. 27, Issue 30
  • DOI: 10.1002/adfm.201701833

Understanding the crucial role of local crystal order in the electrocatalytic activity of crystalline manganese oxide
journal, January 2018

  • Lee, Jang Mee; Patil, Sharad B.; Kang, Bohyun
  • Journal of Materials Chemistry A, Vol. 6, Issue 26
  • DOI: 10.1039/c8ta00502h

MnO 2 ‐Mediated Synthesis of Mn 3 O 4 @CaMn 7 O 12 Core@Shell Nanorods for Electrocatalytic Oxygen Reduction Reaction
journal, September 2018


Boron-doped graphene-supported manganese oxide nanotubes as an efficient non-metal catalyst for the oxygen reduction reaction
journal, January 2020

  • Sookhakian, M.; Ullah, Habib; Mat Teridi, Mohd Asri
  • Sustainable Energy & Fuels, Vol. 4, Issue 2
  • DOI: 10.1039/c9se00775j

Review—Recent Progress in Electrocatalysts for Oxygen Reduction Suitable for Alkaline Anion Exchange Membrane Fuel Cells
journal, January 2015

  • He, Qinggang; Cairns, Elton J.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0551514jes

Nanostructured MnO2 as Electrode Materials for Energy Storage
journal, November 2017

  • Julien, Christian M.; Mauger, Alain
  • Nanomaterials, Vol. 7, Issue 11, p. 396
  • DOI: 10.3390/nano7110396

Electronic and Defective Engineering of Electrospun CaMnO 3 Nanotubes for Enhanced Oxygen Electrocatalysis in Rechargeable Zinc-Air Batteries
journal, May 2018

  • Peng, Shengjie; Han, Xiaopeng; Li, Linlin
  • Advanced Energy Materials, Vol. 8, Issue 22
  • DOI: 10.1002/aenm.201800612

Enhanced electrochemical performance by facile oxygen vacancies from lower valence-state doping for ramsdellite-MnO 2
journal, January 2015

  • Chen, Chi; Xu, Kui; Ji, Xiao
  • Journal of Materials Chemistry A, Vol. 3, Issue 23
  • DOI: 10.1039/c5ta01930c

Transition metal oxide-based oxygen reduction reaction electrocatalysts for energy conversion systems with aqueous electrolytes
journal, January 2018

  • Xue, Yejian; Sun, Shanshan; Wang, Qin
  • Journal of Materials Chemistry A, Vol. 6, Issue 23
  • DOI: 10.1039/c7ta10569j

One-pot achievement of MnO 2 /Fe 2 O 3 nanocomposites for the oxygen reduction reaction with enhanced catalytic activity
journal, January 2019

  • Jiang, Lingling; Zhang, Guodong; Li, Dehua
  • New Journal of Chemistry, Vol. 43, Issue 43
  • DOI: 10.1039/c9nj04317a

Delafossite CuMnO 2 as an Efficient Bifunctional Oxygen and Hydrogen Evolution Reaction Electrocatalyst for Water Splitting
journal, January 2019

  • Mao, Lingbo; Mohan, Swati; Mao, Yuanbing
  • Journal of The Electrochemical Society, Vol. 166, Issue 6
  • DOI: 10.1149/2.1181906jes

Effectiveness of phase- and morphology-controlled MnO 2 nanomaterials derived from flower-like δ-MnO 2 as alternative cathode catalyst in microbial fuel cells
journal, January 2019

  • Valipour, Alireza; Hamnabard, Nazanin; Meshkati, Seyed Mohammad Hadi
  • Dalton Transactions, Vol. 48, Issue 16
  • DOI: 10.1039/c9dt00520j

Stirring-assisted hydrothermal synthesis of ultralong α-MnO 2 nanowires for oxygen reduction reaction
journal, January 2016

  • Lei, Kaixiang; Cong, Liang; Fu, Xiaorui
  • Inorganic Chemistry Frontiers, Vol. 3, Issue 7
  • DOI: 10.1039/c6qi00056h

Chestnut-like copper cobalt phosphide catalyst for all-pH hydrogen evolution reaction and alkaline water electrolysis
journal, January 2019

  • Yan, Liang; Zhang, Bing; Zhu, Junlu
  • Journal of Materials Chemistry A, Vol. 7, Issue 23
  • DOI: 10.1039/c9ta03686e

Water properties under nano-scale confinement
journal, June 2019