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We present an improved first-principles description of melting under pressure based on thermody-
namic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC)
treatments of the system. The method is applied to address the longstanding discrepancy between
density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the
melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional
DFT methods. The calculations show excellent agreement with data below 20 GPa and that the
high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, a finding

in stark contrast to DAC data.

The high pressure melt line of simple materials carries
great significance in both purely theoretical and in prac-
tical applications. For instance, the rapid decrease fol-
lowed by suspected increase in the melting temperature
of lithium under pressure is a bellweather for the complex
series of solid phases that exist at lower temperatures.[1]
Furthermore, the onset of melt triggers a dramatic loss of
mechanical strengh of a material, with significant changes
in dynamic behavior following. In fact, the point where
a material melts under shock compression is one of the
key properties that can distinguish between possible sce-
narios for planetary accretion.[2] Although the most ver-
satile experimental technique for probing high pressure
melting behavior, diamond anvil cell (DAC) experiments,
has provided a wealth of data, it has also been a source of
controversy. Important examples exist in the literature
of melt lines showing an anomalous change in slope under
pressure that were contradicted by either shock experi-
ments or later DAC experiments.[3, 4] An as yet unchal-
lenged melt line of this type is exhibited by xenon and
other noble gases - which are of particular importance
due to their inert nature. The high pressure behavior of
the noble gases is a fundamental test of the DAC method-
ology and as such deserves special scrutiny. In this letter,
we specifically consider the behavior of xenon and find
that the high-pressure melt curve is well described by a
traditional melting curve.

As aluded to above, the experimentally obtained melt-
ing curve for xenon exhibits an interesting feature when
probed in the diamond anvil cell, abruptly flattening
out at pressures above 25 GPa.[5]. The observation
prompted much theoretical attention, including apply-
ing quantum mechanical simulation techniques to the
problem.[6] These techniques, headlined by density func-
tional theory (DFT), are uniquely suited to the study of
extreme conditions as their fundamental approximations
are not affected by the presence of temperature or pres-
sure: if a calculation is accurate near ambient conditions,
the method is also likely to be accurate at high pressure.
DFT applied to xenon finds a Lindemann like melt curve
in contrast to the experiments.[6]

The accuracy of DFT calculations of noble gases, how-
ever, is not to be taken for granted since fundamen-
tal uncertainties remain regarding calculations of sys-
tems where van der Waals interactions are significant.
Standard semi-local functionals such as the local den-
sity approximation (LDA) tend to over-bind the noble
gases due to a spurious self interaction of the electrons
in regions of low density. Improved functionals such as
AMO5[7] remove this self-interaction, but as a result do
not bind noble gas solids at all. Despite much progress in
the area of dispersion corrected density functional theory
[8], cases involving the transition where dispersion dom-
inated bonding gives way to covelent-or metallic bond-
ing remains a challenge. Xenon is a canonical example
of this effect and as a result its behavior is greatly af-
fected by pressure. Xenon turns metallic under moderate
shock compression[9] and although xenon is a narrow-
range cryogenic liquid at normal pressure with melting
and boiling points of 161.4 K and 165.0 K, respectively,
the melting point at 20 GPa is above 2500 K.

These significant theoretical challenges necessitate the
application of a complementary technique whose approxi-
mations are not tied to the local behavior of the electrons.
A promising candiate from this point of view is diffusion
quantum Monte Carlo (DMC).[10] Whereas the approxi-
mation made in DF'T calculations requires the considera-
tion of an effective Hamiltonian, DMC treats the Hamil-
tonian exactly. Therefore, DMC can accurately study
van der Waals interactions and has been successfully ap-
plied to lighter noble gas solids [11] and the interactions
between filled shell molecules.[12, 13]

In order to thoroughly investigate the performance of
DMC for xenon, we focused on the three fundamental
approximations that would be necessary in the calcula-
tions. These approximations are, the pseudopotential
approximation that is necessary for computational effi-
ciency, the fixed node approximation which is necessary
to mitigate the fermion sign problem and the finite size
approximation where calculations on modest sized su-
percells are used to determine properties xenon in the
thermodynamic limit.
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FIG. 1. (color online) Energy of a unit cell of FCC xenon
calculated with DFT and DMC. The dotted lines correspond
to Vinet fits to the DFT calculations. The solid lines corre-
spond to Vinet fits to the DMC calculations. The triangles
correspond to DFT or DMC simulations based on the LDA
and the circles DFT or DMC based on AMO5.

As a test of these approximations, the energy versus
volume for the FCC crystal is used as a benchmark. Cal-
culations of a 32 atom supercell, using the finite size cor-
rection methods employed in the rest of the paper with
two different starting points are considered. Firstly pseu-
dopotentials and nodal surfaces from the LDA are used
as input to the DMC calculations. Then the processes is
repeated with pseudopotentials and nodal surfaces from
AMO5, allowing a sensitivity test to the form of these
approximations.

The results of this test are shown in Figl. We find
that the DMC results are independent of the trial wave-
functions and pseudopotentials to the level required for
this work. Fitting the DMC energy versus volume curve
with a Vinet form[14] gives a lattice constant varying by
only 0.25% + 0.61% when changing from LDA to AMO05
trial wavefunctions and a bulk modulus varying by only
0.4% =+ 0.8%. For this reason we conclude the nodal and
pseudopotential approximations are small for these DMC
calculations of xenon.

Despite this evidence that DMC is ideally suited for the
calculation of the properties of xenon under pressure, one
important wrinkle remains. Direct calculations of melt-
ing are not currently feasible with DMC for anything
beyond the lightest of elements. Fortunately, a solution
to this problem has recently been proposed: thermody-
namic integration can be used to connect the accuracy
of the DMC calculations with the speed and efficiency
of DFT based molecular dynamics.[15] Using this tech-
nique, Sola and Alfé found that DMC calculations fa-
vored the solid phase in calculations of the melting of
iron under pressure. This result was in disagreement with
DAC experiments.[16] A potential concern with this re-
sult is that QMC methods (both VMC and DMC) being

variational tend to produce relatively lower total energies
for more ordered states (in this case solids versus liquids).
This effect is because the trial wavefunctions used tend to
be rather simple compared to the true many body wave-
functions and typically do not increase in complexity for
the less ordered phases. Thus simpler phases where the
wavefunction is closer to the many body wavefunction
tend to have a smaller positive fixed node error than that
for a more complex phase.

In light of this and because the approach is new, we
elected to null-test the method by calculating the melt-
ing temperature of aluminum at 120 GPa. This material
and condition were chosen because shock experiments,
diamond anvil cell experiments and DFT calculations all
agree as to the melting temperature[17]. If the QMC
free energies were biased towards the solid phase then
the melting temperature would be overestimated using
this method. Relative energies between the snapshots of
the same phase for aluminum agreed very well between
the DMC and DFT, giving confidence that the DFT dy-
namics were close to the DMC ones. Additionally, the
shift in free energy between the solid and liquid was very
small, 0.20240.100 meV /atom, leading to a temperature
shift of only 2.3 + 1.2 K. This result is well within the
errors of the method and experimental accuracy for melt-
ing under pressure. Furthermore, this test shows that the
thermodynamic integration method does not suffer from
notable systematic errors when the DMC is performed
with a relatively simple trial wavefunction.

In applying this approach to the melting of xenon we
start by calculating the melting line at two points using
DFT based molecular dynamics. Specifically following
the work of Root et al.[18] we performed calculations
using VASP[19] within the AMO5[7] density functional.
We used two-phase coexistence simulations to establish
the relative free energies between the solid FCC and lig-
uid phases of the xenon at high pressure. Two densi-
ties were selected for these simulations, 7.27 g/cc and
10.0 g/cc. These simulations were performed in both
the NVE and NVT ensembles, using the consistency be-
tween the two to check that the technical parameters of
the simulations were converged. Indeed, we found that
for the higher density simulation, calculations with 214
xenon atoms found a melt temperature of 6000 K in the
NVT ensemble, but the NVE yielded a lower value. This
suggested that larger simulation cells were necessary and
upon consideration of cells doubled in size in the direc-
tion perpindicular to the interface (428 atoms) the results
agreed, yielding two points at which the Gibbs free en-
ergy of the two phases were equal: 24.4 GPa and 3000 K
for 7.27 g/cc and 74.4 GPa and 5600 K for 10.0 g/cc.

From this foundation, we followed Sola and Alfé [15]
adding refinements to the methodology to further reduce
the uncertainty. The change in free energy of a phase at
a given temperature and pressure is calculated by taking
snapshots of from long DFT based molecular dynamics



simulations and comparing the energy of those snapshots
to energies from DMC calculations. Using this informa-
tion, the change in the Helmholtz free energy of each
phase is found using a perturbation series of cumulants
in the energy difference as:
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where the k,,’s are cumulants of the difference in internal
energy between the DMC and DFT ensembles:
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or directly in terms of the partition function

AF = —kpT <e—AU/’fBT> (3)
A=0

where AU = UDMC — UDFT with UDMC and UDFT
the potential energies of the DMC and DFT systems
respectively and (), represents the thermal average in
the ensemble generated by the potential energy function
U()\) = NUpymc + (1 — /\)UDFT~ The approximation
above is valid when Upyc and Uppr are sufficiently
close so that the averages over all of state space can be
approximated using a few configurations sampled from
the ensemble fo the reference system. A necessary condi-
tion for this to be valid is that the higher order terms in
Eq. 1 are small and that the two approximations in Eq. 1
and Eq. 3 yield very similar answers. An example of this
methodology is found in Fig. 2. From this figure, it is ap-
parent that the total energies track each other well, again
suggesting that DF'T provides a faithful sampling of the
energy landscape. Quantitatively, Eq.1 bears this out,
with the second term in the cumulant expansion being
1.5% of the first one for the solid at 7.27 g/cc and 1.4%
for the liquid. The bottom panel in Fig. 2 shows the dif-
ferences between the solid and the liquid snapshots after
the average DMC-DFT energy difference for the solid is
subtracted for all points. This shows visually that the
DMC energy is on average 35.0 meV /atom larger for the
liquid snapshots than the corresponding DFT.

Once the change in the Helmholtz free energy is calcu-
lated, the change to the melting temperature produced
by DFT can be found using the formula
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Sprr
where the superscript [s indicates differences between
liquid and solid, S%; is the DFT entropy of melt-
ing. The difference in the Gibbs free energy is AG =~
AF — V Ap? /2Bt with Br the isothermal bulk modulus
and Ap the change in pressure as the potential energy is
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FIG. 2. (color online) Top panel: DMC energies correspond-
ing to configurations representative of solid (blue triangles)
and liquid (red squares) xenon, generated with QMD on 108
atom systems. The solid lines connect DFT energies calcu-
lated on the same configurations. An independent offset is
added to the DMC and DFT calculations so that the average
energy of the solid snapshots in each method is 0. Bottom
panel: DMC-DFT energy differences for the same configura-
tions. The average DMC-DFT energy difference for the solid
is subtracted from all points. Lines represent the average of
the energy differences between DMC and DFT in the solid
and the liquid.

changed from Uppr to Up e at constant volume. In the
work of Sola and Alfé,[15] the corrections to the Gibbs
free energy are found to be small so that the value of AF
at constant V is also representative of AG at constant p.
Uncertainties in the size of the approximations made
in this approach may be removed by making a modifi-
cation to the procedure. Instead of performing a one
shot calculation of free energy at a single point in V, T
space, an entire isotherm can be evaluated. First, QMD
calculations are performed at several different densities
along the 3000K and 5600K isotherms centered around
the melt densities calculated with the two phase calcula-
tions. Using the relation at constant temperature that

Vi
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relative Helmholtz free energies in each phase may be
found. The two phase calculation allows for the relative
free energies between these phases to be set using the
Gibbs construction.

For the lower density case, these free energy curves
were augmented by a shift in the relative free energies
using the 30.1 meV per Xe found with the above tech-
niques. Assuming that this free energy shift will be con-
stant as a function of volume, the change in the melt line
can be found in two different ways. First, the change in
the melt temperature at constant pressure is found using
Eq. 4 since the additional thermodynamic information
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FIG. 3. (color online) Relative Helmholtz free energy of the
solid and liquid phases at 5600K as determined by DFT us-
ing two phase calculations to establish the melt pressure and
thermodynamic integration to find the relative free energies.
A common tangent to the QMC curves is also shown, estab-
lishing a new melt pressure of 66 GPa.

contained in the relative free energy in each phase allows
the isothermal bulk modulus and the change in entropy
upon melt to be calculated directly, yielding 82 GPa and
0.787 kp respectively. This assumption of a rigid shift in
the free energy renders the second term in the change in
the Gibbs free energy 0 because of a zero shift in pressure
from one theory to the next. Putting this all together,
gives a shift in the melt temperature to 3440 K at 24.4
GPa. Second, one can use a Gibbs construction on the
relative Helmholtz free energies and find a pressure shift
to a melt of 18.66 GPa at 3000 K.

Finally, and most importantly, we take into account
the effect of a change in pressure on the free energy dif-
ferences of the melt near 10 g/cc where the discrepancy
between theory and experiment is the largest. We here
use thermodynamic integration at three different densi-
ties, allowing for information about changes in the size of
the shift as a function of pressure to be considered, a no-
table effect in compressible materials like xenon. Doing
so, we found that the pressure changes by 9 GPa upon
switching from a DFT to a QMC ensemble while the
isothermal bulk modulus increases to 215 GPa. These
results are shown in Fig. 3, which shows how the relative
free energies of the solid and liquid are changed by the
thermodynamic integration. Now the full change in the
Gibbs free energy for each phase can be found, yielding
a melting temperature of 5810 K at 74.4 GPa. Had the
relative change in free energy from the thermodynamic
integration been assumed to be constant, this would have
yielded a higher melting temperature of 6130 K at 74.4
GPa. Also, a pressure shift can be found as above, yield-
ing a melting pressure of 66 GPa at 5600 K.

Taking these two points together with the well estab-
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FIG. 4. (color online) Melting temperature of xenon as a

function of pressure obtained with various theoretical and ex-
perimental techniques. The quantum Monte Carlo data is fit

with a Ketchin form: T(P) = a(1 + %)CefdP)[QO].

lished melting temperature at ambient pressure results
in a melt line shown in Fig.4. The net effect is to in-
crease the disagreement between the high pressure melt
line and the DAC experiments. A notional Ketchin melt
curve fitting these two high pressure points and the ambi-
ent pressure melting is shown in the figure. The melting
has been brought into better agreement with the DAC at
low pressures, but suggests that the flattening of the melt
curve at high pressures is not correct. These results for
xenon suggest that the high pressure DAC experiments
should be reexamined to rule out either surface effects
or non-hydrostatic stresses as the cause of the flat melt
line. This result might be achieved by exploiting a bulk
probe of the xenon structure such as x-ray diffraction
rather than the speckle field technique that was previ-
ously used[5].

In addition to this result on xenon, we have provided
validation of the thermodynamic integration approach to
using DMC[15] to inform high pressure melt boundaries
by performing a test of the method on aluminum. In
the process we extended the methodology, improving the
accuracy for compressible materials. This high accuracy
procedure can be used to further explore the melting be-
havior of a wide variety of materials, thereby contributing
to the ability of hydrodynamic simulations to predictively
model a wide range of phenomena from inertial confine-
ment fusion to planetary science.
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