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Privacy Vulnerability of
Published Anonymous Mobility Traces

Chris Y. T. Ma, David K. Y. Yau, Nung Kwan Yip, and Nageswara S. V. Rao

Abstract—Mobility traces of people and vehicles have been
collected and published to assist the design and evaluation of
mobile networks, such as large-scale urban sensing networks.
Although the published traces are often made anonymous in that
the true identities of nodes are replaced by random identifiers,
the privacy concern remains. This is because in real life, nodes
are open to observations in public spaces, or they may voluntarily
or inadvertently disclose partial knowledge of their whereabouts.
Thus, snapshots of nodes’ location information can be learned by
interested third parties, e.g., directly through chance/engineered
meetings between the nodes and their observers, or indirectly
through casual conversations or other information sources about
people. In this paper, we investigate how anadversary, when
equipped with a small amount of the snapshot information
termed as side information, can infer an extended view of
the whereabouts of avictim node appearing in an anonymous
trace. Our results quantify the loss of victim nodes’ privacy
as a function of the nodal mobility, the inference strategies of
adversaries, and any noise that may appear in the trace or
the side information. Generally, our results indicate that the
privacy concern is significant in that a relatively small amount of
side information is sufficient for the adversary to infer the true
identity (either uniquely or with high probability) of a victim in
a set of anonymous traces. For instance, an adversary is able
to identify the trace of 30%–50% of the victims when she has
collected 10 pieces of side information about a victim.

I. I NTRODUCTION

Mobility traces of people and vehicles have been collected
and published to assist the design and evaluation of mo-
bile networks. One example application of such networks
is urban sensing, where mobile nodes carried by ordinary
city residents or their vehicles are used to monitor various
events of interest in their city areas. Example activities include
traffic monitoring [25], road surface condition sensing [10],
chemical detection [28], and radiation detection [17]. This
type of large-coverage, everyday sensing is made possible by
advances in sensor technologies, which produce small form-
factor, low-power, low-cost, and multi-modal sensors thatcan
be readily embedded into widely adopted personal handheld
devices including smart phones. Clearly, mobility patterns of
potentialreal-world participants in these networks, including
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their correlations and interactions with each other, will have
profound effects on the network performance (e.g., coverage
and connectivity of a collaborative sensing network). Indeed,
researchers have found that existing synthetic movement mod-
els of mobile entities, such as pedestrians and different kinds
of vehicles, though attractive for their low cost and high
repeatability, generally fail to capture essential behaviors of
real users. Therefore, the use of synthetic traces in network
design can lead to wrong conclusions about network perfor-
mance (e.g., routing efficiency) in reality [19]. Hence, there are
increasing efforts to trace the locations of real users leading
to the public availabilities of many such traces through either
consolidated data portals such as Crawdad [7] or websites set
up by individual research groups [34].

In order to protect the privacy of participants in real user
traces, the true identity of each participant is often replaced by
a consistent, unique, and random identifier (not correlatedin
any way with the true user identity). Moreover, the precision
of the traces in the spatial and temporal domains can be often
reduced bycloakingtechniques such as reducing the resolution
of the recorded data or introducing noise deliberately in the
data. It is not clear, however, if these “anonymization” and
cloaking techniques are sufficient to protect the privacy ofthe
participants. This is because movements or whereabouts of
participants in public spaces can be openly observed by oth-
ers through chance/engineered meeting opportunities. Similar
location/movement information can also be inferred indirectly
from conversations, news articles, online social networks, or
web blogs, though the inference could be noisy. By gathering
one or a few such (possibly rough) snapshots of a participant’s
location over time, which we term asside information, an
adversary may be able to identify (either uniquely or with high
probability) the participant’s trace from a set of anonymous
traces. Hence, the complete whereabouts of the participant(the
victim) over an extended time duration will be revealed to the
adversary.

In this paper, we formulate the above privacy problem.
We develop analytically inference strategies that the adversary
may use to maximize its effectiveness in identifying one or
more victims under different system assumptions. We show
how the adversary can gainfully incorporate general world
knowledge – in the form of amovement modelaccounting for
global movement constraints and preferences – in its inference
strategies. We also quantify experimentally the loss of victim
nodes’ privacy (possibly as a process over time) as a function
of several important system parameters, including the nodal
mobility, the inference strategies of the adversaries, andany
noise that may appear in the traces or side information (due
to either the application of cloaking techniques or inherently
imprecise observations). Our contributions are two-fold.
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(1) We provide extensive analysis both theoretically and
experimentally to demonstrate that with the current practice
of capturing and publishing anonymous location traces of real
users, the concern exists that an adversary could identify the
traces of one or more victims in the published data with high
probability, by invoking a small amount of side information
about the participants. In particular, we present comprehensive
attack strategies available to the adversary when it collects
information about a victim’s movement either through direct
observations or indirect information sources, and show that
these attacks are effective in breaching privacy. We also
provide a mathematical framework to show the optimality of
specific attack strategies in that they utilize all the available
information in the most effective way.

(2) We give comprehensive experimental analysis to show
the differences between different real traces from the perspec-
tive of the privacy problem. Their different characteristics will
result in quite different performance under various privacy
attacks.

II. RELATED WORK

Privacy of published data sets has received much atten-
tion [2], [37], [3], [41], [23]. Sweeney [37] proposes a privacy
measure ofk-anonymity. Whenk-anonymity is satisfied, each
individual is indistinguishable from at leastk − 1 other indi-
viduals. Bayardo and Agrawal [3] propose a practical method
to identify a provably optimalk-anonymization of real census
data, or a “good” anonymization for general data, since the
general problem is NP-hard. The concept ofk-anonymization
does not capture the diversity of the anonymity set. To solve
the issue, Machanavajjhalaet al. [21] propose al-diversity
measureto ensure diversity in the published data.Li and
Li [20] propose at-closeness metric, which ensures that the
distance of a sensitive attribute’s distribution in one class is
no more than a thresholdt from that of the whole table. Xiao
and Tao [41] proposem-invarianceto limit the risk of privacy
disclosure in datarepublications, since potential correlations
among snapshots of data in the different publication instances
can be used to derive sensitive information.

Identification of users, or their attributes, who access
location-based services has been studied [14], [11], [15],[13],
[18], [24], [36], [35], [4]. Golle and Partridge [14] quantify
the likelihood of identifying an individual using her home and
working locations, and show that revealing at census block
level is able to identify most of the US working population.
Freudigeret al. [11] quantify the probability of identifying
the home or office location of a user based on the number of
queries issued to a server.

One basic technique to improve location privacy is to reduce
the spatial/temporal granularity of the location information
given to the service provider, while still supporting satisfactory
service quality [15], [13]. Hohet al. [18] devise a protection
method that releases user data only when certain privacy
constraints are met. Meyerowitz and Choudhury [24] propose
to send fake requests with real ones, in order to reduce one’s
ability to trace a mobile node over time. Shokriet al. [36],
[35] propose an evaluation framework for location-privacy
protection, assuming that the adversary knows the spatial
distribution or transition probabilities of each user between

locations. Chowet al. [4] use granularity reduction to provide
privacy in peer-to-peer systems that support location-based
services.

Approaches to improve the privacy of geo-located data
sets include data perturbation, data swapping, data general-
ization or granularity reduction, and data withholding. Abul
et al. [1] propose the use of space translations to achieve
(k, δ)-anonymity for databases of moving objects, whereδ

is the radius of a cylindrical volume representing the allowed
trajectory imprecision. Terrovitis and Mamoulis [39] use the
suppression of location information to achieve an acceptable
probability of privacy breach. Nergizet al. [29] use a notion
of k-anonymity that is specific to trajectories, and propose
a generalization method to enhance the privacy of published
trajectories.

Martin et al. [23] quantify how background knowledge
possessed by an attacker may impact privacy breach. They
express the background knowledge in a language, and pro-
vide an algorithm to determine the amount of disclosed
sensitive information in the worst case as a function of the
background knowledge. In a data mining context, Agrawak
and Srikant [2] propose a reconstruction method to build a
decision-tree classifier without accessing precise information
in individual data records, so that the data value distributions
can be reconstructed with sufficient accuracy. They also pro-
pose value-class memberships and value distortions as privacy
preservation techniques.

The literature above assumes that an attacker has limited
knowledge and power, and analyzes privacy and its protection
in application specific situations. We take a similar approach.
Our specific focus is on the privacy of anonymous mobility
traces as they are published in various public data portals [7],
[34]. Our analysis assumes basic spatial and temporal cloaking
techniques, since the basic protection can more easily ensure
the applicability of the data sets for diverse application sce-
narios, which befits the intention of the data portals. Please
see Section VII for a discussion.

Currently, differential privacy (DP) is an extremely active
research area. It is important because it adopts a strong notion
of privacy that does not limit the power of the attacker and
measures privacy loss by basic information metrics. Dwork
et al. [8] consider how much noise is needed to perturb
true answers from a statistical database, in order to preserve
privacy. They show that the extent of noise needed is pro-
portional to the sensitivity of the query function. Ho and
Ruan [16] propose to provide DP by dynamic sizing of grid
cells and addition of noise to data sets. Machanavajjhalaet
al. [22] use a modified form of DP to have the published
statistics match more closely with the actual statistics, without
breaching privacy. Rastogi and Nath [32] propose an algorithm
to ensure DP using transformation and encryption, such that
users can compute the amount of noise needed to perturb the
published data in a distributed manner, while keeping the noise
in the statistics obtained by the aggregator small. They mitigate
the problem that for time-series data, such as our mobility
traces, the amount of noise needed for standard DP approaches
will in the worst case grow linearly with the number of queries.
Despite its importance, DP’s assumptions about the use of the
data sets are fundamentally incompatible with our problem
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context. Please see Section VII for a discussion.

III. PROBLEM DEFINITION

We assume that a set of traces, each of which recording
intermittently the time and corresponding location of a mobile
node, are released to the public. We call a node that is included
in a trace set aparticipant in the trace set. The samples can
be collected using say a GPS-enabled device carried by the
participant, which reports the participant’s location andthe
corresponding time periodically to a data collector. The traces
are anonymous in that the true identity of a participant has
been replaced by a random and unique identifier. The true
node identity is not correlated in any way to the random
identifier, but the same true identity is always mapped to
the same random identifier. The times at which locations of
a participant are recorded in a trace are called thesampled
times. We assume that the recorded participant location at a
sampled time, sayt, is imprecise for anonymization purpose
as explained in Section I. Specifically, instead of recording the
precise point in spacep at which the node is located at timet,
the trace records a largercell enclosingp. For simplicity, we
assume that the cell is a square of dimensionx (in distance
units). The imprecision is higher ifx is higher, and vice versa.

There is anadversarywho tries to identify the complete
path histories of one or more participants (of known true
identities) from the anonymous traces. We call a node whose
whereabouts are being exposed avictim node. For the ad-
versary to achieve its purpose, we assume that it can collect
certain side informationabout one or more participants by
chance or effort through noisy real-world channels. Each piece
of side information gives the location of a participant at an
associated time instant, although the information may not
be exact. In practice, the side information may be obtained
through a number of practical means. First, nodes are open to
observations in public spaces. Hence, the adversary may obtain
the side informationdirectly through meeting the victim by
chance or engineered encounters. Direct side information may
be noisy due to imperfect vision or memory of the adversary
about the meeting. Second, nodes may disclose information
on their whereabouts either voluntarily or inadvertently.For
example, a casual conversation between Alice and Bob may
make references to where Alice was around 9 pm the night
before, or it may make reference to the whereabouts of another
person Charlie. Clearly, such location information might be
released through many other means, including published media
such as news articles or web blogs. Hence, the adversary
may also obtain the side informationindirectly, i.e., through
a channel other than direct encounter with the victim. Simi-
larly, the indirect information may be noisy due to imprecise
observations, memories, references, etc. In this paper, wewill
consider the following two attack scenarios.

A. Problem A: Passive adversary

In this problem setting, the adversary is given the complete
(anonymized) traces. The adversary’s goal is, given some
pieces of side information about a pre-determined but un-
known victim, to identify in some optimal fashion the com-
plete path history of the chosen victim. The key assumptions

are: (i) the adversary ispassivein the sense that it does not
actively go out to seek encounters with potential victims; (ii)
the side information given to the adversary contains noise.We
will consider two cases. In the first case (Problem A1), the
side information references time instants that coincide with
sampled times in the trace only. That is, if a piece of side
information refers to a participant’s location at timet, then
the set of traces must also contain a sampled location of some
participant att. In the second, more general case (Problem
A2), the side information may also reference time instants
between two consecutive sampled times in the set of traces.
We study the worst case scenario in whichall pieces of the side
information refer to times different from the sampled timesin
the set of traces. In either cases, we assume that the adversary
is “sophisticated” and will attempt to incorporate all known
information in its inference strategy, by employing some form
of Bayesian inferencing. We further assume that, in applying
the Bayesian inferencing, the adversary can make use of some
general knowledge it has about the world, including global
constraints on nodal movements imposed by (publicly known)
geography of the deployment area, and general movement
preferences of all the nodes viewed as an aggregate (but not
the individual preferences of specific nodes).

B. Problem B: Active adversary

In this section, the adversary isactive in the sense that
it obtains side information about participants by physically
encountering the participants. The complete trace historyis
still revealed to the adversary, but now in a real time and
gradual fashion, i.e., as time progresses, the adversary is
provided with the trace information together with the infor-
mation acquired up to the real time instants. The goal here
is to identify as many identity of the traces as possible.
Specifically, we will consider the following three forms of
the problem: (B1) The adversary is itself one of the mobile
nodes included in the set of traces (i.e., it is one of the
participants in the trace set); (B2) The adversary minimizes
its efforts by simply staying at one fixed location; (B3) The
adversary pre-determines a movement strategy to presumably
maximize the amount of useful side information it can obtain,
subject to the same physical movement constraints and speed
limits as the participant mobile nodes. However, we will
not consider the case in which the adversary may adapt its
movement strategy to prior information it has learned about
the potential victims. For example, after encountering a victim,
the adversary will not attempt to henceforth follow the victim.
This is reasonable if the objective of the adversary is to identify
as many trace identities as possible. In fact without further
given information, it is not clear if modifying the path can
improve the performance.

The goal in all of the scenarios in the above two problems
is to identify the victim’s trace from the published set based
on all the available (noisy) information. The results will be
presented in the most quantitative manner possible.

C. Notations and model assumptions

We first define some notations and general assumptions
about the a priori knowledge.
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Θ : The collection of all cell location IDs.

{Li}i=1,2,...N : The collection of all the traces of the
participants, each indexed by an anonymous indexi. N is the
total number of traces. Precisely, for eachi, Li is a function
of time Li : R+−→ Θ giving the ID of the cell visited by
participanti.

{sk}k=1,2,... : The sampled times at which the actual node
locations are published, i.e.,Li(sk) is the published location
ID of the cell visited by mobile nodei at timesk.

{tk}k=1,2,... : The time instants at which some noisy side
information about the victim’s locations are revealed.

R : The noisy side information of the victim. Specifically,
it is a map,R : {tk}k −→ Θ so thatR(tk) is the (corrupted)
location ID of the cell visited by the victim at timetk as
revealed to the adversary.

In order to concentrate on the key issue of privacy breach,
we further make the following assumptions:

(1) The sampled timessk ’s are equally spaced. In addition,
for Problem A1, we have{tk : k = 1, 2, . . .} ⊂ {sk : k =
1, 2, . . .}; For Problem A2, we have{tk : k = 1, 2, . . .} 6⊂
{sk : k = 1, 2, . . .}; then we assume that for eachtk, there
existsk̃ such thatsk̃ < tk < sk̃+1 and tk = 1

2 (sk̃ + sk̃+1).
(2) The noise in the side information in each revelation

instant is assumed to be some iid random variableZk’s of
some given distributionPrZ . Hence we have

R(tk) = Li∗(tk) + Zk, (1)

wherei∗ is the victim’s trace ID (which is of course not known
to the adversary).

(3) All the mobile nodes follow the same movement model
which is assumed to be Markovian. Hence the statistics of
the whole collection of traces can be completely described by
some one-step transition matrix{Pij}i,j∈Θ. The time interval
for the transition matrix is denoted byT . For the convenience
of later presentation, we setT to bes2 − s1 for Problem A1
and 1

2 (s2 − s1) for Problem A2. This matrix is either given
or estimated by some general world knowledge.

We take the time here to note that the last assumption
is clearly for simplification purposes. There are many well
known prediction, interpolation, and filtering algorithmsfor
(even non-Markovian) time series analysis (see for example
[12, Chapters 3, 8]). On the other hand, our simulation results
already produce robust results even for the non-Markovian real
traces. Hence we will not be side tracked by invoking the more
refined models. Instead, we will emphasize the implications
of general knowledge about nodal movements towards the
privacy issues.

IV. STRATEGIES OF THEADVERSARY

In this section, we give details of the possible strategies
used by the adversary for each of the attack scenarios listed
in Section III.

A. Strategies for A1 and A2

As noted before, the side information often contains noise.
The adversary thus needs to perform Bayesian inference or

use the maximum likelihood estimator (MLE) to make the
best guess. The goal is that givenR, find theLi that gives the
best match. The formulation of such a procedure is described
below. Given{R(tk)k=1,2,...}, compute

Pr(Li|{R(tk), k = 1, 2, . . .}) =
Pr(Li, R(tk), k = 1, 2, . . .)

Pr(R(tk), k = 1, 2, . . .)

=
Pr(R(tk), k = 1, 2, . . . |Li) Pr(Li)

PN

j=1
Pr(R(tk), k = 1, 2, . . . |Lj) Pr(Lj)

. (2)

The goal of the MLE is to findi which maximizes the
expression Eq. 2. Note that the denominator does not depend
on i. In addition, without any knowledge about how the victim
is chosen, we set the a priori distribution of the victim to be
uniform: P (Li) = 1

N
for i = 1, 2, . . . N . Hence the solution

of the MLE is given by:

max
i=1,2,...N

Pr(R(tk), k = 1, 2, . . . |Li). (3)

With the assumption of the noise model given in Eq. 1, the
expression Eq. 3 can be given in the following form:

Case A1.Because the noise is iid, we have

Pr(R(tk), k = 1, 2, . . . |Li) =
∏

k

PrZ(R(tk) − Li(tk)), (4)

where the location difference is computed using the Cartesian
distance between the two cells. Recall thatR(tk) − Li(tk)
equals the noise random variable in the perturbation process
give by Eq. 1.

Case A2.By the Markovian assumption of the movement
model, Eq. 3 can be given by:

Pr(R(tk), k = 1, 2, . . . |Li)

= Pr(R(tk), k = 1, 2, . . . |Li(sk), i = 1, 2, . . .)

=

∏

k

[

Pr(Li(sk̃+1)|R(tk)) × Pr(R(tk)|Li(sk̃))
]

∏

k

[

Pr(Li(sk̃+1)|Li(sk̃))
] . (5)

Recall that there exists añk such thatsk̃ < tk < sk̃+1 and
tk = 1

2 (sk̃ +sk̃+1). Hence (5) can be easily expressed in terms
of the transition matrixPij : the numerator involves transitions
between time intervals of lengthT and hence the matrixP ,
while the denominator involves intervals of length2T and
hence the matrixP 2.

The expression Eq. 4 can be greatly simplified if the noise
Zk’s takes on specific forms. For example,

(i) Gaussian random variablesN(0, σ2):

Pr(R(tk), k = 1, 2, . . . |Li)

= C exp

{

−
1

2σ2

∑

k

|R(tk) − Li(tk)|
2

}

, (6)

for some constantC. Hence the MLE is essentially the same
as the followingminimum squareapproach:

min
i

∑

k

∣

∣

∣
R(tk) − Li(tk)

∣

∣

∣

2

. (7)

(ii) Uniform Distribution with on the interval(− l
2 , l

2 ):

Pr(R(tk), k = 1, 2, . . . |Li) =
∏

k

1

l
χ(− l

2
, l
2
)(R(tk)−Li(tk)),

(8)



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY 20XX 5

whereχA(x, y) = 1 or 0 depending on ifx − y ∈ A or not.
Upon taking thelog of the above equation, we have

log Pr(R(tk), k = 1, 2, . . . |Li)

=
∑

k

log χ(− l
2
, l
2
)(R(tk) − Li(tk)) + (a constant). (9)

Optimizing the above expression is equivalent to identifying
the trace that has thelargest numberof sampled times such
that the trace location falls within a fixed range of the noisy
side information.

The above provides a rigorous mathematical formulation for
the Bayesian inferencing equipped with the side information.
On the other hand, the above also leads to some simplified
heuristic approaches for tackling the victim identification
problem. Qualitatively, they are all similar to the minimum
square approach but we find it a useful contribution to record
and compare their performances. In the following we consider
four strategies used by the adversary to identify the victim’s
trace from the published trace set. We first describe them for
caseA1:

(1) MLE Approach (MLE). This is the same as formu-
lation Eq. 4, i.e., thesimilarity value of tracei is given
by

∏

k PrZ(R(tk) − Li(tk)). The trace with themaximum
similarity value is declared to be the victim’s.

(2) Minimum Square Approach (MSQ). This is essentially
formulation Eq. 7, i.e., thesimilarity value of tracei is given

by −
∑

k

∣

∣

∣
R(tk)−Li(tk)

∣

∣

∣

2

. The trace with theleast negative
similarity value is declared to be the victim’s.

(3) Basic Approach (BAS).In this approach, motivated by
the uniform noise distribution Eq. 8 and Eq. 9 but to allow
more flexibility, the adversary assumes that the noise is zero-
mean and has a specific standard deviation (σ), but makes
no assumption about its exact distribution. The adversary then
computes thesimilarity value of tracei with the collected side
information using the following equation:

M
∑

k=1

I2σ (R(tk), Li(tk)) , (10)

whereI2σ(x, y) = 1 if |x − y| ≤ 2σ and0 otherwise. Hence,
the adversary accepts a trace as a potential candidate if it is
possible for the trace owner to appear in a radius of2× σ of
the revealed location, which encloses all possible noise ifit is
uniformly distributed, or95.6% of noise if it is Gaussian. The
trace with themaximum similarity valueis declared to be the
victim’s.

(4) Weighted Exponential Approach (EXP). In this ap-
proach, which is proposed and analyzed in [26], we assume
that the adversary does not know the type of noise or its
magnitude. Similar to BAS, the adversary computes and
maximizes thesimilarity value of tracei using the following
equation,

M
X

k=1

1

Weight(R(tk))
exp



−
1

C
|R(tk) − Li(tk)|

ff

, (11)

where Weight(R(tk)) is some weight assigned to the revealed
cell R(tk) and C is a constant. This formulation describes a
similar concept as in the BAS approach, but one that is not as
drastic. The exponential function assigns a higher weight when

the trace location is closer to the side information, but the
weight decays to zero more slowly than the abrupt vanishing
property of the characteristic function in the BAS formula.In
the simulations we let the weights in the denominator to be
equal because with possible errors in the revealed location, it
is unclear how different weights could be assigned.

The above formula can be easily modified for caseA2. For
convenience, we first define for each tracei, the functionPi :
Θ × {tk : k = 1, 2, . . . M} −→ R+:

Pi(l, tk) =
Px,lPl,y

Px,y

,

wherex = Li(sk̃), y = Li(sk̃+1), andsk̃ < tk < sk̃+1. Then
we have,

MLE 2:
Y

k

 

X

l∈Θ

Pi(l, tk)PrZ(R(tk) − l)

!

, (42)

MSQ2:

−
X

k

 

X

l∈Θ

Pi(l, tk)
˛

˛

˛
R(tk) − l

˛

˛

˛

2

!

, (72)

BAS2:
M
X

k=1

 

X

l∈Θ

Pi(l, tk) × I2σ(R(tk), l)

!

, (102)

EXP2:
M
X

k=1

 

X

l∈Θ

Pi(l, tk)

Weight(R(tk))
exp



−
1

C
|R(tk) − l|

ff

!

. (112)

Notice that the four approaches have the same computa-
tional complexity, which is linear in the number of pieces of
revealed side information and the number of nodes.

A remark in place is that our exposition assumes attack
strategies where the victim is assumed to be one of the
participants. However, the strategies apply or can be easily
extended to the case in which it is uncertain if the side
information collected for a mobile node actually corresponds
to any participant. In particular, the MLE approach can be
used directly without modification, while a properly picked
thresholdcan be used for the other attack strategies to remove
traces from consideration if their similarity to the victim’s trace
is lower than the threshold. This can certainly be formulated
rigorously in terms of statistical hypothesis testing.

B. Strategy for Problems B1–B3

In this scenario the adversary observes the participants
directly. Note that the information about the traces is only
revealed progressively in time, in a synchronized way with
respect to the information collected by the adversary. The
overall algorithm is specified in Figure 1. As there is no noise
when additional information is acquired, the adversary does
not need to use any inference strategy. TheAttack program
takes as input the traces that are published progressively.The
algorithm first assumes that all the traces are candidate traces
for each participant. A trace is said to be a candidate trace
of a participant if it appears at the same set of times and
locations as when/where the adversary meets the participant,
and the trace has not yet been identified. As time evolves, the
adversary removes candidate traces which do not agree with



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY 20XX 6

Cascade(candidateset,i)
let j = trace id where candidateseti = {j}
/* remove the identified trace from candidate set

of other victims */
For(m = 0; m< number of trace; m++)

If trace j in candidatesetm andm 6= i
remove tracej from candidatesetm
If candidateset sizem = 1

Cascade(candidateset,m)
Endif

Endif
Endfor

Attack ({Li}i=1,2,...N )
/* initially all traces are possible candidates

to each victim */
For (m = 0; m< number of trace; m++)

add all traces to candidatesetm
Endfor

While (samplingtime not ended)
For each nodei met at samplingtime and

each tracej in candidateseti
/* check if a candidate trace appear at the

observed location */
If (met nodei at locationr at samplingtime and

Lj(sampling time) != r)
remove tracej from candidateseti
If candidateset sizei = 1

Cascade(candidateset,i)
Endif

Endif
Endfor

report average k-anonymity
evolve samplingtime

Endwhile

report all identified victims

Fig. 1. Specification of Attack algorithm.

the observed information about each victim from the set for
that victim. The functionCascadetakes two input parameters,
where candidate_set is the candidate set of all victim
nodes andi is the victim ID identified. The function is called
when a victim’s trace is identified, so as to remove that trace
from the candidate set of other victims. The candidate set
size is thek-anonymity of the victim, as every trace in the
candidate set is possibly the victim’s.

Notice that the adversary may not identify a participant at
times they meet each other, but the identification can occur at
a later time when all but one candidate traces are identified
and removed, as indicated by the recursiveCascadefunction
call in Figure 1. Hence, the adversary identifies a participant
more efficiently when it tries to identify as many participants
as possible.

V. TRACE CHARACTERISTICS

In this section we begin by analyzing the differences in
behaviors between the real traces. Their differences will be
illustrated by three types of real mobility traces: (1) cabsin
San Francisco [31], (2) buses in a Shanghai grid system [34],
and (3) cabs in the Shanghai area [34]. Basic statistics of
these three sets of traces are listed in Table I. We assume

San Francisco Shanghai Grid Shanghai
cabs buses cabs

Min. latitude 37.05 30.7217 30.00
Max. latitude 38.00 31.5899 32.00

Min. longitude -122.86 121.0001 120.00
Max. longitude -122.00 121.9117 122.00

# cellsa 8170 8004 40000
# active cellsb 3997 2108 19746

# nodes 536 2348 4438
Min. timestamp Sat May 17 Mon Feb 19 Wed Jan 31

(local time) 03:00:04 2008 08:00:01 2007 13:00:01 2007
Max. timestamp Tue June 10 Sat Feb 24 Sat Feb 24

(local time) 02:25:34 2008 08:00:00 2007 13:00:00 2007
TABLE I

BASIC STATISTICS OF THE REAL TRACES.
awhen spatial granularity is0.01◦.
bcells ever visited by any node.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-1.5 -1 -0.5 0 0.5 1 1.5

F
ra

ct
io

n
 o

f 
n

o
d

e
 p

a
ir

s

Correlation value

cab

bus

shcab

cab

bus

shcab

Fig. 2. Distribution of correlations between traces of the same set.

that the published traces are snapshots taken every minute
with spatial granularity of0.01◦ in latitude and longitude
for anonymization purpose as explained in Section I unless
stated otherwise. Characteristics of traces are studied using the
four metrics as described in Sections V-A–V-D. Observations
that can be explained using differences between movement
preferences of the mobile nodes are summarized at the end of
this section.

A. Distribution of correlation between traces

Here we study the correlation between different traces.
We use the Pearson product-moment correlation coefficient to
quantify the correlations between node pairs which is used in
the study in the relationship between taxonomy of texts [38,
Appendix]. It is also related to the cross-correlation function
bewteen stochastic processes [30, Chapter 10]. For any mobile
node pairi and j, the quantity is defined as follows.

C(i, j) = lim
M→∞

1

M

M
X

k=1

„

Li(sk) − ELi

σLi

«„

Lj(sk) − ELj

σLj

«

,

whereELi andσLi
are respectively the average and standard

deviation of nodei’s locations:

ELi = lim
M→∞

1

N

M
X

k=1

Li(sk) (12)

σLi
= lim

M→∞

v

u

u

t

1

M

M
X

k=1

(Li(sk) − ELi)2. (13)

The distribution of the correlations between different node
pairs is depicted in Figure 2.

The figure shows that movements of different San Francisco
cabs have little or no correlation. It is because cabs are
unlikely to follow each other for a long time. Moreover, the
Shanghai cabs have higher correlation than the San Francisco
cabs. Investigation reveals that some of the Shanghai cabs
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did not move at all over the trace collection period, and their
positions are indifferentiable from each other under the spatial
granularity of the cloaking. This is possibly because they are
parked close to each other, and their identical cloaked locations
lead to the high correlation.

B. Autocorrelation of the same trace

The autocorrelationC(i, s) of tracei with time shifting of
s is defined as:

lim
M→∞

1

M

M
X

k=1

(Li(sk + s) − ELi)(Li(sk) − ELi).

In the case of a (stationary) Markov chain
{

L(n)
}

n=0,1,2,...

with transition matrixpij , the above value can be explicitly
computed as:

E
(

L(n) − L̄
)(

L(n + s) − L̄
)

= E
(

L(n)L(n + s)
)

−
(

L̄
)2

=
∑

k,l∈Θ

klp
(s)
kl µk −

(

∑

k

kπk

)2

where p(s) is the s-th step transition matrix andµ is the
stationary distribution of the Markov chain.

The (individual and average) results for the various traces
are shown in Figure 3 as a function of the time shifts. The
figure shows that for the real traces, there are sharp rises in
autocorrelation individually and on average when the time shift
is one day. The bus traces also show repeatedly oscillating
autocorrelation values throughout a day because each bus runs
on a periodic schedule. Such oscillations are much less obvious
for the cabs as they move more randomly.

C. Complexity of movement

In this section, we demonstrate the complexity of nodal
movements as quantified through the order-n model complex-
ity given by:

Hn

(

L
)

:= −H
(

L(n)
∣

∣

∣
L(1), L(2), . . . L(n − 1)

)

= −
∑

Θn−1

p(l1, . . . , ln−1)×

{

∑

Θ

p(ln|l1, . . . , ln−1) log p(ln|l1, . . . , ln−1)

}

. (14)

In the above,L denotes a general outcome ofLi’s and the
functions p(· · · ) : Θn−1 −→ R+ and p(·| · · · ) : Θ ×
Θn−1 −→ R+ are the joint probability and conditional prob-
ability densities, respectively, of the locations in the collection
of traces{Li}i=1,2,...N .

The above function is defined for general stochastic pro-
cesses (see for example [6, Chapter 3]). The value ofHn

represents the uncertainty of the order-n model. The smaller
the value, the less uncertainty there is in the model. Noticethat
H0 is essentially the entropy of the stationary distribution.

The behavior of Eq. 14 as a function ofn is shown in
Figure 4. The result conforms to the theoretical result thatfor
any stationary processX, Hn(X) is a decreasing function of
n and the limitlimn→∞ Hn(X) thus exists. The limiting value
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traces.

is called theentropy rateof the processX, usually denoted
by H(L).

Again, in the case of a Markov chain
{

L(n)
}

n=0,1,2,...
,

H(L) can be explicitly given by:

H(L) = −
∑

kl

πkpkl log pkl.

D. Distribution of distances between traces

Figure 5(a) shows the distribution of average distance be-
tween trace pairs, which is defined as

DistAve(i, j) = lim
N→∞

1

N

N
∑

k=1

|Li(k) − Lj(k)|,

for trace pairi andj, wherei 6= j, and Figure 5(b) depicts the
distribution of minimum distance between trace pairs, which
is defined as

DistMin(i, j) = min
k

(|Li(sk) − Lj(sk)|) .
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Fig. 3. Autocorrelation of each trace for different sets of traces as a function of the time shifts.

E. Implications of the trace characteristics

Many of the observed different characteristics of the mobil-
ity traces can be summarized and explained using the natural
preferences for certain places visited by the mobile nodes as
shown in the real traces, such as the busy downtown area for
the cabs and the assigned routes for the buses.

For instance, the real traces have their preferred visiting
places, resulting in a smallH0, and the entropy drops slowly
when the order increases. This is also reflected in the small
average distances between cabs or between buses. Moreover,
the cab and bus traces collected from Shanghai exhibit a
broader spatial range than the cab traces from San Francisco,
which is likely because the size of Shanghai is larger than
that of San Francisco. At the same time, the popular places
in Shanghai are distributed more sparsely than those in San
Francisco, such that the Shanghai cabs have a larger average
distance from each other than the San Francisco cabs. Because
some of the bus routes are closer together while some are
farther apart, the result is that only 50% of the buses have
met each other as shown in Figure 5(b), while almost 100%
of the San Francisco cabs and 70% of the Shanghai cabs have
met each other.

When nodes are more sparsely distributed in the network
area, more efficient victim identification results when the
adversary collects the side information passively (Problems
A1 andA2). On the other hand, sparsity of nodes can both be
beneficial and detrimental to the performance of an adversary
who observes the participants directly (Problems B1– B3). It
is because when the mobile nodes are sparsely distributed,
it could take much longer time for the adversary to meet
them, thus harming the attack efficiency. Meanwhile, once
the adversary meets a mobile node, it could identify the trace
of the node almost instantaneously as no other mobile nodes
(and hence, traces) are around at the same time, thus helping
the attack performance. We will verify these expectations
experimentally in the following section.

VI. SIMULATION RESULTS

A. Results for passive adversary

In this section, we study the attack scenario where the
adversary tries to identify the trace of one participant (the
victim) by gathering side information passively. In each simu-
lation, the victim is randomly picked from all the participants.
Pairs of <time, location> of the victim are then randomly
sampled from the trace and noise is introduced in the spatial
domain. The noisy data are revealed to the adversary as
side information, which the adversary utilizes to identifythe
complete movement history of the victim from the published
traces. We assume that the published traces are snapshots taken
every minute with spatial granularity of0.01◦ in latitude and
longitude for anonymization purpose unless stated otherwise.
Results reported are for simulation experiments each repeated
100,000 times.

We quantify the performance of the strategies with the
following metrics, (i)Fraction of correct conclusions.A con-
clusion is correct if the victim is uniquely identified according
to the criterion of highest similarity metric, or the victim
is among the set of candidates with the highest similarity
metric and all the candidates are indifferentiable from each
other; (ii) Fraction of incorrect conclusions.A conclusion is
incorrect when the victim is not among the set of candidates
having the highest similarity metric; (iii)Fraction of undecided
conclusions.A conclusion is undecided when the victim is
among the set of candidates having the highest similarity
metric and the candidates are not indifferentiable from each
other.

1) Problem A1: We present the results based on the
perception of the passive adversary on the noise when the
side information references time instants that coincides with
sampled times in the traces.

(1) Correct assumption about the noise distributionWe first
consider the case when the revealed location of the victim
is perturbed with zero-mean Gaussian noise with standard
deviation σ, which matches the assumption made by the
adversary in MLE. Figure 6 shows the performance of the
attack strategies using the cab, bus, and shcab traces.



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY 20XX 9

�

���

���

���

���

���

���

���

���

���

�

� � �� �� �� �� ��

�
��
��
��
�
�
�
��
��
�
�
�
��
�
�
��
 �
�
�
 

¡¢£¤¥¦ §¨ ©ª«£¥¬ ­§®¯ª«§°± ²¯«¦³ ¦¥´¥¯­¥µ

¶·¸

¶¹º

»¼¹

¸½¾

¶·¸¿ ¶¹º

¸½¾

»¼¹

À

ÀÁÂ

ÀÁÃ

ÀÁÄ

ÀÁÅ

ÀÁÆ

ÀÁÇ

ÀÁÈ

ÀÁÉ

ÀÁÊ

Â

À Æ ÂÀ ÂÆ ÃÀ ÃÆ ÄÀ

Ë
ÌÍ
ÎÏ
ÐÑ
Ò
Ñ
Ó
ÐÒ
ÎÑ
ÌÌ
Ô
ÎÏ
ÎÑ
Ò
ÎÕ
Ö
×Ð
Ñ
Ò
×

ØÙÚÛÜÝ Þß àáâÚÜã äÞåæáâÞçè éæâÝê ÝÜëÜæäÜì

íîï

íðñ

òóð

ïôõ

ïôõ

íîïö íðñ

òóð
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

F
ra

ct
io

n
 o

f 
u

n
d

e
ci

d
e

d
 c

o
n

cl
u

si
o

n
s

Number of <time, location> pairs revealed

MLE

MSQ

BAS

EXP

MLE, MSQ, EXP

BAS

(a) Correct conclusions, cabs (b) Incorrect conclusions, cabs (c) Undecided conclusions, cabs

÷

÷øù

÷øú

÷øû

÷øü

÷øý

÷øþ

÷øÿ

÷ø�

÷ø�

ù

÷ ý ù÷ ùý ú÷ úý û÷

�
��
�
��
�
	
�


�
�
��
�
�
�
�
�
	
�
�

�
��
	
�

������ �� ������ ���������  ���! ��"����#

$%&

$'(

)*'

&+,

$%&- $'(

&+,

)*'

.

./0

./1

./2

./3

./4

./5

./6

./7

./8

0

. 4 0. 04 1. 14 2.

9
:;
<
=>
?
@
?
A
>@
<
?
::
B
<
=
<
?
@
<
CD
E
>?
@
E

FGHIJK LM NOPHJQ RLSTOPLUV WTPKX KJYJTRJZ

[\]

[^_

`a^

]bc

]bc

[\]d [^_

`a^

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

F
ra

ct
io

n
 o

f 
u

n
d

e
ci

d
e

d
 c

o
n

cl
u

si
o

n
s

Number of <time, location> pairs revealed

MLE

MSQ

BAS

EXP

MLE, MSQ, EXP

BAS

(d) Correct conclusions, buses (e) Incorrect conclusions, buses (f) Undecided conclusions, buses

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

F
ra

ct
io

n
 o

f 
co

rr
e

ct
 c

o
n

cl
u

si
o

n
s

Number of <time, location> pairs revealed

MLE

MSQ

BAS

EXP

MLE, MSQ

EXP

BAS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

F
ra

ct
io

n
 o

f 
in

co
rr

e
ct

 c
o

n
cl

u
si

o
n

s

Number of <time, location> pairs revealed

MLE

MSQ

BAS

EXP

EXP

MLE, MSQ

BAS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

F
ra

ct
io

n
 o

f 
u

n
d

e
ci

d
e

d
 c

o
n

cl
u

si
o

n
s

Number of <time, location> pairs revealed

MLE

MSQ

BAS

EXP

MLE, MSQ

BAS

EXP

(g) Correct conclusions, Shanghai cabs (h) Incorrect conclusions, Shanghai cabs (i) Undecided conclusions, Shanghai cabs

Fig. 6. (Problem A1) Performance of various metrics as a function of the number of<location, time> pairs revealed. (a)–(c) San Francisco cab traces,
(d)–(f) Shanghai Grid bus traces, and (g)–(i) Shanghai cab traces. Zero-mean Gaussian noise withσ = 5.

When we compare the two attack strategies that assume
knowledge of the noise, namely MLE and BAS, MLE is more
aggressive as it excludes a trace from further consideration
as soon as it determines that the trace cannot be perturbed
to the revealed locations of the victim given the type and
magnitude of the noise assumed. Hence, when the adversary’s
assumption is correct, this approach can give very good results
in the fraction of correct conclusions, although it can also
give a large fraction of incorrect conclusions initially, when
the adversary has only a few pairs of the side information
because the traces with the highest similarity for only a few
pieces of noisy side information may not be truly the victim’s.
In comparison, BAS generally returns lower fractions of both
correct and incorrect conclusions as it gives equal weights
to traces that agree with the side information within the error
bounds. This results in more undecided conclusions, i.e., there
is more than one trace, including the correct one, which shares
the same highest similarity value, and the victim’s trace is
undecided among the set. Notice that because the error bounds
are not large enough to enclose all possible noise, the fraction
of incorrect conclusions increases initially for BAS when more
pieces of side information are available to the adversary.

We now look at the other two approaches that do not
use knowledge of the noise, namely MSQ and EXP. We can
see that although MSQ does not require the knowledge, its
performance is similar to the best-case performance of MLE
in terms of the fraction of correct conclusions. Meanwhile,
EXP performs the worst as it puts too much weight on traces
that give little deviations from some of the pieces of side
information.

Next, we evaluate the impact of the granularity of spatial
cloaking. Results of the MLE attack on San Francisco cab
traces are shown in Figure 7. In the experiments, the ad-
versary’s side information is inaccurate or noisy. We fix the
amount of noise in the side information, and vary the spatial
granularity of the published trace set.

If the adversary’s side information is accurate, we expect
that a finer spatial granularity of the traces will increase the
effectiveness of the attack. This is because, when the grid cell
is larger, more traces are likely to share a common cell, which
makes it harder for the adversary to differentiate between the
traces.

When the side information is inaccurate, however, the
results in Figure 7 show that interestingly, a coarser spatial
granularity is not always bad for the adversary. This is because
when the side information has mistakes, these mistakes may
in fact be mitigated, or sometimes even masked, by a coarser
cell structure. There is hence a competitive effect betweenthe
higher discriminative power of finer cells on the one hand,
and possible error mitigating effects of coarser cells on the
other. The result is that, as shown in Figure 7, the adversary
generally has the best performance at anintermediatecell size.

We now evaluate the impact of the number of nodes in
the trace set. In this set of experiments, we always include the
victim node in the trace set, but vary the number of other nodes
that coexist with the victim. Figure 8 shows the performance
of the adversary using MLE, as a function of the total number
of nodes in the trace set. The results show that, as expected,
the adversary has a higher ability of identifying the victim
when the size of the trace set gets smaller. Furthermore, the
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Fig. 7. (Problem A1) Performance of various metrics as a function of the spatial granularity of the trace set, for differentnumbers of<location, time>
pairs of side information. San Francisco cab traces. MLE attack strategy. Zero-mean Gaussian noise withσ = 5.

adversary derives more benefit from a smaller number of nodes
when she possesses fewer pieces of the side information.

(2) Incorrect assumptions about the noise distribution
We now consider the case when the assumption of noise
distribution made by the adversary in MLE is incorrect.
Figures 9(a) and (d) show the performance of the strategy
when the actual and assumed noise is Gaussian and Uniform,
respectively. Figures 9(b) and (e) show the results when the
actual and assumed noise is Uniform and Gaussian, respec-
tively. Figures 9(c) and (f) show the results when the noise
distribution is Uniform, and the adversary assumes the same.

Notice that among the approaches that assume about the
noise, MLE is affected the most by the wrong assumptions.
In particular, the performance of MLE varies depending on
the types of actual and assumed noise. When the adversary
assumes the noise to be Uniform but it is Gaussian, the
performance is much worsened since the victim’s trace can be
mistakenly and permanently removed from consideration due
to occasional Gaussian noise that exceeds the range of the
assumed Uniform noise. On the other hand, when Gaussian
noise is assumed but it is actually Uniform, MLE surprisingly
gives a greater fraction of correct conclusions than when the
correct noise distribution is assumed, albeit at the price of
getting a greater fraction of incorrect conclusions also. In
contrast to MLE, the performance of BAS is less sensitive
to the type of noise.

2) Problem A2: Figure 10 shows the performance of the
attack approaches for different sampling time intervals for the
cab traces when the side information references time instants
that does not coincide with sampled times in the traces. Zero-
mean Gaussian noise withσ = 5 is introduced into the spatial
domain of the side information except for the line labeled “no
noise.” The figure shows that the sparser the samples in the
traces, the less effective the attacks are in general. This is
expected since when samples are sparser, inference of nodal
movements between the sampling points becomes less reliable.
Figure 11 shows the results for the bus traces and the Shanghai
cab traces. The figure shows that without noise in the side
information, even with a sampling temporal granularity of an
hour and spatial granularity of0.01◦, the adversary is able
to identify the victim’s trace by fewer than 25 pairs of side
information with high probability. When noise is introduced,
however, the results depend heavily on the traces. For instance,
the effect of noisy side information on the attack strategies is
more noticeable for both the Shanghai bus and cab traces.

When we compare the performance of the attack approaches
in this case with the special case in the previous subsection,

in which no inference using a general movement model is
necessary, the performance here does not degrade significantly
for MLE2 and MSQ2. Interestingly, BAS2 gives a much larger
fraction of incorrect conclusions and slightly larger fraction
of correct conclusions initially when movement has to be
inferred, while EXP2 performs about the same in both cases.

3) Summary on passive adversary strategies:The results
show that approaches relying on the assumption of noise could
have very poor performance when the assumption is wrong, as
illustrated by the MLE results. On the other hand, an approach
not having knowledge of the noise may still perform well. In
particular, MSQ performs equally well as MLE even when
the latter has the correct noise assumption.Since MSQ also
performs better than the heuristic approaches of BAS and EXP,
it appears to be the preferred adversary strategy overall.

B. Results for active adversary

In this section, we examine the performance of the active
adversary who gains side information by direct meetings with
the participants. Recall that this adversary can identify a
victim by elimination, and the process is most efficient if the
adversary meets the participants as quickly as possible. We
assume that the adversary operates to achieve this goal. We
further assume that the adversary’s side information is gained
only at times coinciding with sampled times of the traces.

1) Problem B1: Figures 12(a)-(c) show the averagek-
anonymity of the victims as observed by the adversary as a
function of the attack time for different sets of the traces,when
the adversary is one of the mobile nodes. The figures show
that the most reduction ink-anonymity for each participant
results from observations made in the first day in the real
traces. Notice also from the figures that there are flat regions
in the bus trace results corresponding to night times of the
days. The cab traces exhibit a similar behavior, but it is much
less obvious due to the cabs’ own mobility characteristics.

2) Problem B2: Figures 12(d)-(f) show thek-anonymity
of the victims as observed by the adversary as a function of
attack time, when the adversary stays at one of the cells. Each
line in the figure represents the results for a particular staying
cell, and the line label shows the relative coordinates of that
cell in the network area. We plot the results of the six most
popular cells in each figure, and the popularity of a cell is
ranked according to the total number of visits made by the
mobile nodes over the entire trace.

The figures indicate that for the real traces, staying at a
cell for a day is sufficient to reduce thek-anonymity for each
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participant significantly. The improvement by staying longer
at each cell is minimal.

3) Problem B3:Figures 12(g)-(i) show thek-anonymity of
the victim as observed by the adversary as a function of attack
time, when the adversary moves actively inside the network
area. The label of each line in the figure indicates the number
of popular cells visited by the adversary. The adversary uses a
greedy algorithm to compute the shortest route that connects
all the popular cells to be visited, and follows this heuristic
route throughout the simulation period. Notice that as the
adversary travels between the popular cells, it may visit other
cells during the journeys.

The figures show that travels made by the adversary gen-
erally improve the attack efficiency in identifying the traces.
For instance, for the bus traces, traveling helps the adversary
reduce the size of the candidate set for each participant from
more than 2000 to only a few in about one day, while staying
at a cell can only reduce the size by half. It is because by
traveling, the adversary is able to meet more participants,
especially when their spatial distribution is sparser, such as the
bus and cab traces from Shanghai. However, traveling to too
many places may hurt the performance because the adversary
may spend too much time traveling over unpopular places.

4) Summary on active adversary strategies:In this section
we studied different strategies for an active adversary to collect
snapshots of the victims. The results show that for the real
traces, the ability of the active adversary to travel helps
it identify many of the victim traces in a realistic amount

of time. When the adversary prefers to stay at a cell, the
attack efficiency depends on the type of traces and the staying
location of the adversary. In general, staying at a more popular
location helps, by allowing the adversary to identify more
victims more quickly.

VII. D ISCUSSION

Our analysis in this paper is motivated by the existing
practice of releasing mobility traces in various public data
portals [7], [34]. This practice is well intended. For example,
the traces can be used to provide realistic input for trace-
driven simulations, which can better ensure the relevance of
the simulation results than synthetic traces. For these intended
purposes, preservation of information at the granularity of
individual traces is crucial. Furthermore, in order not to impose
unnecessary constraints on using the traces for diverse types of
investigations, these portals release entire trace sets ofdata to
the user, and leave it up to the user to exploit the available data.
It is natural for us to inquire the privacy implications of such
comprehensive release of information, and our analysis is a
contribution to this investigation, beyond a general realization
of the potential problem. Specifically, we provide a systematic
study of the privacy problem in order to quantify its severity
when exploited by an intelligent adversary, whose power is
however limited by the amount of side information available
to her.

Our analysis assumes techniques of spatial and temporal
data cloaking that are admittedly basic. A main advantage of
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more basic cloaking techniques is, however, their ability to
better guarantee the relevance of the cloaked data to diverse
applications, including those that cannot be characterized a
priori. Our chosen approach should not be taken as ruling out
the use of more sophisticated cloaking techniques, however.
These techniques are certainly possible and many examples
are known [1], [39], [29], [32], [16]. However, they all come
at the price of requiring more severe transformations of the
original data that will render the data applicable for specific
applications only, i.e., types of applications for which the
transformations are carefully designed.

In particular, differential privacy (DP) [8], [9] is a widely
studied approach for ensuring the privacy of a data set in
the face of a powerful adversary. In spite of its importance,
however, DP makes assumptions about the use of a data set
that are fundamentally incompatible with our problem context.
For example, in order to provide strong privacy, DP does not
give users unlimited access to the data set. Rather, the user

must issue queries to learn about the data, and the types, as
well as numbers, of allowable queries are carefully restricted,
e.g., onlyaggregate-sumqueries may be allowed [32]. Based
on these restrictions, DP may calculate the amount of noise
needed to ensure that no private information can be learned
from adjacent data sets [9]. In particular, for time-seriesdata
such as our mobility traces, the amount of noise needed may in
the worst case grow linearly with the number of queries [32].
Moreover, by nature of its design, DP is able to provide
summary or statistical answers about a data set only, but it
does not allow to preserve information at the granularity of
the individual traces. As we remarked, the loss of per-trace
information makes the data unsuitable for certain purposes
including trace-driven simulations.

VIII. C ONCLUSION

In this paper, we studied the privacy vulnerability of pub-
lished mobility traces even when the true node identities are
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Fig. 12. k-anonymity of the victim as observed by the adversary as a function of attack time, when the adversary is (a)-(c) one of the mobile nodes (Problem
B1), (d)-(f) static (Problem B2), and (g)-(i) mobile within apre-determined path (Problem B3).

made anonymous, and the recorded node positions may be
imprecise. We presented comprehensive strategies for an ad-
versary to well utilize side information about node movements,
collected either passively or actively, to achieve different pri-
vacy attacks. We proved mathematically an optimal approach
for the adversary to identify a victim’s trace from the published
data exploiting all the available information.

Our analysis is verified and complemented by simulation
results under comprehensive system parameters, such as the
nodal mobility, adversary strategy, noise in the trace or the
side information, and different extents of movement inference
needed for the attack. In general, our results showed that the
adversary is able to identify victims with high probabilityeven
when the available side information is limited. Furthermore,
for the passive adversary, attacks that make detailed noise
assumptions, such as MLE, could have poor performance when
the assumptions are wrong. On the other hand, MSQ does not
rely on these assumptions and its performance is robust. It
performs as well as MLE even when the latter has the correct
noise assumption. It also performs better than the heuristic
approaches of BAS and EXP. Overall, MSQ appears to be the
preferred passive adversary strategy. For the active adversary,
we show that its ability to travel can help it to identify many
of the victim traces in a realistic amount of time.
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