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Privacy Vulnerability of
Published Anonymous Mobility Traces

Chris Y. T. Ma, David K. Y. Yau, Nung Kwan Yip, and Nageswara S.R&o

Abstract—Mobility traces of people and vehicles have been their correlations and interactions with each other, wilé
collected and published to assist the design and evaluation of profound effects on the network performance (e.g., coxerag
mobile networks, such as large-scale urban sensing networks.and connectivity of a collaborative sensing network). ke
Although the published traces are often made anonymous in that L .
the true identities of nodes are replaced by random identifiers, researcher§ have_ found that existing SY”the“C moyemedt mo
the privacy concern remains. This is because in real life, nodes €IS of mobile entities, such as pedestrians and differemdski
are open to observations in public spaces, or they may voluntarily of vehicles, though attractive for their low cost and high
or inadvertently disclose partial knowledge of their whereabouts. repeatability, generally fail to capture essential bebwsviof
Thus, snapshots of nodes’ location information can be learned by real users. Therefore, the use of synthetic traces in nktwor

interested third parties, e.g., directly through chance/engineexd desi lead t lusi bout network f
meetings between the nodes and their observers, or indirectly 9€S!gN can iead to wrong conclusions about network: pertor-

through casual conversations or other information sources abat =~ Mmance (e.g., routing efficiency) in reality [19]. Hence rthare
people. In this paper, we investigate how anadversary, when increasing efforts to trace the locations of real usersihgad
equipped with a small amount of the snapshot information to the public availabilities of many such traces throughesit

termed as side information, can infer an extended view of .qnsolidated data portals such as Crawdad [7] or websites se
the whereabouts of avictim node appearing in an anonymous by individual h 34
trace. Our results quantify the loss of victim nodes’ privacy up by individual research groups [34].

as a function of the nodal mobility, the inference strategies of  In order to protect the privacy of participants in real user
adversaries, and any noise that may appear in the trace or traces, the true identity of each participant is often regdbby

the side information. Generally, our results indicate that the g consistent, unique, and random identifier (not correlated
privacy concern is significant in that a relatively small amount of any way with the true user identity). Moreover, the precisio

side information is sufficient for the adversary to infer the true fthe t in th tial and t ld . be oft
identity (either uniquely or with high probability) of a victim in ~ O' tN€ traces in the spatial and temporal domains can be often

a set of anonymous traces. For instance, an adversary is ableeduced bycloakingtechniques such as reducing the resolution
to identify the trace of 30%-50% of the victims when she has of the recorded data or introducing noise deliberately m th

collected 10 pieces of side information about a victim. data. It is not clear, however, if these “anonymization” and
cloaking techniques are sufficient to protect the privacyhef
participants. This is because movements or whereabouts of
|. INTRODUCTION participants in public spaces can be openly observed by oth-

Mobility traces of people and vehicles have been collect&s through chance/engineered meeting opportunitiesil&Bim
and published to assist the design and evaluation of mlecation/movement information can also be inferred inctise
bile networks. One example application of such networlfEom conversations, news articles, online social netwodks
is urban sensing, where mobile nodes carried by ordinaigb blogs, though the inference could be noisy. By gathering
city residents or their vehicles are used to monitor vario@€ or a few such (possibly rough) snapshots of a particgant
events of interest in their city areas. Example activitiestide location over time, which we term aside information an
traffic monitoring [25], road surface condition sensing Jj102dversary may be able to identify (either uniquely or withrhi
chemical detection [28], and radiation detection [17]. sThiProbability) the participant's trace from a set of anonymsou
type of large-coverage, everyday sensing is made possjbletices. Hence, the complete whereabouts of the partic{fient
advances in sensor technok)giesi which produce small for}/ﬂ\ctlm) over an extended time duration will be revealed to the
factor, low-power, low-cost, and multi-modal sensors et adversary.
be readily embedded into widely adopted personal handheldn this paper, we formulate the above privacy problem.
devices including smart phones. Clearly, mobility patseofi We develop analytically inference strategies that the esxhrg

potentialreal-world participants in these networks, includinghay use to maximize its effectiveness in identifying one or
more victims under different system assumptions. We show
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(1) We provide extensive analysis both theoretically andcations. Chowet al. [4] use granularity reduction to provide
experimentally to demonstrate that with the current pcactiprivacy in peer-to-peer systems that support locatiorethas
of capturing and publishing anonymous location traces alf reservices.
users, the concern exists that an adversary could idem#y t Approaches to improve the privacy of geo-located data
traces of one or more victims in the published data with higets include data perturbation, data swapping, data denera
probability, by invoking a small amount of side informatiorization or granularity reduction, and data withholding.uhb
about the participants. In particular, we present comprslie et al. [1] propose the use of space translations to achieve
attack strategies available to the adversary when it dslle¢k, §)-anonymity for databases of moving objects, whére
information about a victim’s movement either through direds the radius of a cylindrical volume representing the aéidw
observations or indirect information sources, and shovt thajectory imprecision. Terrovitis and Mamoulis [39] udeet
these attacks are effective in breaching privacy. We alsappression of location information to achieve an accéptab
provide a mathematical framework to show the optimality qfrobability of privacy breach. Nergiet al. [29] use a notion
specific attack strategies in that they utilize all the al@# of k-anonymity that is specific to trajectories, and propose
information in the most effective way. a generalization method to enhance the privacy of published

(2) We give comprehensive experimental analysis to shavajectories.
the differences between different real traces from thepeers Martin et al. [23] quantify how background knowledge
tive of the privacy problem. Their different charactegstwill possessed by an attacker may impact privacy breach. They
result in quite different performance under various pwyvacexpress the background knowledge in a language, and pro-
attacks. vide an algorithm to determine the amount of disclosed

sensitive information in the worst case as a function of the
Il. RELATED WORK background knowledge. In a data mining context, Agrawak

Privacy of published data sets has received much attéd Srikant [2] propose a reconstruction method to build a
tion [2], [37], [3], [41], [23]. Sweeney [37] proposes a oy decision-tree classifier without accessing precise inéion
measure ok-anonymity When k-anonymity is satisfied, eachin individual data records, so that the data value distioinst
individual is indistinguishable from at least— 1 other indi- can be reconstructed with sufficient accuracy. They alse pro
viduals. Bayardo and Agrawal [3] propose a practical methgse value-class memberships and value distortions aacgriv
to identify a provably optimak-anonymization of real censuspreservation techniques.
data, or a “good” anonymization for general data, since theThe literature above assumes that an attacker has limited
general problem is NP-hard. The conceptiedinonymization knowledge and power, and analyzes privacy and its protectio
does not capture the diversity of the anonymity set. To solug application specific situations. We take a similar apphoa
the issue, Machanavajjhaket al. [21] propose al-diversity Our specific focus is on the privacy of anonymous mobility
measureto ensure diversity in the published datd.i and traces as they are published in various public data porfals [

Li [20] propose at-closeness metric, which ensures that thi@4]. Our analysis assumes basic spatial and temporalicigak
distance of a sensitive attribute’s distribution in onesslas techniques, since the basic protection can more easilyrensu
no more than a thresholdfrom that of the whole table. Xiao the applicability of the data sets for diverse applicatioe-s
and Tao [41] propose-invarianceto limit the risk of privacy narios, which befits the intention of the data portals. Rieas
disclosure in dataepublications since potential correlations see Section VII for a discussion.

among snapshots of data in the different publication ircgan  Currently, differential privacy (DP) is an extremely aetiv
can be used to derive sensitive information. research area. It is important because it adopts a strofmgnot

Identification of users, or their attributes, who acces¥ privacy that does not limit the power of the attacker and
location-based services has been studied [14], [11], [18], measures privacy loss by basic information metrics. Dwork
[18], [24], [36], [35], [4]. Golle and Partridge [14] quafiti et al. [8] consider how much noise is needed to perturb
the likelihood of identifying an individual using her homeda true answers from a statistical database, in order to preser
working locations, and show that revealing at census blopkivacy. They show that the extent of noise needed is pro-
level is able to identify most of the US working populationportional to the sensitivity of the query function. Ho and
Freudigeret al. [11] quantify the probability of identifying Ruan [16] propose to provide DP by dynamic sizing of grid
the home or office location of a user based on the numbera#lls and addition of noise to data sets. Machanavajjeala
queries issued to a server. al. [22] use a modified form of DP to have the published

One basic technique to improve location privacy is to redusgatistics match more closely with the actual statistiathaut
the spatial/temporal granularity of the location inforiaat breaching privacy. Rastogi and Nath [32] propose an algorit
given to the service provider, while still supporting statitory to ensure DP using transformation and encryption, such that
service quality [15], [13]. Hotet al. [18] devise a protection users can compute the amount of noise needed to perturb the
method that releases user data only when certain privgoyblished data in a distributed manner, while keeping thgeno
constraints are met. Meyerowitz and Choudhury [24] proposethe statistics obtained by the aggregator small. Theigatg
to send fake requests with real ones, in order to reduce oniiis problem that for time-series data, such as our mobility
ability to trace a mobile node over time. Sholet al. [36], traces, the amount of noise needed for standard DP appoache
[35] propose an evaluation framework for location-privacwill in the worst case grow linearly with the number of qustie
protection, assuming that the adversary knows the spati@spite its importance, DP’s assumptions about the useeof th
distribution or transition probabilities of each user betw data sets are fundamentally incompatible with our problem
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context. Please see Section VII for a discussion. are: (i) the adversary ipassivein the sense that it does not
actively go out to seek encounters with potential victimig; (
[1l. PROBLEM DEFINITION the side information given to the adversary contains niiée.

will consider two cases. In the first casergblem Al), the

We assume that a set of traces, each of which recordln% ) . : X ) .

. . . . . . side information references time instants that coincidéh wi

intermittently the time and corresponding location of a iteb . . o . )
d'sampled times in the trace only. That is, if a piece of side

node, are released to the public. We call a node that is iedlu Information refers to a participant's location at timethen

in a trace set garticipantin the trace set. The samples ca . :
. . . nﬂe set of traces must also contain a sampled location of some
be collected using say a GPS-enabled device carried by { €

participant, which reports the participant’s location ahe pdrticipant att. In the second, more general castrcplem

o . A2), the side information may also reference time instants
corresponding time periodically to a data collector. Tlaeds . . .
between two consecutive sampled times in the set of traces.

are anonymous in that the true identity of a participant h%e study the worst case scenario in whathpieces of the side

been replaced by a random and unique identifier. The truef : . . =
. o . Information refer to times different from the sampled tinires
node identity is not correlated in any way to the random

identifier, but the same true identity is always mapped {he set of traces. In either cases, we assume that the agversa

) - . ! : IS “sophisticated” and will attempt to incorporate all know
the same random identifier. The times at which locations 0 ST )
. . mformation in its inference strategy, by employing somerfo
a participant are recorded in a trace are called shmpled

times We assume that the recorded participant location aog Bayesian inferencing. We further assume that, in apglyin

sampled time, say, is imprecise for anonymization purposehe Bayesian inferencing, the adversary can make use of some
as explained i’n Seclztion I. Specifically, instead of recaydire general knowledge it has about the world, including global
precise point in space at .which the no’de is located at time constraints on nodal movements imposed by (publicly known)
the trace records a largeell enclosingp. For simplicity, we geography of the deployment. area, and general movement
assume that the cell is a square of dimensiofin distance preferences of all the nodes viewed as an aggregate (but not

units). The imprecision is higher if is higher, and vice versa. the individual preferences of specific nodes).

There is anadversarywho tries to identify the complete
path histories of one or more participants (of known truB. Problem B: Active adversary
identities) from the anonymous traces. We call a node whosen this section, the adversary @ctive in the sense that
whereabouts are being exposedviatim node. For the ad- it obtains side information about participants by physical
versary to achieve its purpose, we assume that it can collegicountering the participants. The complete trace hisi®ry
certain side informationabout one or more participants bystill revealed to the adversary, but now in a real time and
chance or effort through noisy real-world channels. Eaele@i gradual fashion, i.e., as time progresses, the adversary is
of side information gives the location of a participant at aprovided with the trace information together with the infor
associated time instant, although the information may nefation acquired up to the real time instants. The goal here
be exact. In practice, the side information may be obtaingsl to identify as many identity of the traces as possible.
through a number of practical means. First, nodes are opersigecifically, we will consider the following three forms of
observations in public spaces. Hence, the adversary mainobthe problem: B1) The adversary is itself one of the mobile
the side informatiordirectly through meeting the victim by nodes included in the set of traces (i.e., it is one of the
chance or engineered encounters. Direct side informatiay nparticipants in the trace set)B2) The adversary minimizes
be noisy due to imperfect vision or memory of the adversang efforts by simply staying at one fixed locatiorB3) The
about the meeting. Second, nodes may disclose informatiativersary pre-determines a movement strategy to presymabl
on their whereabouts either voluntarily or inadvertenHgr maximize the amount of useful side information it can ohtain
example, a casual conversation between Alice and Bob m&ybject to the same physical movement constraints and speed
make references to where Alice was around 9 pm the nighhits as the participant mobile nodes. However, we will
before, or it may make reference to the whereabouts of anothet consider the case in which the adversary may adapt its
person Charlie. Clearly, such location information miglket bmovement strategy to prior information it has learned about
released through many other means, including publishedamethe potential victims. For example, after encounteringcéimi,
such as news articles or web blogs. Hence, the adversgiy adversary will not attempt to henceforth follow the iict
may also obtain the side informationdirectly, i.e., through This is reasonable if the objective of the adversary is tatifie
a channel other than direct encounter with the victim. Simas many trace identities as possible. In fact without furthe
larly, the indirect information may be noisy due to imprecisgiven information, it is not clear if modifying the path can
observations, memories, references, etc. In this papewilve improve the performance.

consider the following two attack scenarios. The goal in all of the scenarios in the above two problems
is to identify the victim’s trace from the published set bhse
A. Problem A: Passive adversary on all the available (noisy) information. The results wik b

. . . ?resented in the most quantitative manner possible.
In this problem setting, the adversary is given the complete

(anonymized) traces. The adversary's goal is, given some ) )

pieces of side information about a pre-determined but uf- Notations and model assumptions

known victim, to identify in some optimal fashion the com- We first define some notations and general assumptions
plete path history of the chosen victim. The key assumptioabout the a priori knowledge.
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© : The collection of all cell location IDs. use the maximum likelihood estimator (MLE) to make the
best guess. The goal is that givéh find the L; that gives the
best match. The formulation of such a procedure is described
below. Given{R(tj)k=12,..}, compute

{L;}i=1,2,.~ : The collection of all the traces of the
participants, each indexed by an anonymous indeX is the
total number of traces. Precisely, for eaghl; is a function
of time L, : R, — O giving the ID of the cell visited by ' B _ Pr(Li, R(tx), k=1,2,...)
participants. Pr(Lil{R(te), kb =1,2,..}) = Pr(R(ty),k =1,2,...)

{sk}r=1,2.. : The sampled times at which the actual node_ _ Pr(R(tx),k =1,2,...[Li) Pr(L:) @
locations are published, i.eL;(sx) is the published location > ;_; Pr(R(tx),k = 1,2,...|L;) Pr(L;)

ID of the cell visited by mobile node at time sy.. The goal of the MLE is to findi which maximizes the
{ti}r=12,. : The time instants at which some noisy sidexpression Eq. 2. Note that the denominator does not depend

information about the victim’s locations are revealed. oni. In addition, without any knowledge about how the victim

is chosen, we set the a priori distribution of the victim to be

uniform: P(L;) = & for i = 1,2,... N. Hence the solution

of the MLE is given by:

yens

R : The noisy side information of the victim. Specifically,
it is a map,R : {tx}r — © so thatR(t;) is the (corrupted)
location ID of the cell visited by the victim at time, as

revealed to the adversary. izgnzaic_NPr(R(tk), k=1,2,...]L). (3)
In order to concentrate on the key issue of privacy breach,jith the assumption of the noise model given in Eq. 1, the
we further make the following assumptions: expression Eq. 3 can be given in the following form:

(1) The sampled times;’s are equally spaced. In addition, ~ase A1.Because the noise is iid, we have
for Problem Al, we have{t; : k = 1,2,...} C {sp : k =
1,2,...}; For Problem A2, we have{t; : k = 1,2,...} ¢  Pr(B(tx),k=1,2,...|Li) = [ Prz(R(te) - Li(t)), (@)
{sr : k =1,2,...}; then we assume that for each, there k
existsk such thats;, < t, < Sii1 andt;, = %(31% + 512+1)- where the location difference is computed using the Canesi

(2) The noise in the side information in each revelatioffiStance between the two cells. Recall thiat,) — Li(t)
instant is assumed to be some iid random variakjés of equals the noise random variable in the perturbation psoces
some given distributior,. Hence we have give by Eq. 1.

R(ty) = Li- (tr) + Zx 1) Case A2.By the Markovian assumption of the movement

I - _ model, Eq. 3 can be given by:
wherei* is the victim’s trace ID (which is of course not known

to the adversary). Pr(R(tg), k= 1,2,...|L;)
(3) All the mobile nodes follow the same movement model = Pr(R(tx),k = 1,2,...[Li(sx),i = 1,2,...)
which is assumed to be Markovian. Hence the statistics of
. ) Pr(L;(s; R(t Pr(R(ty)|L;(sz
the whole collection of traces can be completely described b _ 1L { F(Li(sg4)1R()) x PrR(ty)] ’(Sk))} G
some one-step transition matf®’;; }, .. The time interval 11, {Pr(Li(Sgg_;'_l)lLi(S;;))}

for the transition matrix is denoted kY. For the convenience

of later presentation, we s&t to bes, — s; for Problem A1 Recall that there exists ah such thats; < ¢ < St and

and %(82 — s1) for Problem A2. This matrix is either given te = %(S%J’_SE—H)' Hence (5) can be easily expressed in terms

or estimated by some general world knowledge. of the transition matrixP;;: the numerator involves transitions
We take the time here to note that the last assumptigatween time intervals of length and hence the matri®,

is clearly for simplification purposes. There are many weljhile the denominator involves intervals of leng?’ and

known prediction, interpolation, and filtering algorithifier  hence the matrix?2.

(even non-Markovian) time series analysis (see for exampleThe expression Eq. 4 can be greatly simplified if the noise

[12, Chapters 3, 8]). On the other hand, our simulation tesulz,'s takes on specific forms. For example,

already produce robust results even for the non-Markovah r (i) Gaussian random variableg(0, o2):

traces. Hence we will not be side tracked by invoking the more B

refined models. Instead, we will emphasize the implications Pr(R(te), k =1,2,...|L)

of general knowledge about nodal movements towards the 1 9
privacy issues. = Cexp {202 SOIR(tk) = Li(ts)|* b, (6)
k

for some constanf’. Hence the MLE is essentially the same

. . , , . _as the followingminimum squarepproach:
In this section, we give details of the possible strategies ‘2

used by the adversary for each of the attack scenarios listed minz ‘R(tk) — L;(ty)
in Section Il C %

IV. STRATEGIES OF THEADVERSARY

(7)
(if) Uniform Distribution with on the interva(—%, L):
A. Strategies for A1 and A2 1
g Pr(R(te), kb = 1,2,....1Lg) = [ 7.4 (Rl) — LiCta)),
k

As noted before, the side information often contains noise.
The adversary thus needs to perform Bayesian inference or (8)
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wherex4(x,y) = 1 or 0 depending on ift —y € A or not. the trace location is closer to the side information, but the

Upon taking thelog of the above equation, we have weight decays to zero more slowly than the abrupt vanishing
property of the characteristic function in the BAS formuia.
log Pr(R(tx),k =1,2,...|L;) the simulations we let the weights in the denominator to be

— ZIOgX(_%,%)(R(tk) — Li(t)) + (a constant) (9) €dual because with possible errors in the revealed logation
is unclear how different weights could be assigned.
The above formula can be easily modified for cAge For
convenience, we first define for each tracéhe functionp; :
{tk k=1,2,. ]V[}—)R+I

Optimizing the above expression is equivalent to idemnidyi
the trace that has thiargest numbernf sampled times such
that the trace location falls within a fixed range of the n0|sy
side information. Pl ty) = Px,lPl-,y’

The above provides a rigorous mathematical formulation for Py
the Bayesian inferencing equipped with the side infornmatioyheres — Li(s), vy = Li(sj,), andsg <ty < sj,,- Then
On the other hand, the above also leads to some simplifigd have,
heuristic approaches for tackling the victim identificatio nE,:
problem. Qualitatively, they are all similar to the minimum
square approach but we find it a useful contribution to record < Pi(l, te)Prz(R(tr) — l)) ) (42)
and compare their performances. In the following we conside e
four strategies used by the adversary to identify the vistim MSQ::

trace from the published trace set. We first describe them for Z ( Pi(l, ty )R tr) — l’ ) (72)
caseAl: Lk \lco
(1) MLE Approach (MLE). This is the same as formu- pgas,:
lation Eqg. 4, i.e., thesimilarity value of trace: is given
by 1, Prz(R(ty) — Li(ty)). The trace with themaximum 2 (% Bill k) x Izo R(tk)vl)> ; (102)

similarity valueis declared to be the victim’s.
(2) Minimum Square Approach (MSQ). This is essentially EXPz'
formulation Eq. 7, i.e., tr12e3imilarity value of tracei is given Z
by — >, |R(tx) — Li(tx)| . The trace with théeast negative pt
similarity valueis declared to be the victim’s.

Z Welghf(lfiktk exp {—% |R(tk) — l|}> . (11)

l€e®

3B A h (BAS) In thi h. motivated b Notice that the four approaches have the same computa-
(3) Basic Approach ( )-In this approach, motivate Y tional complexity, which is linear in the number of pieces of

the uniform noise distribution Eq. 8 and Eg. 9 but to alloV?’evealed side information and the number of nodes.

more flexibility, the adversary assumes that the noise ig-zer A remark in place is that our exposition assumes attack

mean and has a specific standard deviatioh) put makes strategies where the victim is assumed to be one of the

no assumptlorj qboyt Its exact d'St”_buF'on' The adverér&gyt participants. However, the strategies apply or can be yeasil
computes theimilarity value of trace with the collected side extended to the case in which it is uncertain if the side

information using the following equation: information collected for a mobile node actually corresgion
to any participant. In particular, the MLE approach can be
ZI% Li(tr)) (10)  used directly without modification, while a properly picked
thresholdcan be used for the other attack strategies to remove
where Iy, (z,y) = 1 'f |z — y| < 20 and 0 otherwise. Hence, traces from consideration if their similarity to the victatrace
the adversary accepts a trace as a potential candidatesif ifsi jower than the threshold. This can certainly be formulate

possible for the trace owner to appear in a radiug efo of  rigorously in terms of statistical hypothesis testing.
the revealed location, which encloses all possible noigesf

uniformly distributed, 095.6% of noise if it is Gaussian. The

trace with themaximum similarity valués declared to be the B- Strategy for Problems B1-B3

victim’s. In this scenario the adversary observes the participants
(4) Weighted Exponential Approach (EXP).In this ap- directly. Note that the information about the traces is only

proach, which is proposed and analyzed in [26], we assum@yealed progressively in time, in a synchronized way with

that the adversary does not know the type of noise or itgspect to the information collected by the adversary. The

magnitude. Similar to BAS, the adversary computes amerall algorithm is specified in Figure 1. As there is no Bois

maximizes thesimilarity value of tracei using the following when additional information is acquired, the adversarysdoe

equation, not need to use any inference strategy. Higck program
M 1 takes as input the traces that are published progressiviety.
Z W exp {75 |R(tr) — Li(tk)l} (11) algorithm first assumes that all the traces are candidatedra

for each participant. A trace is said to be a candidate trace
where Welgh(tR(tk)) is some weight assigned to the revealedf a participant if it appears at the same set of times and
cell R(tx) andC' is a constant. This formulation describes #cations as when/where the adversary meets the participan
similar concept as in the BAS approach, but one that is not asd the trace has not yet been identified. As time evolves, the
drastic. The exponential function assigns a higher weidtgrw adversary removes candidate traces which do not agree with



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, JANUARY 20X 6

Cascadécandidateset, i) San (I;ggusco Shaggggg Grid Shca}anbgshal
let j = trace id where candidatset = {;} Min. Tatitude 37.05 30.7217 30.00
[* remove the identified trace from candidate set Max. latitude 38.00 31.5899 32.00
of other victims */ Min. longitude -122.86 121.0001 120.00
For(m = 0; m< number of_trace; m++) Max. longitude -122.00 121.9117 122.00
If trace j in candidateset,, andm # i # cells 8170 8004 40000
remove tracej from candidateset,, # a;tir:’gdgi”g 3593%7 gégg 14%173"236
I ?:sdéggte%ggﬁgzéznts;t 17'”) Min. timgstamp Sat May 17 Mon Feb 19 Wed Jan 31
Endif = (local time) 03:00:04 2008| 08:00:01 2007| 13:00:01 2007
. Max. timestamp| Tue June 10 Sat Feb 24 Sat Feb 24
En;g?'f (local time) | 02:25:34 2008| 08:00:00 2007| 13:00:00 2007

TABLE |

BASIC STATISTICS OF THE REAL TRACES
Attack ({L; }i=1,2,...~)

/* initially all traces are possible candidates Lwhen spatial granularity i6.01°.
to each victim */ cells ever visited by any node.
For (m = 0; m< number of_trace; m++)
add all traces to candidatset,,
Endfor

()

w B
N

While (samplingtime not ended)
For each node met at samplingtime and
each trace in candidateset
/* check if a candidate trace appear at the
observed location */ : ‘ -
If (met nodei at locationr at samplingtime and 15 1 02 rrelation value ! 15
L;(samplingtime) !=r)
remove trace from candidateset
If candidate set sizeg = 1

o
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Fig. 2. Distribution of correlations between traces of thene set.

Cascade(candidatset, ;) that the published traces are snapshots taken every minute
Endif with spatial granularity of0.01° in latitude and longitude
Endif for anonymization purpose as explained in Section | unless
Endfor stated otherwise. Characteristics of traces are studied tise
. four metrics as described in Sections V-A-V-D. Observation
report average k-anonymity . . .
evolve samplingtime that can be explained using differences bet_ween movement
Endwhile preferences of the mobile nodes are summarized at the end of
this section.

report all identified victims

Fig. 1. Specification of Attack algorithm. A. Distribution of correlation between traces

Here we study the correlation between different traces.
the observed information about each victim from the set fQye use the Pearson product-moment correlation coeffiogent t
that victim. The functiorCascadetakes two input parameters,quantify the correlations between node pairs which is used i
where candi dat e_set is the candidate set of all victim the study in the relationship between taxonomy of texts [38,
nodes and is the victim ID identified. The function is called Appendix]. It is also related to the cross-correlation fim
when a victim’s trace is identified, so as to remove that trag@wteen stochastic processes [30, Chapter 10]. For anylanobi
from the candidate set of other victims. The candidate s@bde pairi andj, the quantity is defined as follows.
size is thek-anonymity of the victim, as every trace in the M ) 7 _ _ )
candidate set is possibly the victim’s. C(i,j) = lim % > (Lz(skgL ELZ) (LJ(SZ)L EL]) :

Notice that the adversary may not identify a participant at k=1 N ’

times they meet each other, but the identification can occur¥'€re£'L; ando, are respectively the average and standard
a later time when all but one candidate traces are identifid§viation of node’s locations:

and removed, as indicated by the recurdBascadefunction . 1 &

T ’ . - - EL;= lim =Y L; 12
call in Figure 1. Hence, the adversary identifies a partitipa Mot N ; (k) (12)
more efficiently when it tries to identify as many participan =
as possible. o 1 _ _

oL, = ]b}gnoo\J i kgzl(Ll(sk) — EL;)2. (13)

V. TRACE CHARACTERISTICS The distribution of the correlations between different @od

In this section we begin by analyzing the differences ipairs is depicted in Figure 2.
behaviors between the real traces. Their differences weill b The figure shows that movements of different San Francisco
illustrated by three types of real mobility traces: (1) cabs cabs have little or no correlation. It is because cabs are
San Francisco [31], (2) buses in a Shanghai grid system [3dhlikely to follow each other for a long time. Moreover, the
and (3) cabs in the Shanghai area [34]. Basic statistics $fianghai cabs have higher correlation than the San Francisc
these three sets of traces are listed in Table I. We assuoads. Investigation reveals that some of the Shanghai cabs
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did not move at all over the trace collection period, andrthei g: ——cab
positions are indifferentiable from each other under tretiap ="\ et
granularity of the cloaking. This is possibly because they a “54 \é/cab
parked close to each other, and their identical cloakedimts §3 A/b
lead to the high correlation. ii e

20

B. Autocorrelation of the same trace a 6 8 10 1
. . . s d
The autocorrelatior© (i, s) of trace: with time shifting of @) zf)’;rﬁ;d

s is defined as: 10

(=)
N

cab

lim MZ i(sk 4+ 8) — EL;)(Li(sk) — EL).

M — o0

In the case of a (stationary) Markov chafd.(n)} _ 012

Average entropy of all nodes

with transition matrixp;;, the above value can be explicitly 01
computed as:
_ — 0.01
— _ Order
E(L(n) = L)(L(n+ s) 2L) 0 Logorer
— E(L(n)L(n + 8)) — (E) Fig. 4. Ordern complexity of different sets of traces as a function of order.
) ) 0.3 | b
kIp\Y g, — ( km) §0% @
k%@ kl g s 02 ’ﬁi/ shcab
o
So0.15
where p*) is the s-th step transition matrix ang is the e [\ bus
stationary distribution of the Markov chain. g Ik\ cheab
. .. . 0.05 3
The (individual and average) results for the various traces & i N

are shown in Figure 3 as a function of the time shiftThe 0 2 0 60
figure shows that for the real traces, there are sharp rises in Average distance between node pairs (cell units)
autocorrelation individually and on average when the titi# s (&) Average distance

is one day. The bus traces also show repeatedly oscillating
autocorrelation values throughout a day because each bhsas ru
on a periodic schedule. Such oscillations are much les®abvi
for the cabs as they move more randomly.

——cab

shcab

o o
o 00
%)
>
o
@

o

Fraction of node pairs
o
N <
/

o
)

.................. bus
C. Complexity of movement 0 \ e o
In this section, we demonstrate the complexity of nodal O Min. distance between noda pairs (cell units)
movements as quantified through the ordemodel complex- (b) Minimum distance
ity given by: Fig. 5. Distribution of average and minimum distances betwgains of
traces.
H, (L) - —H(L n)‘L(l),L(2), .. L(n— 1))
is called theentropy rateof the processX, usually denoted
== 2wl o) by H(L).
en-t Again, in the case of a Markov chai{1L(n)}n:012

H(L) can be explicitly given by:
{sz i, Inei) log p(ln 11,...,1,”)}. (g HE) plcttly given By

H(L) = = mpri1og pi-

In the above,l. denotes a general outcome bf’s and the ki

functions p(---) : © ! — R, andp(:]---) : O x

en~1 — R, are the joint probability and conditional prob- o )

ability densities, respectively, of the locations in thélextion D- Distribution of distances between traces

of traces{L;}i—12,. N Figure 5(a) shows the distribution of average distance be-
The above function is defined for general stochastic priween trace pairs, which is defined as

cesses (see for example [6, Chapter 3]). The valudipf

represents the uncertainty of the ordemodel. The smaller Distave (7, j) hm — Z |L;(k (k)]

the value, the less uncertainty there is in the model. Natiae

H, is essentially the entropy of the stationary distribution. for trace pairi andj, wherei # j, and Figure 5(b) depicts the
The behavior of Eq. 14 as a function af is shown in distribution of minimum distance between trace pairs, Whic

Figure 4. The result conforms to the theoretical result tbat is defined as

any stationary proces¥, H,(X) is a decreasing function of Distyin (4, ) = min (|L;(sx) — L (sk)]) -

n and the limitlim,, . H,,(X) thus exists. The limiting value k
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E. Implications of the trace characteristics VI. SIMULATION RESULTS

A. Results for passive adversary

In this section, we study the attack scenario where the
Many of the observed different characteristics of the mobiadversary tries to identify the trace of one participane (th
ity traces can be summarized and explained using the natwigtim) by gathering side information passively. In eactmsi
preferences for certain places visited by the mobile nodeslation, the victim is randomly picked from all the particiga.
shown in the real traces, such as the busy downtown area Rairs of <time, location- of the victim are then randomly
the cabs and the assigned routes for the buses. sampled from the trace and noise is introduced in the spatial
) _ . ..domain. The noisy data are revealed to the adversary as
For instance, the real traces have their preferred visitin

i e information, which the adversary utilizes to identiffye
places, resulting in a smalf, and the entropy drops SIOlec mplete movement history of the victim from the published

when the order increases. This is also reflected in the s ces. We assume that the published traces are snapdtests ta
average distances between cabs or between buse_s. 'V'O_re. \(ﬁarry minute with spatial granularity ©f01° in latitude and
the cab and bus traces collected from Shanghai eXh'b'tIo?'ngitude for anonymization purpose unless stated otlserwi

bro_ade_r spatial range than the_ cab traces f“’”.’ .San Francisggqits reported are for simulation experiments each regea
which is likely because the size of Shanghai is larger thgpy, 000 times.

that of San Francisco. At the same time, the popular placesWe quantify the performance of the strategies with the

n Shgngha| are distributed more .sparsely than those in q’snowing metrics, (i) Fraction of correct conclusionsA con-
F_ranmsco, such that the Shanghai cabs hav_e a larger avei@dSion is correct if the victim is uniquely identified acdaorg
distance from each other than the San Francisco cabs. BECqSine criterion of highest similarity metric, or the victim
some of the bus routes are closer together while some Qre,,,ng the set of candidates with the highest similarity
farther apart, the result |s.that_ only 50% of_the buses ha}f?etric and all the candidates are indifferentiable fromheac
met each other as shown in Figure 5(b), while almost 1000f’ner; (i) Fraction of incorrect conclusionsA conclusion is

of the San Francisco cabs and 70% of the Shanghai cabs rﬁ"ﬁé%rrect when the victim is not among the set of candidates
met each other. having the highest similarity metric; (iifraction of undecided

When nodes are more sparsely distributed in the netwdiRnclusions.A conclusion is undecided when the victim is
area, more efficient victim identification results when th@mong the set of candidates having the highest similarity
adversary collects the side information passivelyoplems metric and the candidates are not indifferentiable fromheac
A1 andA2). On the other hand, sparsity of nodes can both gher.
beneficial and detrimental to the performance of an adversar 1) Problem Al: We present the results based on the
who observes the participants directBréblems B1—B3). It Perception of the passive adversary on the noise when the
is because when the mobile nodes are sparsely distributeie information references time instants that coincidéa w
it could take much longer time for the adversary to me§@mpled times in the traces.
them, thus harming the attack efficiency. Meanwhile, ond&) Correct assumption about the noise distributionWe first
the adversary meets a mobile node, it could identify theetraconsider the case when the revealed location of the victim
of the node almost instantaneously as no other mobile nodesperturbed with zero-mean Gaussian noise with standard
(and hence, traces) are around at the same time, thus helgagiation o, which matches the assumption made by the
the attack performance. We will verify these expectatioredversary in MLE. Figure 6 shows the performance of the
experimentally in the following section. attack strategies using the cab, bus, and shcab traces.
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Fig. 6. (Problem Al) Performance of various metrics as a fonctif the number oklocation, time> pairs revealed. (a)—(c) San Francisco cab traces,
(d)—(f) Shanghai Grid bus traces, and (g)—(i) Shanghai cates. Zero-mean Gaussian noise witk= 5.

When we compare the two attack strategies that assumélext, we evaluate the impact of the granularity of spatial
knowledge of the noise, namely MLE and BAS, MLE is moreloaking. Results of the MLE attack on San Francisco cab
aggressive as it excludes a trace from further considerativaces are shown in Figure 7. In the experiments, the ad-
as soon as it determines that the trace cannot be perturlietsary’s side information is inaccurate or noisy. We fix the
to the revealed locations of the victim given the type anaimount of noise in the side information, and vary the spatial
magnitude of the noise assumed. Hence, when the adversagyanularity of the published trace set.
assumption is correct, this approach can give very goodtsesu |f the adversary’s side information is accurate, we expect
in the fraction of correct conclusions, although it can als@at a finer spatial granularity of the traces will increalse t
give a large fraction of incorrect conclusions initiallyhen effectiveness of the attack. This is because, when the gtid ¢
the adversary has only a few pairs of the side informatiqg |arger, more traces are likely to share a common cell, lvhic
because the traces with the highest similarity for only a femakes it harder for the adversary to differentiate betwéen t
pieces of noisy side information may not be truly the vicEm’ trgces.

In comparison, BAS generally returns lower fractions oftbot \ynen the side information is inaccurate, however, the

correct and incorrect conclusions as it gives equal Weighissits in Figure 7 show that interestingly, a coarser apati
to traces thgt agree WIth the side |r)format|0n W!thln thtc)lerrgranularity is not always bad for the adversary. This is beea
bounds. This results in more undecided conclusions, heret \yhen the side information has mistakes, these mistakes may
is more than one trace, including the correct one, Whlcheshafn fact be mitigated, or sometimes even masked, by a coarser

the same highest similarity value, and the victim’s trace |Sy| srycture. There is hence a competitive effect betviben
undecided among the set. Notice that because the errorboumgher discriminative power of finer cells on the one hand,

are not large enough to enclose all possible noise, thedractyng phossible error mitigating effects of coarser cells @ th
of incorrect conclusions increases initially for BAS wheomd i1 o0 The result is that. as shown in Figure 7, the adversary
pieces of side information are available to the adversary. generally has the best performance atraarmediatecell size.

We now look at the other two approaches that do not We now evaluate the impact of the number of nodes in
use knowledge of the noise, namely MSQ and EXP. We cé#me trace set. In this set of experiments, we always inclbde t
see that although MSQ does not require the knowledge, Vistim node in the trace set, but vary the number of other sode
performance is similar to the best-case performance of Mlikat coexist with the victim. Figure 8 shows the performance
in terms of the fraction of correct conclusions. Meanwhilef the adversary using MLE, as a function of the total number
EXP performs the worst as it puts too much weight on trace$ nodes in the trace set. The results show that, as expected,
that give little deviations from some of the pieces of sidthe adversary has a higher ability of identifying the victim
information. when the size of the trace set gets smaller. Furthermore, the
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Fig. 7. (Problem Al) Performance of various metrics as a fonctf the spatial granularity of the trace set, for differemmbers of<location, time>
pairs of side information. San Francisco cab traces. MLECktstrategy. Zero-mean Gaussian noise with- 5.

adversary derives more benefit from a smaller number of nodeswhich no inference using a general movement model is
when she possesses fewer pieces of the side information. necessary, the performance here does not degrade sigtiyfican
for MLE, and MSQ. Interestingly, BAS gives a much larger

(2) Incorrect assumptions about the noise distribution . : ) X i
We now consider the case when the assumption of noggctlon of incorrect conclusions and slightly larger fian

distribution made by the adversary in MLE is incorrec©f correct conclusions initially when movement has to be
Figures 9(a) and (d) show the performance of the stratewerred* while EXB perfgrms about the sameiln both cases.
when the actual and assumed noise is Gaussian and Uniform3) Summary on passive adversary strategigsie results
respectively. Figures 9(b) and (e) show the results when thaOW that approaches relying on the assumption of noiselcoul
actual and assumed noise is Uniform and Gaussian, resgé&(e very poor performance when the assumption is wrong, as
tively. Figures 9(c) and (f) show the results when the noiddustrated by the MLE results. On the other hand, an apgroac

distribution is Uniform, and the adversary assumes the sani@t having knowledge of the noise may still perform well. In

Notice that among the approaches that assume about Ragticular, MSQ performs equally well as MLE even when
ribe latter has the correct noise assumptiimce MSQ also

noise, MLE is affected the most by the wrong assumptions. o
In particular, the performance of MLE varies depending operforms better than the heuristic approaches of BAS and EXP

the types of actual and assumed noise. When the adverdh@PPears to be the preferred adversary strategy overall.
assumes the noise to be Uniform but it is Gaussian, the
performance is much worsened since the victim’s trace can Qe
mistakenly and permanently removed from consideration dué
to occasional Gaussian noise that exceeds the range of thi this section, we examine the performance of the active
assumed Uniform noise. On the other hand, when Gaussaversary who gains side information by direct meeting$ wit
noise is assumed but it is actually Uniform, MLE surprisinglthe participants. Recall that this adversary can identify a
gives a greater fraction of correct conclusions than when thictim by elimination, and the process is most efficient i th
correct noise distribution is assumed, albeit at the prite adversary meets the participants as quickly as possible. We
getting a greater fraction of incorrect conclusions also. hssume that the adversary operates to achieve this goal. We
contrast to MLE, the performance of BAS is less sensitiiirther assume that the adversary’s side information ineghi

to the type of noise. only at times coinciding with sampled times of the traces.

2) Problem A2:Figure 10 shows the performance of the 1) Problem B1: Figures 12(a)-(c) show the average
attack approaches for different sampling time intervatstii@ anonymity of the victims as observed by the adversary as a
cab traces when the side information references time itsstafunction of the attack time for different sets of the tracelen
that does not coincide with sampled times in the traces.-Zetbe adversary is one of the mobile nodes. The figures show
mean Gaussian noise with= 5 is introduced into the spatial that the most reduction ik-anonymity for each participant
domain of the side information except for the line labeled “nresults from observations made in the first day in the real
noise.” The figure shows that the sparser the samples in thaces. Notice also from the figures that there are flat region
traces, the less effective the attacks are in general. Bhisin the bus trace results corresponding to night times of the
expected since when samples are sparser, inference of na#ls. The cab traces exhibit a similar behavior, but it is muc
movements between the sampling points becomes less eelialsiss obvious due to the cabs’ own mobility characteristics.
Figure 11 shows the results for the bus traces and the Shiangh&) Problem B2: Figures 12(d)-(f) show thé&-anonymity
cab traces. The figure shows that without noise in the sidéthe victims as observed by the adversary as a function of
information, even with a sampling temporal granularity of aattack time, when the adversary stays at one of the cellh Eac
hour and spatial granularity df.01°, the adversary is able line in the figure represents the results for a particulayistp
to identify the victim’s trace by fewer than 25 pairs of sideell, and the line label shows the relative coordinates af th
information with high probability. When noise is introdugedcell in the network area. We plot the results of the six most
however, the results depend heavily on the traces. Fomosta popular cells in each figure, and the popularity of a cell is
the effect of noisy side information on the attack strategée ranked according to the total number of visits made by the
more noticeable for both the Shanghai bus and cab tracesmobile nodes over the entire trace.

When we compare the performance of the attack approache3he figures indicate that for the real traces, staying at a
in this case with the special case in the previous subsectioell for a day is sufficient to reduce ttkeanonymity for each

Results for active adversary
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participant significantly. The improvement by staying leng of time When the adversary prefers to stay at a cell, the
at each cell is minimal. attack efficiency depends on the type of traces and the stayin
3) Problem B3:Figures 12(g)-(i) show thé-anonymity of location of the adversary. In general, staying at a more jaopu
the victim as observed by the adversary as a function oflattdecation helps, by allowing the adversary to identify more
time, when the adversary moves actively inside the netwoykctims more quickly.
area. The label of each line in the figure indicates the number
of popular cells visited by the adversary. The adversarg ase VII. DISCUSSION
greedy algorithm to compute the shortest route that coanect gy analysis in this paper is motivated by the existing
all the popular cells to be visited, and follows this heltist practice of releasing mobility traces in various public adat
route throughout the simulation period. Notice that as thgyrtals [7], [34]. This practice is well intended. For exdep
adversary travels between the popular cells, it may visieot the traces can be used to provide realistic input for trace-
cells during the journeys. driven simulations, which can better ensure the relevarice o
The figures show that travels made by the adversary g&Re simulation results than synthetic traces. For thesmited
erally improve the attack efficiency in identifying the tesc purposes, preservation of information at the granularity o
For instance, for the bus traces, traveling helps the adwersindividual traces is crucial. Furthermore, in order notrtppbse
reduce the size of the candidate set for each participant erjnnecessary constraints on using the traces for diverss tyfp
more than 2000 to only a few in about one day, while stayingvestigations, these portals release entire trace setatafto
at a cell can only reduce the size by half. It is because liye user, and leave it up to the user to exploit the availadie.d
traveling, the adversary is able to meet more participanigjs natural for us to inquire the privacy implications ofcéu
especially when their spatial distribution is sparserhsa€the comprehensive release of information, and our analysis is a
bus and cab traces from Shanghai. However, traveling to teentribution to this investigation, beyond a general mion
many places may hurt the performance because the adversdrhe potential problem. Specifically, we provide a systéma
may spend too much time traveling over unpopular places.study of the privacy problem in order to quantify its sewerit
4) Summary on active adversary strategids:this section when exploited by an intelligent adversary, whose power is
we studied different strategies for an active adversarpliect however limited by the amount of side information available
snapshots of the victims. The results show that for the rdal her.
traces, the ability of the active adversary to travel helps Our analysis assumes techniques of spatial and temporal
it identify many of the victim traces in a realistic amountata cloaking that are admittedly basic. A main advantage of
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more basic cloaking techniques is, however, their ability tmust issue queries to learn about the data, and the types, as
better guarantee the relevance of the cloaked data to divengell as numbers, of allowable queries are carefully retsidic
applications, including those that cannot be charactérize e.g., onlyaggregate-sungueries may be allowed [32]. Based
priori. Our chosen approach should not be taken as ruling aurt these restrictions, DP may calculate the amount of noise
the use of more sophisticated cloaking techniques, howeueeeded to ensure that no private information can be learned
These techniques are certainly possible and many examghlesn adjacent data sets [9]. In particular, for time-sedasa
are known [1], [39], [29], [32], [16]. However, they all comesuch as our mobility traces, the amount of noise needed may in
at the price of requiring more severe transformations of tltkee worst case grow linearly with the number of queries [32].
original data that will render the data applicable for sf)eci Moreover, by nature of its design, DP is able to provide
applications only, i.e., types of applications for whichethsummary or statistical answers about a data set only, but it
transformations are carefully designed. does not allow to preserve information at the granularity of
the individual traces. As we remarked, the loss of per-trace

In particular, differential privacy (DP) [8], [9] is a widgl jtormation makes the data unsuitable for certain purposes
studied approach for ensuring the privacy of a data set . Pﬂ:ludlng trace-driven simulations.

the face of a powerful adversary. In spite of its |mportance
however, DP makes assumptions about the use of a data set
that are fundamentally incompatible with our problem cgnte

For example, in order to provide strong privacy, DP does notIn this paper, we studied the privacy vulnerability of pub-
give users unlimited access to the data set. Rather, the Usdred mobility traces even when the true node identities ar

VIII. CONCLUSION
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