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Stark broadened emission spectra, once separated from other broadening effects,

provide a convenient non-perturbing means of making plasma density measurements.

A deconvolution technique has been developed to measure plasma densities in the

ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate

MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are

captured at 20 locations using a multi-chord spectroscopic system. Spectra that are

time and chord-integrated are well-approximated by a Voigt function. The proposed

method simultaneously resolves plasma electron density and ion temperature by

deconvolving the spectral Voigt profile into constituent functions: a Gaussian

function associated with instrument effects and Doppler broadening by temperature;

and a Lorentzian function associated with Stark broadening by electron density.

The method uses analytic Fourier transforms of the constituent functions to fit the

Voigt profile in the Fourier domain. The method is discussed and compared to a

basic least-squares fit. The Fourier transform fitting routine requires fewer fitting

parameters and shows promise in being less susceptible to instrumental noise and to

contamination from neighboring spectral lines. The method is evaluated and tested

using simulated lines and is applied to experimental data for the 229.69 nm C III

line from multiple chords to determine plasma density and temperature across the

diameter of the pinch. These measurements are used to gain a better understanding

of Z-pinch equilibria.
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I. SPECTROSCOPIC PLASMA DENSITY MEASUREMENTS

Non-perturbing plasma density measurements are important for cases where probes ei-

ther interfere with the plasma or cannot withstand its temperature. Such non-perturbing

methods include laser interferometry,1–3 Thomson scattering,4–6 and spectroscopic Stark

broadening.7–13 The use of spectroscopy is particularly convenient since, unlike the other

methods, it involves a relatively simple one-time setup, and does not require a beam to

enter and exit through multiple ports of an experiment. Likewise many astrophysical mea-

surements are limited to spectroscopic means.

For non-hydrogenic ions the Stark effect gives rise to a Lorentzian spectral profile13 whose

full width at half maximum (FWHM) is directly related to the electron density of the plasma.

Spectral lines, whether hydrogenic7 or non-hydrogenic,8–10 can be fitted to determine plasma

density.7–11

The content of this paper investigates the use of Stark broadening as a reliable means of

measuring plasma electron density, in parallel with or as an alternative to standard tech-

niques. In particular, a method has been developed to accurately deconvolve Stark and

Doppler broadened spectra to simultaneously determine electron density and ion temper-

ature of Z-pinch plasmas at multiple impact parameter locations. In order to distinguish

Stark broadening from other forms of broadening, the proposed deconvolution procedure in-

volves line fitting in the Fourier domain, meaning line data and fitting functions are Fourier

transformed prior to performing fits. The advantages of this method are that it allows for

filtering of contamination from neighboring lines and likewise filtering of signal noise. Re-

sulting fits are therefore more accurate, and can be applied to a larger set of spectral lines,

including lines that are not entirely isolated.

II. DOPPLER AND STARK BROADENING OF SPECTRAL LINES

Chord-integrated emission spectroscopy can be used to measure ion temperature and

density using Doppler broadening and Stark broadening, respectively. These broadening

effects cause spectral line profiles to change shape and can be treated as being independent of

each other.11,13 The theoretical background associated with spectral line shapes is discussed

in detail in Ref. 11. The Doppler effect associated with temperature causes spectral lines to
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have a Gaussian profile,

G (λ) =AG exp

(
−4 ln 2 · (λ− λ0)

2

W 2
G

)
, (1)

where AG is the amplitude, λ is the wavelength, λ0 is the centroid of a given spectral line,

and the FWHM WG is defined by

WG =
λ0

c

√
kBTi · 8 ln 2

m
, (2)

where c is the speed of light, kB is Boltzmann’s constant, Ti is the ion temperature, and m

is the mass of the radiating ion.

Stark broadening in the context of plasmas results from the redistribution of atomic en-

ergy levels of a radiating species due to the electric field imposed by surrounding charged par-

ticles. Two types of approximations are used depending on the plasma regime of interest.14,15

In a quasi-static regime, Stark broadening results from the perturbation of a radiator’s de-

generate states. This perturbation is due to the electrostatic field created by neighboring

ions, whose velocity is much less than that of the electrons. The resulting spectral profiles

are generally asymmetric.11,12,14,15

In the electron impact regime, free electrons perturb the energy levels of the radiating

ion, meaning that collisions between electrons and the radiator occur on a time scale that

is faster than the decay.16 The electron impact regime gives rise to symmetric Lorentzian

profiles (see Eq. (3)). For the case of non-hydrogenic radiating species, electron impact

is the dominant form of broadening.8,11,13 For most non-hydrogenic ions the Stark effect is

quadratic, meaning that the shift in energy levels is proportional to the square of the electric

field, which in turn is related to the density through Gauss’s Law.9,10,17

If the plasma regime falls between the two approximations, either is considered to be

sufficiently valid.18,19 The choice of approximation depends on the relative magnitudes of

mean time between collisions and the duration of interaction.17 For the impurities whose

spectra are measured in the ZaP flow Z-pinch experiment, the electron impact approximation

best characterizes the plasma regime. The Lorentzian function that describes the Stark-

broadened profile can be expressed as

L (λ) =AL
W 2

L

4 (λ− λ0)
2 +W 2

L

, (3)
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where AL is the amplitude, and WL is the FWHM, which can be defined in nanometers

as9,10

WL =0.2we

( ne

1016

)
+ 0.35α

( ne

1016

)1/4
×
(
1− 3

4
N

−1/3
D

)
we

( ne

1016

)
(4)

where we is the tabulated electron impact parameter, ne is the electron density in cm−3, α

is the ion broadening parameter, ND is the number of particles in the Debye sphere. The

first term represents electron impact broadening and the second term represents corrections

due to line asymmetries. For the case of non-hydrogenic radiators the FWHM is9,10

WL = 0.2we

( ne

1016

)
. (5)

In order to make quantitative measurements it is critical to perform background subtrac-

tion and account for all mechanisms of broadening that are relevant to the experiment and

to its instrumentation. This includes accounting for instrument broadening, which is inde-

pendent of plasma properties, and can be quantified through calibration. Experimentally

measured spectra are convolutions of the different broadening effects.11,17 The convolution

of a Lorentzian and Gaussian is given by a Voigt profile,

V (λ) =

∫ ∞

−∞
G (λ− λ′)L (λ′) dλ′. (6)

The broadening effects can be characterized by performing numerical fits to the data;

a Gaussian function is used to fit purely Doppler-broadened spectral data,20 a Lorentzian

function is used to fit purely Stark broadened spectral data,10,21,22 and a convolution of the

two — i.e. the Voigt profile — is used to fit data that has a combination of the two effects.9

The FWHMs of the constituent Gaussian and Lorentzian functions are related to tempera-

ture and density, respectively, through simple analytic expressions (Eq. (2) and Eq. (5)). It

is important to note that the Voigt profile accurately describes spectral broadening for the

case of the electron impact regime. Applying a Voigt fit to an asymmetric line can result in

temperature and density calculation errors of up to 25%.12
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III. SPECTROSCOPIC MEASUREMENTS

The ZaP flow Z-pinch experiment and its hardware are described in detail in Ref. 23.

The experiment produces a 1–2 cm diameter plasma column that is 1 m long, has electron

densities of 1022–1023 m−3, and temperatures of 100–200 eV. Radially sheared flows in the

plasma allow it to remain stable for 20–60 µs, which is orders of magnitude longer than the

instability growth time. Accurate measurement of the radial variation of the ion temperature

and electron density provide valuable insights on the shear mechanism and plasma stability.

Refs. 24 and 25 describe the spectroscopic instrumentation used on the experiment. In

summary, optical fibers collect chord-integrated light along twenty impact parameters across

the diameter of the Z-pinch, a 0.5 m Acton Research Spectra Pro 500i spectrometer separates

the light based on wavelength, and spectra are recorded with a 512 × 512 pixel intensified

charge-coupled device (ICCD). The impact parameters of the twenty fibers span a distance

of 34 mm. Since the hydrogen plasmas in ZaP are typically fully ionized, impurity ions are

used for most spectroscopic measurements. Of particular interest is the C III 229.69 nm ion

line, which is a high-intensity isolated line that is consistently observed in ZaP plasmas.

The spectrometer is equipped with three different gratings, the finest of which is a

3600 grooves/mm grating, which has a wavelength resolution of 0.011 nm/pixel. All of

the data presented in this paper are collected using the 3600 grooves/mm grating. The

spectrometer and fiber optic system are calibrated using a 1 eV cadmium ion pen lamp,

which has an isolated Cd I spectral line at 228.80 nm — close to the C III line of interest.

The signal recorded through each of the twenty fibers in response to the lamp is fitted with

a Gaussian, which characterizes the instrument broadening, and thus the instrument func-

tion for each fiber. The instrument function’s FWHM is used to compute the instrument

temperature associated with each of the twenty fibers. The instrument temperature, —

which is defined using Eq. (2), mass m of a C III ion, and λ0 of 229.69 nm — is an artificial

parameter that is used as a convenient means to describe instrument broadening. Table I

shows the instrument temperatures associated with each chord.

The convolution of a Gaussian instrument function (with temperature Tinst and FWHM

WG,inst) and a Doppler profile (with temperature Ti and FWHM WG,i) yields a Gaussian
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TABLE I. Instrument temperatures (with uncertainties of ±2 eV) associated with each of the

twenty optical fibers used to collect spectral data from ZaP plasmas.

Chord # (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

T [eV] 34 32 29 27 26 24 21 19 18 17

Chord # (11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

T [eV] 17 16 15 16 17 19 19 20 21 21

whose FWHM is given by17

WG,eff =
√

W 2
G,i +W 2

G,inst . (7)

In accordance with Eq. (2), the temperatures of the respective profiles are related by:

Teff = Ti + Tinst . (8)

Consequently, the convolution of a Gaussian instrument function and a Doppler profile yields

a Gaussian whose FWHM has an effective temperature that is the sum of the instrument

temperature and the ion temperature. Thus the values of the effective temperature, which

is determined from a fit, and the instrument temperature, which is derived from calibration,

can be used to determine the ion temperature.

IV. NUMERICAL FITS IN THE FOURIER DOMAIN

In order to determine the Lorentzian FWHM, and hence electron density, it is necessary

to generate a numerical fit to a given spectral line. Lines with high signal-to-noise ratios

are preferred. Prior to fitting, the background — associated with instrument noise and

bremsstrahlung radiation — must be subtracted from the spectral data. If both Stark and

Doppler effects are present, a Voigt profile is used to fit the data.

When expressed in the form given by Eq. (6), the amplitude, WL, WG, and λ0 need to

be optimized (e.g. in the least-squares sense) to fit a given spectral line. This is referred to

as a “basic fit.”

The convolution integral given by Eq. (6) can also be represented by Fourier transforms.

Thus the Fourier transforms of a Voigt profile, V̂ , is the product of the Fourier transform of
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the Gaussian, Ĝ, and the Fourier transform of the Lorentzian, L̂, both of which have explicit

analytic forms that give

V̂ (k) = Ĝ · L̂ = AV exp

(
−W 2

Gk
2

16 ln 2
− WL|k|

2

)
, (9)

where AV is the amplitude, and k is the wavenumber. The expression for V̂ is purely real-

valued because the original spectral line data can be translated by λ0 to give a centroid

of zero. In the Fourier domain this means that shift factors of eiλ0k that would otherwise

multiply Ĝ and L̂ are equal to one. Since all spectral line shape information is contained in

Eq. (9), a numerical fit can be performed in the Fourier domain. The fitting of Eq. (9) to the

real part of the discrete Fourier transform of the spectral data is referred to as a “Fourier

fit.” The unknown variables that are to be optimized in the fit are WG, WL, and AV . For

the simple case in which only one type of broadening mechanism is observed, either WG or

WL in Eq. (9) will be zero. The centroid λ0 need not be optimized for the Fourier domain

fit. In addition to eliminating a fitting variable, performing the fit in the Fourier domain

presents other advantages. In particular, it allows for spectral filtering, making it possible to

reduce the effects of signal noise and the impact of contamination from neighboring spectral

lines that may overlap with the line of interest.

V. ANALYSIS OF SYNTHETIC SPECTRAL DATA

The Fourier fitting method is tested by applying it to synthetic data that are constructed

with specified densities and temperatures. The Fourier fit and the basic fit are first applied

to ideal Voigt profile data with no added error. For ideal Voigt profile data the Fourier fit

offers no advantage over a basic fit, and in fact is slightly less accurate due to additional

numerical manipulation involved in fitting. However, real spectral line data have instrumen-

tal noise and may often be contaminated by the presence of neighboring lines. Synthetic

data was constructed to emulate these effects (see top plot of Fig. 1). For simplicity an

instrument temperature of zero is assumed so that the effective temperature is equal to the

ion temperature Ti.

The synthetic spectral data are generated by the superposition of two Voigt profiles with

simulated noise. The simulated noise is the superposition of two parts: one part that is

proportional to the inverse square root of the intensity and one part that is constant for the
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FIG. 1. Synthetic spectral line data (centroid λ0 of 229.69 nm) with a contaminating line (cen-

troid λ0 of 229.55 nm) and simulated error to approximate typical signal noise (top) are Fourier

transformed and smoothed (bottom). The parameters AV , WG, and WL in Eq. (9) are optimized

to generate a least-squares fit of the real part of the Fourier-transformed data.

TABLE II. Synthetic data with a contaminating line is fitted using the Fourier fit and a basic fit.

The Fourier fit produces a more accurate measure of temperature and density, while the basic fit

drastically overestimates the effect of Stark broadening.

Ti [eV] ne [m−3] WG [nm] WL [nm]

Synthetic Data 50 8.0× 1022 0.0360 0.0448

Fourier Fit 47 7.7× 1022 0.035 0.043

Basic Fit 3 11.3× 1022 0.009 0.063

entire domain. The first part represents the standard deviation of the Poisson statistical

distribution which describes the photon counts measured by the ICCD. The second part

of the noise is an arbitrary instrumental error. The synthetic data (see Fig. 1 and Fig. 2)

consist of 129 data points over a wavelength range of 229.39–229.99 nm, a sampling that

is representative of real spectroscopic data. Since real data resolution is determined by the

number of pixels in the CCD detector and the wavelength span is set by the spectrometer,

any given spectrum will have a fixed range of wavelengths and sample points.

The simulated data are fitted with both a Fourier fit and an unweighted basic fit. In

order to perform the Fourier fit, the data are first Fourier transformed using a Cooley-Tukey
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FIG. 2. A least-squares Fourier fit (top) is compared to a least-squares basic fit (bottom). Values

of synthetic and fitted parameters are given in Table II. The Fourier fit is better able to resolve

the shape of the line of interest.

discrete fast Fourier transform algorithm, for which the number of sample points need not

be a power of two. The original synthetic data and its Fourier transform are shown in

Fig. 1. The presence of the off-center contaminating line in the synthetic data adds a small

amplitude and a high-frequency oscillation to the Fourier-transformed data (see Fig. 1).

The added amplitude is highest at wavenumber k = 0 and is much less than (in this case

≈ 5% of) the amplitude associated with the line of interest. The frequency of oscillation

is related to the distance between the centroid of the contaminating line and the centroid

of the line of interest. To filter out the effect of the contaminating line, the real part of

the Fourier-transformed data are smoothed with a 3-point boxcar smoother (see the bottom

plot in Fig. 1). The smoothed Fourier-transformed synthetic data are then least-squares

fitted using Eq. (9). Table II shows the temperatures, densities, Gaussian FWHMs, and

Lorentzian FWHMs for synthetic spectral data, the Fourier fit to the data, and the basic fit

to the data. The resulting fits are shown in Fig. 2.

By smoothing and fitting in the Fourier domain, it is possible to eliminate the effects

of the contaminating line and noise. Consequently, the Fourier fit better approximates the

shape of the line of interest, and yields more accurate ion temperature and electron density

estimates. By contrast, the basic fit simply averages over the noise, and is significantly

affected by the presence of the contaminating line. The contaminating line causes the basic fit

to overestimate the Lorentzian width, and hence the electron density, while underestimating
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the Gaussian width and hence the ion temperature (see Table II). While the basic fit might

be improved by weighting certain wavelength ranges or larger intensities, the Fourier fitting

method eliminates the need to arbitrarily select a wavelength range or intensity cutoff.

In order to determine the range of ion temperatures and electron densities for which the

Fourier fit is valid, a combined mean square error — associated with the difference between

synthetic data parameter values and fitted parameter values — is calculated for a range of

temperatures and densities. The mean square error, ϵ, is defined as

ϵ =

√√√√(nfit
e − ñe

ñe

)2

+

(
T fit
i − T̃i

T̃i

)2

, (10)

where ñe and T̃i are the known values of electron density and ion temperature, and nfit
e

and T fit
i are the fitted values. The temperature and density errors were also evaluated

independent of one another to determine the factors limiting the range of validity of the fit.

Synthetic C III data with noise as before, but without a contaminating line, are constructed

and fitted for ion temperatures of 1 – 900 eV and electron densities of 0.15× 1022 m−3 –

30× 1022 m−3. The combined mean square error (see Eq. (10)) is plotted in Fig. 3, which

shows a distinct region over which the error is minimized. Fig. 3 also shows lines of constant

WL to WG ratios.

At sufficiently high densities, and especially densities exceeding 25×1022 m−3, the Fourier

fit cannot accurately resolve temperature. Analogously, for temperatures that exceed 600 eV,

the Fourier fit cannot accurately resolve electron density. In effect, independent of the

relative magnitudes of WG and WL, the dominating error at high temperatures is in the

density value, and the dominating error at high densities is in the temperature value. As

the total FWHM of a spectral line increases, due to either higher temperature or density,

the Fourier-transformed profile becomes narrower, thereby decreasing the resolution of the

peaked profile in the Fourier domain, and thus decreasing the accuracy of the fit. As seen

in Fig. 3, this resolution effect sets a limit on the maximum density and temperatures that

can simultaneously be resolved.

Thus for cases in which spectral data are both Doppler broadened and Stark broadened,

ion temperatures and electron densities can be accurately resolved using the Fourier fit pro-

vided that: ne is approximately between 2×1022 m−3 and 15×1022 m−3; Ti is approximately

between 1 and 500 eV; and the ratio of WL to WG is between 0.07 and 3 (see Fig. 3). Outside
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FIG. 3. The combined mean square error, as defined in Eq. (10), for Fourier fits applied to

synthetic data with ion temperatures in the range of 1–900 eV and electron densities in the range

of 0.15× 1022–30× 1022 m−3. Lines of constant FWHM ratios (the ratio of WL to WG) are shown

in white. The minimum error is seen for densities and temperatures approximately in the range

of: 2× 1022–15× 1022 m−3, and 10–500 eV. Regions of dark red represent a mean square error of

0.65 or higher.

of these ranges either ion temperature or electron density, but not both, can be accurately

resolved. Namely, at low temperatures (WG ≪ WL) the spectral profile of interest is as-

sumed to be purely Lorentzian, and analogously for low densities (WG ≫ WL) the spectral

profile is assumed be purely Gaussian. In cases where one of the two broadening effects is

negligible, the range of validity of the fitting technique is vastly increased.

VI. ANALYSIS OF SAMPLE EXPERIMENTAL DATA

In addition to the synthetic data, the Fourier fitting technique is also applied to C III

229.69 nm spectral line data collected from ZaP plasmas. The C III 229.69 nm line is of par-

ticular interest to ZaP since it is a consistently-observed high-intensity line that is isolated

from other impurity lines seen in the experiment. The line data, after taking a subset of the

available ICCD data, consist of 129 data points on a wavelength range of 228.99–230.44 nm.

The line data and the Fourier and basic fits are shown in Fig. 4 for one chord of spectral data,

corresponding to chord-integrated impurity radiation at an impact parameter of -13.42 mm
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FIG. 4. A Fourier fit (top) and basic fit (bottom) are applied to C III 229.69 nm line data for ex-

perimental Pulse 80313017. The two fits yield comparable density and temperature measurements.

from the axis of the experiment. The Fourier fit and basic fit yield electron densities of

(8.6± 0.2)× 1022 m−3 (WL = 0.048±0.001 nm) and (9.0± 0.3)× 1022 m−3 (WL =0.050±

0.002 nm) respectively, indicating that the two fitting methods yield consistent results for

the case of isolated lines. The computed density values are also consistent in magnitude with

those measured by interferometry23; however, the values cannot be directly compared since

the spectroscopic and interferometric measurements are averaged differently. Specifically, in-

terferometry measures chord-integrated density, and spectroscopy measures chord-averaged

density weighted by the spectral line emission.

The effective temperature, listed as Teff in Fig. 4, is the sum of the ion temperature

Ti and the instrument temperature. Both the effective temperature and ion temperature

values are included for reference. The Fourier and basic fits yield effective temperatures of

47± 3 eV (WG = 0.035± 0.001 nm) and 43± 6 eV (WG = 0.033± 0.002 nm), respectively.

The instrument temperature of Chord 3 (see Table I), corresponding to impact parameter

of -13.42 mm, is used to compute the ion temperatures for the Fourier and basic fits: 18± 5

eV and 14± 8 eV, respectively.

In addition to the one chord of data shown in Fig. 4, the data from other chords are

used to compute densities and ion temperatures at other impact parameters. The resulting

electron density and ion temperature profiles across the diameter of the Z-pinch are shown

in Fig. 5 for three experimental pulses. Each point corresponds to a fit that is analogous to

the top plot in Fig. 4.
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FIG. 5. Average electron density and ion temperature measurements determined using Fourier fits

to C III 229.69 nm spectral data at each of twenty chords. The chords span the diameter of the

Z-pinch. Uncertainties in the measurements are shown for Pulse 80313019, and are representative

of the Pulse 80313017 and Pulse 80313018 uncertainties, which are omitted for clarity.

Uncertainties are defined as 95% confidence intervals for the optimized values of WG and

WL, and by extension Ti and ne. The optimal values WG,opt and WL,opt are determined by

minimizing the least-squares error (i.e. the sum of the squares of the residuals associated

with the fit), which serves as a measure of the accuracy of the fit. Once the optimal values are

found, the non-linear dependence of WG,opt and WL,opt on the intensity data can be approx-

imated locally as a linear dependence.26 Using the local linear approximation and assuming

the intensity data consists of jointly normal distributions with sample means and sample

variances makes it possible to determine the variance of the sought parameters around the

mean values WG,opt and WL,opt . The uncertainties in ion temperature and electron density,

as derived from uncertainties in WG and WL, are plotted in Fig. 5 for Pulse 80313019, and

are representative of the uncertainties calculated for Pulse 80313017 and Pulses 80313018.

The error bars for the latter are omitted for clarity.

The fact that the resolved electron density is a chord-averaged measurement and is rel-

atively uniform across the diameter of the pinch indicates that the C III ion is in the outer

shell (i.e. outer radius) of the Z-pinch. By applying the Fourier fitting procedure to other

ion lines, it would be possible to determine how density varies with the Z-pinch radius.
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VII. CONCLUSIONS

A technique has been developed to resolve plasma electron densities from Stark and

Doppler broadened spectral data by performing an optimization fit in the Fourier domain.

The technique resolves ion temperature and electron density simultaneously, and can be

applied to isolated as well as overlapping lines. Fitting to Fourier-transformed spectral data

allows for spectral filtering of noise and contaminating lines, and thereby presents a flexible

and accurate means by which to quantify electron density from Stark broadening. The fitting

method has been applied to synthetic data and experimental C III line data. The results are

consistent with synthetic data inputs and with experimental interferometric measurements.

By extending the set of spectral data that can be fitted, the Fourier method makes density

measurements more accessible. In particular, electron impact plasma regimes with densities

that range between 2 × 1022 m−3 and 15 × 1022 m−3, and effective temperatures between

1 eV and 500 eV can be accurately resolved using the Fourier fit. Because spectral data

are easier to collect than interferometric and Thomson scattering data, the proposed fitting

technique presents useful diagnostic information for plasma electron densities.
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