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Stark broadened emission spectra, once separated from other broadening effects,
provide a convenient non-perturbing means of making plasma density measurements.
A deconvolution technique has been developed to measure plasma densities in the
ZaP flow Z-pinch experiment. The ZaP experiment uses sheared flow to mitigate
MHD instabilities. The pinches exhibit Stark broadened emission spectra, which are
captured at 20 locations using a multi-chord spectroscopic system. Spectra that are
time and chord-integrated are well-approximated by a Voigt function. The proposed
method simultaneously resolves plasma electron density and ion temperature by
deconvolving the spectral Voigt profile into constituent functions: a Gaussian
function associated with instrument effects and Doppler broadening by temperature;
and a Lorentzian function associated with Stark broadening by electron density.
The method uses analytic Fourier transforms of the constituent functions to fit the
Voigt profile in the Fourier domain. The method is discussed and compared to a
basic least-squares fit. The Fourier transform fitting routine requires fewer fitting
parameters and shows promise in being less susceptible to instrumental noise and to
contamination from neighboring spectral lines. The method is evaluated and tested
using simulated lines and is applied to experimental data for the 229.69 nm C III
line from multiple chords to determine plasma density and temperature across the
diameter of the pinch. These measurements are used to gain a better understanding

of Z-pinch equilibria.



I. SPECTROSCOPIC PLASMA DENSITY MEASUREMENTS

Non-perturbing plasma density measurements are important for cases where probes ei-
ther interfere with the plasma or cannot withstand its temperature. Such non-perturbing

46 and spectroscopic Stark

methods include laser interferometry,’3 Thomson scattering,
broadening.”* The use of spectroscopy is particularly convenient since, unlike the other
methods, it involves a relatively simple one-time setup, and does not require a beam to
enter and exit through multiple ports of an experiment. Likewise many astrophysical mea-

surements are limited to spectroscopic means.

For non-hydrogenic ions the Stark effect gives rise to a Lorentzian spectral profile!® whose

full width at half maximum (FWHM) is directly related to the electron density of the plasma.
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Spectral lines, whether hydrogenic’ or non-hydrogenic, can be fitted to determine plasma

density.” !

The content of this paper investigates the use of Stark broadening as a reliable means of
measuring plasma electron density, in parallel with or as an alternative to standard tech-
niques. In particular, a method has been developed to accurately deconvolve Stark and
Doppler broadened spectra to simultaneously determine electron density and ion temper-
ature of Z-pinch plasmas at multiple impact parameter locations. In order to distinguish
Stark broadening from other forms of broadening, the proposed deconvolution procedure in-
volves line fitting in the Fourier domain, meaning line data and fitting functions are Fourier
transformed prior to performing fits. The advantages of this method are that it allows for
filtering of contamination from neighboring lines and likewise filtering of signal noise. Re-

sulting fits are therefore more accurate, and can be applied to a larger set of spectral lines,

including lines that are not entirely isolated.

II. DOPPLER AND STARK BROADENING OF SPECTRAL LINES

Chord-integrated emission spectroscopy can be used to measure ion temperature and
density using Doppler broadening and Stark broadening, respectively. These broadening
effects cause spectral line profiles to change shape and can be treated as being independent of
each other.'™!3 The theoretical background associated with spectral line shapes is discussed

in detail in Ref. 11. The Doppler effect associated with temperature causes spectral lines to



have a Gaussian profile,
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where Ag is the amplitude, A is the wavelength, A\ is the centroid of a given spectral line,

and the FWHM W;; is defined by
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where c is the speed of light, kg is Boltzmann’s constant, T; is the ion temperature, and m
is the mass of the radiating ion.

Stark broadening in the context of plasmas results from the redistribution of atomic en-
ergy levels of a radiating species due to the electric field imposed by surrounding charged par-
ticles. Two types of approximations are used depending on the plasma regime of interest.!*1°
In a quasi-static regime, Stark broadening results from the perturbation of a radiator’s de-
generate states. This perturbation is due to the electrostatic field created by neighboring
ions, whose velocity is much less than that of the electrons. The resulting spectral profiles
are generally asymmetric.1t1214.15

In the electron impact regime, free electrons perturb the energy levels of the radiating
ion, meaning that collisions between electrons and the radiator occur on a time scale that
is faster than the decay.'® The electron impact regime gives rise to symmetric Lorentzian
profiles (see Eq. (3)). For the case of non-hydrogenic radiating species, electron impact
is the dominant form of broadening.®*® For most non-hydrogenic ions the Stark effect is
quadratic, meaning that the shift in energy levels is proportional to the square of the electric
field, which in turn is related to the density through Gauss’s Law.%!0:17

If the plasma regime falls between the two approximations, either is considered to be
sufficiently valid.'®! The choice of approximation depends on the relative magnitudes of
mean time between collisions and the duration of interaction.!” For the impurities whose
spectra are measured in the ZaP flow Z-pinch experiment, the electron impact approximation

best characterizes the plasma regime. The Lorentzian function that describes the Stark-

broadened profile can be expressed as

(3)



where Aj is the amplitude, and W, is the FWHM, which can be defined in nanometers
45910
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where w, is the tabulated electron impact parameter, n. is the electron density in cm™2, «

is the ion broadening parameter, Np is the number of particles in the Debye sphere. The
first term represents electron impact broadening and the second term represents corrections

due to line asymmetries. For the case of non-hydrogenic radiators the FWHM is%10

Wi, = 0.2w, (%) . (5)

In order to make quantitative measurements it is critical to perform background subtrac-
tion and account for all mechanisms of broadening that are relevant to the experiment and
to its instrumentation. This includes accounting for instrument broadening, which is inde-
pendent of plasma properties, and can be quantified through calibration. Experimentally
measured spectra are convolutions of the different broadening effects.!!!” The convolution

of a Lorentzian and Gaussian is given by a Voigt profile,
V) = / G\ —N)L(N)d. (6)

The broadening effects can be characterized by performing numerical fits to the data;
a Gaussian function is used to fit purely Doppler-broadened spectral data,? a Lorentzian

10,21,22 and a convolution of the

function is used to fit purely Stark broadened spectral data,
two — i.e. the Voigt profile — is used to fit data that has a combination of the two effects.”
The FWHMs of the constituent Gaussian and Lorentzian functions are related to tempera-
ture and density, respectively, through simple analytic expressions (Eq. (2) and Eq. (5)). It
is important to note that the Voigt profile accurately describes spectral broadening for the

case of the electron impact regime. Applying a Voigt fit to an asymmetric line can result in

temperature and density calculation errors of up to 25%.'2



III. SPECTROSCOPIC MEASUREMENTS

The ZaP flow Z-pinch experiment and its hardware are described in detail in Ref. 23.
The experiment produces a 1-2 cm diameter plasma column that is 1 m long, has electron
densities of 10%2-10%® m~3, and temperatures of 100-200 eV. Radially sheared flows in the
plasma allow it to remain stable for 20-60 s, which is orders of magnitude longer than the
instability growth time. Accurate measurement of the radial variation of the ion temperature

and electron density provide valuable insights on the shear mechanism and plasma stability.

Refs. 24 and 25 describe the spectroscopic instrumentation used on the experiment. In
summary, optical fibers collect chord-integrated light along twenty impact parameters across
the diameter of the Z-pinch, a 0.5 m Acton Research Spectra Pro 500i spectrometer separates
the light based on wavelength, and spectra are recorded with a 512 x 512 pixel intensified
charge-coupled device (ICCD). The impact parameters of the twenty fibers span a distance
of 34 mm. Since the hydrogen plasmas in ZaP are typically fully ionized, impurity ions are
used for most spectroscopic measurements. Of particular interest is the C III 229.69 nm ion

line, which is a high-intensity isolated line that is consistently observed in ZaP plasmas.

The spectrometer is equipped with three different gratings, the finest of which is a
3600 grooves/mm grating, which has a wavelength resolution of 0.011 nm/pixel. All of
the data presented in this paper are collected using the 3600 grooves/mm grating. The
spectrometer and fiber optic system are calibrated using a 1 eV cadmium ion pen lamp,
which has an isolated Cd I spectral line at 228.80 nm — close to the C III line of interest.
The signal recorded through each of the twenty fibers in response to the lamp is fitted with
a Gaussian, which characterizes the instrument broadening, and thus the instrument func-
tion for each fiber. The instrument function’s FWHM is used to compute the instrument
temperature associated with each of the twenty fibers. The instrument temperature, —
which is defined using Eq. (2), mass m of a C III ion, and Ag of 229.69 nm — is an artificial
parameter that is used as a convenient means to describe instrument broadening. Table I

shows the instrument temperatures associated with each chord.

The convolution of a Gaussian instrument function (with temperature T},s; and FWHM

We.inst) and a Doppler profile (with temperature 7; and FWHM W ;) yields a Gaussian
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TABLE I. Instrument temperatures (with uncertainties of £2 eV) associated with each of the

twenty optical fibers used to collect spectral data from ZaP plasmas.

Chord # (1) (2) (3) (4) () (6) (7) (8) @) (10)
T [eV] 34 32 29 27 26 24 21 19 18 17

Chord #  (11) (12) (13) (14) (15 (16) (17)  (18)  (19)  (20)
T [eV] 17 16 15 16 17 19 19 20 21 21

whose FWHM is given by17

WG,ejj’ = \/WC%',z + Wé,mst' (7)
In accordance with Eq. (2), the temperatures of the respective profiles are related by:
Teﬁ =T + Tipst- (8)

Consequently, the convolution of a Gaussian instrument function and a Doppler profile yields
a Gaussian whose FWHM has an effective temperature that is the sum of the instrument
temperature and the ion temperature. Thus the values of the effective temperature, which
is determined from a fit, and the instrument temperature, which is derived from calibration,

can be used to determine the ion temperature.

IV. NUMERICAL FITS IN THE FOURIER DOMAIN

In order to determine the Lorentzian FWHM, and hence electron density, it is necessary
to generate a numerical fit to a given spectral line. Lines with high signal-to-noise ratios
are preferred. Prior to fitting, the background — associated with instrument noise and
bremsstrahlung radiation — must be subtracted from the spectral data. If both Stark and
Doppler effects are present, a Voigt profile is used to fit the data.

When expressed in the form given by Eq. (6), the amplitude, Wy, W¢, and Ay need to
be optimized (e.g. in the least-squares sense) to fit a given spectral line. This is referred to
as a “basic fit.”

The convolution integral given by Eq. (6) can also be represented by Fourier transforms.

Thus the Fourier transforms of a Voigt profile, ‘A/, is the product of the Fourier transform of
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the Gaussian, G , and the Fourier transform of the Lorentzian, E, both of which have explicit

analytic forms that give

- S W2k2  Wolk|
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where Ay is the amplitude, and k is the wavenumber. The expression for Vis purely real-
valued because the original spectral line data can be translated by Ag to give a centroid
of zero. In the Fourier domain this means that shift factors of e**°* that would otherwise
multiply G and L are equal to one. Since all spectral line shape information is contained in
Eq. (9), a numerical fit can be performed in the Fourier domain. The fitting of Eq. (9) to the
real part of the discrete Fourier transform of the spectral data is referred to as a “Fourier
fit.” The unknown variables that are to be optimized in the fit are W, Wy, and Ay. For
the simple case in which only one type of broadening mechanism is observed, either Wg or
Wy, in Eq. (9) will be zero. The centroid Ay need not be optimized for the Fourier domain
fit. In addition to eliminating a fitting variable, performing the fit in the Fourier domain
presents other advantages. In particular, it allows for spectral filtering, making it possible to

reduce the effects of signal noise and the impact of contamination from neighboring spectral

lines that may overlap with the line of interest.

V. ANALYSIS OF SYNTHETIC SPECTRAL DATA

The Fourier fitting method is tested by applying it to synthetic data that are constructed
with specified densities and temperatures. The Fourier fit and the basic fit are first applied
to ideal Voigt profile data with no added error. For ideal Voigt profile data the Fourier fit
offers no advantage over a basic fit, and in fact is slightly less accurate due to additional
numerical manipulation involved in fitting. However, real spectral line data have instrumen-
tal noise and may often be contaminated by the presence of neighboring lines. Synthetic
data was constructed to emulate these effects (see top plot of Fig. 1). For simplicity an
instrument temperature of zero is assumed so that the effective temperature is equal to the
ion temperature 7;.

The synthetic spectral data are generated by the superposition of two Voigt profiles with
simulated noise. The simulated noise is the superposition of two parts: one part that is

proportional to the inverse square root of the intensity and one part that is constant for the
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FIG. 1. Synthetic spectral line data (centroid Ag of 229.69 nm) with a contaminating line (cen-
troid Ao of 229.55 nm) and simulated error to approximate typical signal noise (top) are Fourier
transformed and smoothed (bottom). The parameters Ay, W, and Wi, in Eq. (9) are optimized

to generate a least-squares fit of the real part of the Fourier-transformed data.

TABLE II. Synthetic data with a contaminating line is fitted using the Fourier fit and a basic fit.
The Fourier fit produces a more accurate measure of temperature and density, while the basic fit

drastically overestimates the effect of Stark broadening.

T; [eV] ne [m~3] We [nm] Wi, [nm]
Synthetic Data 50 8.0 x 10%2 0.0360 0.0448
Fourier Fit 47 7.7 x 10?2 0.035 0.043
Basic Fit 3 11.3 x 10%2 0.009 0.063

entire domain. The first part represents the standard deviation of the Poisson statistical
distribution which describes the photon counts measured by the ICCD. The second part
of the noise is an arbitrary instrumental error. The synthetic data (see Fig. 1 and Fig. 2)
consist of 129 data points over a wavelength range of 229.39-229.99 nm, a sampling that
is representative of real spectroscopic data. Since real data resolution is determined by the
number of pixels in the CCD detector and the wavelength span is set by the spectrometer,
any given spectrum will have a fixed range of wavelengths and sample points.

The simulated data are fitted with both a Fourier fit and an unweighted basic fit. In

order to perform the Fourier fit, the data are first Fourier transformed using a Cooley-Tukey
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FIG. 2. A least-squares Fourier fit (top) is compared to a least-squares basic fit (bottom). Values
of synthetic and fitted parameters are given in Table II. The Fourier fit is better able to resolve

the shape of the line of interest.

discrete fast Fourier transform algorithm, for which the number of sample points need not
be a power of two. The original synthetic data and its Fourier transform are shown in
Fig. 1. The presence of the off-center contaminating line in the synthetic data adds a small
amplitude and a high-frequency oscillation to the Fourier-transformed data (see Fig. 1).
The added amplitude is highest at wavenumber & = 0 and is much less than (in this case
~ 5% of) the amplitude associated with the line of interest. The frequency of oscillation
is related to the distance between the centroid of the contaminating line and the centroid
of the line of interest. To filter out the effect of the contaminating line, the real part of
the Fourier-transformed data are smoothed with a 3-point boxcar smoother (see the bottom
plot in Fig. 1). The smoothed Fourier-transformed synthetic data are then least-squares
fitted using Eq. (9). Table II shows the temperatures, densities, Gaussian FWHMSs, and
Lorentzian FWHMSs for synthetic spectral data, the Fourier fit to the data, and the basic fit
to the data. The resulting fits are shown in Fig. 2.

By smoothing and fitting in the Fourier domain, it is possible to eliminate the effects
of the contaminating line and noise. Consequently, the Fourier fit better approximates the
shape of the line of interest, and yields more accurate ion temperature and electron density
estimates. By contrast, the basic fit simply averages over the noise, and is significantly
affected by the presence of the contaminating line. The contaminating line causes the basic fit

to overestimate the Lorentzian width, and hence the electron density, while underestimating
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the Gaussian width and hence the ion temperature (see Table IT). While the basic fit might
be improved by weighting certain wavelength ranges or larger intensities, the Fourier fitting
method eliminates the need to arbitrarily select a wavelength range or intensity cutoff.

In order to determine the range of ion temperatures and electron densities for which the
Fourier fit is valid, a combined mean square error — associated with the difference between
synthetic data parameter values and fitted parameter values — is calculated for a range of

temperatures and densities. The mean square error, €, is defined as

At =\ 2 7hit 5\ °
6: (u) . <_> | (10)
Tie T

where 7. and T} are the known values of electron density and ion temperature, and nfit

and Tiﬁ " are the fitted values. The temperature and density errors were also evaluated
independent of one another to determine the factors limiting the range of validity of the fit.
Synthetic C III data with noise as before, but without a contaminating line, are constructed
and fitted for ion temperatures of 1 — 900 eV and electron densities of 0.15 x 10*2 m=3 —
30 x 10** m™3. The combined mean square error (see Eq. (10)) is plotted in Fig. 3, which
shows a distinct region over which the error is minimized. Fig. 3 also shows lines of constant
W, to Wg ratios.

At sufficiently high densities, and especially densities exceeding 25 x 10?2 m~3, the Fourier
fit cannot accurately resolve temperature. Analogously, for temperatures that exceed 600 eV,
the Fourier fit cannot accurately resolve electron density. In effect, independent of the
relative magnitudes of Wy and Wy, the dominating error at high temperatures is in the
density value, and the dominating error at high densities is in the temperature value. As
the total FWHM of a spectral line increases, due to either higher temperature or density,
the Fourier-transformed profile becomes narrower, thereby decreasing the resolution of the
peaked profile in the Fourier domain, and thus decreasing the accuracy of the fit. As seen
in Fig. 3, this resolution effect sets a limit on the maximum density and temperatures that
can simultaneously be resolved.

Thus for cases in which spectral data are both Doppler broadened and Stark broadened,
ion temperatures and electron densities can be accurately resolved using the Fourier fit pro-
vided that: n, is approximately between 2 x 10?2 m~2 and 15 x 10?2 m~3; T; is approximately

between 1 and 500 eV; and the ratio of Wy, to W is between 0.07 and 3 (see Fig. 3). Outside
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FIG. 3. The combined mean square error, as defined in Eq. (10), for Fourier fits applied to
synthetic data with ion temperatures in the range of 1-900 eV and electron densities in the range
of 0.15 x 10%2-30 x 10?2 m~3. Lines of constant FWHM ratios (the ratio of W, to W) are shown
in white. The minimum error is seen for densities and temperatures approximately in the range
of: 2 x 102215 x 10?2 m—3, and 10-500 eV. Regions of dark red represent a mean square error of

0.65 or higher.

of these ranges either ion temperature or electron density, but not both, can be accurately
resolved. Namely, at low temperatures (Ws < W) the spectral profile of interest is as-
sumed to be purely Lorentzian, and analogously for low densities (Wg > W) the spectral
profile is assumed be purely Gaussian. In cases where one of the two broadening effects is

negligible, the range of validity of the fitting technique is vastly increased.

VI. ANALYSIS OF SAMPLE EXPERIMENTAL DATA

In addition to the synthetic data, the Fourier fitting technique is also applied to C III
229.69 nm spectral line data collected from ZaP plasmas. The C III 229.69 nm line is of par-
ticular interest to ZaP since it is a consistently-observed high-intensity line that is isolated
from other impurity lines seen in the experiment. The line data, after taking a subset of the
available ICCD data, consist of 129 data points on a wavelength range of 228.99-230.44 nm.
The line data and the Fourier and basic fits are shown in Fig. 4 for one chord of spectral data,

corresponding to chord-integrated impurity radiation at an impact parameter of -13.42 mm
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FIG. 4. A Fourier fit (top) and basic fit (bottom) are applied to C III 229.69 nm line data for ex-

perimental Pulse 80313017. The two fits yield comparable density and temperature measurements.

from the axis of the experiment. The Fourier fit and basic fit yield electron densities of
(8.6 +0.2) x 102 m™3 (W, = 0.04840.001 nm) and (9.0 4 0.3) x 10?2 m™=3 (W, =0.050+
0.002 nm) respectively, indicating that the two fitting methods yield consistent results for
the case of isolated lines. The computed density values are also consistent in magnitude with
those measured by interferometry??; however, the values cannot be directly compared since
the spectroscopic and interferometric measurements are averaged differently. Specifically, in-
terferometry measures chord-integrated density, and spectroscopy measures chord-averaged
density weighted by the spectral line emission.

The effective temperature, listed as T.s in Fig. 4, is the sum of the ion temperature
T; and the instrument temperature. Both the effective temperature and ion temperature
values are included for reference. The Fourier and basic fits yield effective temperatures of
47+ 3 eV (Wg = 0.035 £ 0.001 nm) and 43 £ 6 eV (Wg = 0.033 £ 0.002 nm), respectively.
The instrument temperature of Chord 3 (see Table I), corresponding to impact parameter
of -13.42 mm, is used to compute the ion temperatures for the Fourier and basic fits: 18 +5
eV and 14 4+ 8 eV, respectively.

In addition to the one chord of data shown in Fig. 4, the data from other chords are
used to compute densities and ion temperatures at other impact parameters. The resulting
electron density and ion temperature profiles across the diameter of the Z-pinch are shown
in Fig. 5 for three experimental pulses. Each point corresponds to a fit that is analogous to

the top plot in Fig. 4.
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FIG. 5. Average electron density and ion temperature measurements determined using Fourier fits
to C IIT 229.69 nm spectral data at each of twenty chords. The chords span the diameter of the
Z-pinch. Uncertainties in the measurements are shown for Pulse 80313019, and are representative

of the Pulse 80313017 and Pulse 80313018 uncertainties, which are omitted for clarity.

Uncertainties are defined as 95% confidence intervals for the optimized values of W and
W, and by extension T; and n.. The optimal values Wg o, and Wy, o are determined by
minimizing the least-squares error (i.e. the sum of the squares of the residuals associated
with the fit), which serves as a measure of the accuracy of the fit. Once the optimal values are
found, the non-linear dependence of W¢ o, and W, o, on the intensity data can be approx-
imated locally as a linear dependence.?® Using the local linear approximation and assuming
the intensity data consists of jointly normal distributions with sample means and sample
variances makes it possible to determine the variance of the sought parameters around the
mean values Wg ope and Wy ,,¢. The uncertainties in ion temperature and electron density,
as derived from uncertainties in Wy and Wy, are plotted in Fig. 5 for Pulse 80313019, and
are representative of the uncertainties calculated for Pulse 80313017 and Pulses 80313018.

The error bars for the latter are omitted for clarity.

The fact that the resolved electron density is a chord-averaged measurement and is rel-
atively uniform across the diameter of the pinch indicates that the C III ion is in the outer
shell (i.e. outer radius) of the Z-pinch. By applying the Fourier fitting procedure to other

ion lines, it would be possible to determine how density varies with the Z-pinch radius.
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VII. CONCLUSIONS

A technique has been developed to resolve plasma electron densities from Stark and
Doppler broadened spectral data by performing an optimization fit in the Fourier domain.
The technique resolves ion temperature and electron density simultaneously, and can be
applied to isolated as well as overlapping lines. Fitting to Fourier-transformed spectral data
allows for spectral filtering of noise and contaminating lines, and thereby presents a flexible
and accurate means by which to quantify electron density from Stark broadening. The fitting
method has been applied to synthetic data and experimental C III line data. The results are
consistent with synthetic data inputs and with experimental interferometric measurements.

By extending the set of spectral data that can be fitted, the Fourier method makes density
measurements more accessible. In particular, electron impact plasma regimes with densities
that range between 2 x 10?2 m~3 and 15 x 10?2 m~3, and effective temperatures between
1 eV and 500 eV can be accurately resolved using the Fourier fit. Because spectral data
are easier to collect than interferometric and Thomson scattering data, the proposed fitting

technique presents useful diagnostic information for plasma electron densities.
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