DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Competitive and cooperative effects of chloride on palladium(II) adsorption to iron (oxyhydr)oxides: Implications for mobility during weathering

    In surface and near-surface weathering environments, the mobilization and partial loss of palladium (Pd) under oxidizing and weakly acidic conditions has been attributed to aqueous chloride complexation. However, prior work has also observed that a portion of Pd is retained by iron (oxyhydr)oxides in the weathering zone. The effect chloride has on the relative amount of Pd mobilization versus retention by iron (oxyhydr)oxides is currently unclear. We studied the effect of chloride complexation on Pd(II) adsorption to two iron (oxyhydr)oxides, hematite and 2-line ferrihydrite, at pH 4. Increasing chloride concentration suppresses Pd adsorption for both hematite and ferrihydrite, which displaymore » similar binding affinities under the conditions studied. Thermodynamic modeling of aqueous Pd speciation indicates that greater suppression of binding to iron (oxyhydr)oxides should occur than is observed because of the strength of Pd-Cl complexation, implying that additional interactions at the mineral surface are counteracting this effect. While increasing dissolved chloride concentration does not measurably impact mineral surface charging, extended X-ray absorption fine structure (EXAFS) spectra indicate that ternary Pd-Cl surface complexes form on both hematite and ferrihydrite. The number of Cl ligands in the surface species increase at greater chloride concentration. A mixture of bidentate and monodentate surface species are indicated by the EXAFS spectra, although the fitting uncertainties precludes determining whether these vary in relative abundance with chloride concentration. In order to offset the effect of strong aqueous Pd-Cl complexation and align with our EXAFS results, a surface complexation model developed for Pd adsorption to hematite involves a mixture of three ternary surface complexes containing 1, 2, and 3 chloride ligands. Our results show that Pd is mobilized as a chloride complex in platinum group element-rich weathering zones. As a result, porewater chloride concentrations are thus a dominant control on Pd retention by iron (oxyhydr)oxides in these weakly acidic environments.« less
  2. Validating the rhenium proxy for rock organic carbon oxidation using weathering profiles

    Chemical weathering over geological timescales acts as a source or sink of atmospheric carbon dioxide (CO2), while influencing long-term redox cycling and atmospheric oxygen (O2) at Earth's surface. There is a growing recognition that the oxidative weathering of rock organic carbon (OCpetro) can release more CO2 than is locally drawn down by silicate weathering, and may vary due to changes in erosion and climate. The element rhenium (Re) has emerged as a proxy to track the oxidative weathering of OCpetro, yet uncertainties in its application remain namely that we lack a systematic assessment of the comparative mobility of Re andmore » OCpetro during sedimentary rock weathering. Here we measure Re and OCpetro loss across gradients in rock weathering at 9 global sites, spanning a range of initial OCpetro values from ~0.2 % to >10 %. We use titanium to account for volume changes during weathering and assess Re and OCpetro loss alongside major elements that reflect silicate (Na, Mg), carbonate (Ca, Mg) and sulfide (S) weathering. Across the dataset, Re loss is correlated with OCpetro loss but not with loss of any other major element. Further, across the weathering profiles, the average molar ratio of OCpetro to Re loss was 0.84 ± 0.15, with 8 out of 9 sites having a ratio >0.74. At one site (Marcellus Shale), the average ratio was lower at 0.58 ± 0.11. The excess loss of Re matches expectations that, typically, between ~0 and 20 % of the Re liberated by sedimentary rock weathering derives from silicate or sulfide phases, while some OCpetro may be physically or chemically protected from weathering. Overall, our measurements provide validation for the Re proxy of OCpetro oxidation and allow future work to further improve our knowledge of regional and global-scale rates of this important source of CO2 in the geochemical carbon cycle.« less
  3. The Global Biogeochemical Cycle of Rhenium

    Here, this paper is the first comprehensive synthesis of what is currently known about the different natural and anthropogenic fluxes of rhenium (Re) on Earth's surface. We highlight the significant role of anthropogenic mobilization of Re, which is an important consideration in utilizing Re in the context of a biogeochemical tracer or proxy. The largest natural flux of Re derives from chemical weathering and riverine transport to the ocean (dissolved = 62 Ã— 106 g yr-1 and particulate = 5 Ã— 106 g yr-1). This review reports a new global average [Re] of 16 Â± 2 pmol L-1, or 10 Â± 1 pmol L-1 for the inferred pre-anthropogenic concentration without human impact, for rivers draining tomore » the ocean. Human activity via mining (including secondary mobilization), coal combustion, and petroleum combustion mobilize approximately 560 × 106 g yr-1 Re, which is more than any natural flux of Re. There are several poorly constrained fluxes of Re that merit further research, including: submarine groundwater discharge, precipitation (terrestrial and oceanic), magma degassing, and hydrothermal activity. The mechanisms and the main host phases responsible for releasing (sources) or sequestrating (sinks) these fluxes remain poorly understood. This study also highlights the use of dissolved [Re] concentrations as a tracer of oxidation of petrogenic organic carbon, and stable Re isotopes as proxies for changes in global redox conditions.« less
  4. Life cycle impact and cost analysis of quarry materials for land-based enhanced weathering in Northern California

    Enhanced weathering (EW) is a CO2 removal (CDR) and sequestration strategy that accelerates the natural reactions of minerals that can store carbon from the atmosphere and biotic reactions. One method of EW is to apply finely ground silicate rocks to agricultural lands. EW has been demonstrated in laboratory and field tests, but great uncertainty remains regarding the life-cycle of using locally available rocks on candidate soils. We evaluate the life-cycle impacts, job creation, and cost of scenarios where fines and rocks mined from quarries in Oregon and Northern California are transported by truck and tilled into agricultural soils. Candidate quarrymore » dust samples were classified as dacite, andesite, and olivine-bearing rocks, with EW potentials ranging from 125-760 kg CO2/metric tonne rock. We determined the olivine-bearing rock from Southern Oregon could achieve a levelized cost of CDR under the DOE Earthshot target of $$\$$$$100/t CO2, as long as application rates are 25 t/ha or more. Even andesite and dacite materials reach lower costs than commercial direct air capture technologies, with reduction in fines purchase and transport costs critical for achieving the Earthshot target. The results suggest that low-cost EW can be achieved using natural quarry materials, with average removal up to 2.2 t CO2e per hectare per year.« less
  5. Reduced accrual of mineral-associated organic matter after two years of enhanced rock weathering in cropland soils, though no net losses of soil organic carbon

    Enhanced rock weathering (ERW), the application of crushed silicate rock to soil, can remove atmospheric carbon dioxide by converting it to (bi) carbonate ions or solid carbonate minerals. However, few studies have empirically evaluated ERW in field settings. A critical question remains as to whether additions of crushed rock might positively or negatively affect soil organic matter (SOM)—Earth’s largest terrestrial organic carbon (C) pool and a massive reservoir of organic nitrogen (N). Here, in three irrigated cropland field trials in California, USA, we investigated the effect of crushed meta-basalt rock additions on different pools of soil organic carbon and nitrogenmore » (i.e., mineral-associated organic matter, MAOM, and particulate organic matter, POM), active microbial biomass, and microbial community composition. After 2 years of crushed rock additions, MAOM stocks were lower in the upper surface soil (0–10 cm) of plots with crushed rock compared to unamended control plots. At the 2 sites where baseline pre-treatment data were available, neither total SOC nor SON decreased over the 2 years of study in plots with crushed rock or unamended control plots. However, the accrual rate of MAOM-C and MAOM-N at 0–10 cm was lower in plots with crushed rock vs. unamended controls. Before ERW is deployed at large scales, our results suggest that field trials should assess the effects of crushed rock on SOM pools, especially over multi-year time scales and in different environmental contexts, to accurately assess changes in net C and understand the mechanisms driving interactions between ERW and SOM cycling.« less
  6. Climate forcing controls on carbon terrestrial fluxes during shale weathering

    Climate influences near-surface biogeochemical processes and thereby determines the partitioning of carbon dioxide (CO2) in shale, and yet the controls on carbon (C) weathering fluxes remain poorly constrained. Using a dataset that characterizes biogeochemical responses to climate forcing in shale regolith, we implement a numerical model that describes the effects of water infiltration events, gas exchange, and temperature fluctuations on soil respiration and mineral weathering at a seasonal timescale. Our modeling approach allows us to quantitatively disentangle the controls of transient climate forcing and biogeochemical mechanisms on C partitioning. We find that ~3% of soil CO2 (1.02 mol C/m2/y) ismore » exported to the subsurface during large infiltration events. Here, net atmospheric CO2 drawdown primarily occurs during spring snowmelt, governs the aqueous C exports (61%), and exceeds the CO2 flux generated by pyrite and petrogenic organic matter oxidation (~0.2 mol C/m2/y). We show that shale CO2 consumption results from the temporal coupling between soil microbial respiration and carbonate weathering. This coupling is driven by the impacts of hydrologic fluctuations on fresh organic matter availability and CO2 transport to the weathering front. Diffusion-limited transport of gases under transient hydrological conditions exerts an important control on CO2(g) egress patterns and thus must be considered when inferring soil CO2 drawdown from the gas phase composition. Our findings emphasize the importance of seasonal climate forcing in shaping the net contribution of shale weathering to terrestrial C fluxes and suggest that warmer conditions could reduce the potential for shale weathering to act as a CO2 sink.« less
  7. Soil management practices can contribute to net carbon neutrality in California

    Stabilizing climate requires reducing greenhouse gas (GHG) emissions and storing atmospheric carbon dioxide (CO2) in land or ocean systems. Soil management practices can reduce GHG emissions or sequester atmospheric CO2 into inorganic and organic forms. However, whether soil carbon strategies represent a viable and impactful climate mitigation pathway is uncertain. A specific question concerns the role that land-management practices and soil amendments can play in realizing California's ambition for carbon neutrality by 2045. Here we examine the carbon flux impacts of soil conservation (i.e., compost, reduced tillage, cover crop) and enhanced silicate rock weathering (EW) practices at different areal extentsmore » of implementation in cropland, grassland, and savanna in California under two climate change cases. We show that with implementation areas of 15% or 50% of private cultivated land, grassland, and savanna in California, soil conservation practices alone can contribute $$1.4^{2.1}_{0.7}$$% ($$-1.8^{-2.7}_{ -0.9}$$ Mt CO2eq y-1) and $$4.6^{6.9}_{2.3}$$% ($$-6.0^{-8.9}_{-3.0}$$ Mt CO2eq y-1) of the additional emissions reduction needed (beyond previous targets) to meet the 2045 net neutrality goal (-129.3 Mt CO2eq y-1), respectively, on an average annual basis, including climate uncertainty. Including EW in these scenarios increases the total contributions of management practices to $$4.1^{5.6}_{2.5}$$% ($$-5.2^{-7.3}_{-3.2}$$ Mt CO2eq y-1) and $$13.5^{18.6}_{8.2}$$% ($$-17.5^{-24.2}_{-10.7}$$ Mt CO2eq y-1), respectively, of this reduction. This highlights that the extent of implementation area is a major factor in determining benefits and that EW has the potential to make a real contribution to net reduction targets. Results are similar across climate cases, indicating that contemporary field data can be used to make future projections. With EW there remains mechanistic uncertainties, however, such as rock dissolution rate and environmental controls on weathering products, which require additional field research to improve understanding of the technological efficacy of this approach for California's 2045 carbon neutrality goal.« less
  8. Material characterization of seven photovoltaic backsheets using seven accelerated test conditions

    A variety of polymeric backsheet materials can be found in fielded photovoltaic (PV) modules, mostly based on fluoropolymer and polyethylene terephthalate (PET) materials. Cost reduction and sustainability considerations drive the recent development of alternative backsheet materials and designs [1]. In some fielded PV installations, polymeric materials are susceptible to environmental degradation in the form of backsheet cracking. To prevent backsheet degradation that can result in a module failure, thorough laboratory reliability testing is needed. In this report we studied the durability of seven commercial and experimental PV backsheets through accelerated stress testing using seven photolytic, hygrometric, and custom tests withmore » the goal to understand if novel fluoropolymer-free backsheets are sufficiently environmentally durable to be commercialized. We divided the mechanisms observed during aging into two categories: core degradation and surface degradation. Although core degradation due to hydrolysis was observed in all commercial PET-, and polyamide (PA)-based backsheets aged with 85 degrees C/85% relative humidity, this test is unlikely to be field relevant. Photo-oxidative reactions on the exposed surface during UV weathering affected all seven backsheets regardless of the outer layer polymer material and additives. This degradation was limited to the outermost micrometers of the surface, except for backsheets containing PA-12, which resulted in surface cracking. A custom test combining UV with water spray caused the most severe backsheet degradation, including surface erosion and loss of insulating properties in polyolefin (PO)- and PA-based backsheets. This highlights the importance of combined accelerated stress testing to screen for complex backsheet degradation mechanisms. We also showed that, with material and design optimization, coextruded experimental PO-based backsheets have the potential to be a durable alternative to commercial PET- and fluoropolymer-based PV backsheets.« less
  9. Arctic Permafrost Thawing Enhances Sulfide Oxidation

    Permafrost degradation is altering biogeochemical processes throughout the Arctic. Thaw-induced changes in organic matter transformations and mineral weathering reactions are impacting fluxes of inorganic carbon (IC) and alkalinity (ALK) in Arctic rivers. However, the net impact of these changing fluxes on the concentration of carbon dioxide in the atmosphere (pCO2) is relatively unconstrained. Resolving this uncertainty is important as thaw-driven changes in the fluxes of IC and ALK could produce feedbacks in the global carbon cycle. Enhanced production of sulfuric acid through sulfide oxidation is particularly poorly quantified despite its potential to remove ALK from the ocean-atmosphere system and increasemore » pCO2, producing a positive feedback leading to more warming and permafrost degradation. In this work, we quantified weathering in the Koyukuk River, a major tributary of the Yukon River draining discontinuous permafrost in central Alaska, based on water and sediment samples collected near the village of Huslia in summer 2018. Using measurements of major ion abundances and sulfate (SO42-) sulfur (34S/32S) and oxygen (18O/16O) isotope ratios, we employed the MEANDIR inversion model to quantify the relative importance of a suite of weathering processes and their net impact on pCO2. Calculations found that approximately 80% of SO42- in mainstem samples derived from sulfide oxidation with the remainder from evaporite dissolution. Moreover, 34S/32S ratios, 13C/12C ratios of dissolved IC, and sulfur X-ray absorption spectra of mainstem, secondary channel, and floodplain pore fluid and sediment samples revealed modest degrees of microbial sulfate reduction within the floodplain. Weathering fluxes of ALK and IC result in lower values of pCO2 over timescales shorter than carbonate compensation (~104 yr) and, for mainstem samples, higher values of pCO2 over timescales longer than carbonate compensation but shorter than the residence time of marine (~107 yr). Furthermore, the absolute concentrations of and Mg2+ in the Koyukuk River, as well as the ratios of SO42- and Mg2+ to other dissolved weathering products, have increased over the past 50 years. Through analogy to similar trends in the Yukon River, we interpret these changes as reflecting enhanced sulfide oxidation due to ongoing exposure of previously frozen sediment and changes in the contributions of shallow and deep flow paths to the active channel. Overall, these findings confirm that sulfide oxidation is a substantial outcome of permafrost degradation and that the sulfur cycle responds to permafrost thaw with a timescale-dependent feedback on warming.« less
  10. Fungal organic acid uptake of mineral-derived K is dependent on distance from carbon hotspot

    Fungal mineral weathering regulates the bioavailability of inorganic nutrients from mineral surfaces to organic matter and increase the bioavailable fraction of nutrients. Such weathering strategies are classified as biomechanical or biochemical. In the case of fungal uptake of mineral nutrients through biochemical weathering, it is widely hypothesized that uptake of inorganic nutrients occurs through organic acid chelation, but such processes have not been directly visualized. This is in part due to challenges in probing the complex and heterogeneous soil environment. Here, using an epoxy-based, mineral-doped soil micromodel platform, which emulates soil mineralogy and porosity, we visualize the molecular mechanisms ofmore » mineral weathering. Mass spectrometry imaging revealed differences in the distribution of fungal exudates, citric acid, and tartaric acid on the soil micromodels in presence of minerals. Citric acid was detected closer to the nutrient-rich inoculation point, whereas tartaric acid was highly abundant away from inoculation point. This suggested that the organic acid exuded by the fungi depended on the proximity from the carbon-rich organic substrate at the point of inoculation. Using a combination of X-ray fluorescence and X-ray near edge structure analysis, we identified citric acid- and tartaric acid-bound K within fungal hyphae networks grown in the presence of minerals. Combined, our results provide direct evidence that fungi uptake and transport mineral derived nutrient organic acid chelation. The results of this study provided unprecedented visualization of fungal uptake and transport of K+, while resolving the indirect weathering mechanism of fungal K uptake from mineral interfaces.« less
...

Search for:
All Records
Subject
Weathering

Refine by:
Article Type
Availability
Journal
Creator / Author
Publication Date
Research Organization