DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Hydrolysis of poly(ester urethane): In-depth mechanistic pathway determination through thermal and chemical characterization

    Many structure/property relationships of hydrolyzed poly(ester urethane) (PEU) – a thermoplastic – have been reported. Examples include changes in molecular weight vs. elongation at break and crosslink density vs. mechanical strength. However, the effect of molecular weight (or molar mass) reduction on some physical, thermal, and chemical properties of hydrolyzed PEU have not been reported. Therefore, a large set of hydrolyzed PEU (Estane®5703) samples were obtained from two aging experiments: 1) accelerated aging conducted under various environments (air, nitrogen, moisture) and at 64 °C and below for almost three years, and 2) natural aging conducted under ambient conditions for moremore » than three decades. The hydrolyzed samples were characterized via multi-detection gel permeation chromatography (GPC), thermogravimetric analysis (TGA), modulated differential scanning calorimetry (mDSC), UV–vis spectroscopy, nuclear magnetic resonance (NMR), and Fourier-transform infrared (FTIR) spectroscopy techniques. Hydrolysis of ester linkages in the soft-segments decreases both the molecular weight (Mw) and the melting point (Tm) of Estane (from ~55 °C to 39 °C). Aging above this Tm, increased mobility of polymer chains and water diffusivity in the PEU matrix alter the PEU degradation pathway from those expected at aging temperatures below this Tm and have significant bearing on the critical molecular weight (MC) at which the physical, chemical, thermal, and mechanical properties of Estane change abruptly. While a MC value of 20 kDa is found for PEU hydrolysis at mild temperatures (e.g., as low as 39 °C), the value of MC increases with increasing aging temperatures. To complement the existing structure/property relationships reported in the literature, more correlations are obtained, which include the effect of Mw on polydispersity, intrinsic viscosity (Mark-Houwink equation), UV extinction coefficient, and dn/dc (GPC analysis) values. Furthermore, we seek to bolster previously reported aging models for PEU by developing a practical model with which the extent of degradation and material performance can be predicted based on aging under different temperature ranges both above and below the melting point of Estane.« less
  2. Hydrolysis of poly(ester urethane): In-depth mechanistic pathways through FTIR 2D-COS spectroscopy

    The hydrolysis of thermoplastic poly(ester urethane) (PEU) is convoluted by its block copolymer phase structure and competing hydrolytic sensitivities of multiple functional groups. The exact pathways for water ingress, water interaction with the material and ultimately the kinetics and order of functional group hydrolysis remain to be refined. Additional diagnostics are needed to enable deeper insight and deconvolution of material changes. In combination with GPC results, a promising analytical technique – two-dimensional correlation spectroscopy (2D-COS) – has been reviewed and applied to analyze FTIR spectra of hydrolyzed PEUs aged under various conditions, such as exposure time, temperature, and relative humidity.more » 2D-COS allows the complex role of water with distinct intermediate steps to be established, plus it emphasizes the initial stages of PEU hydrolysis at more susceptible functional groups. As a complication for the raw material, ATR IR detected some talc on the surface of commercial PEU beads and pressed sheets thereof, which can interfere with water ingress and thereby retards PEU hydrolysis, particularly in its natural form or moderate aging at lower temperatures (e.g., below the melting point of PEU). As aging temperature increases above the melting temperature, even traces of water trapped inside the PEU are sufficient to initiate the hydrolysis, which then progresses strongly with increasing temperatures. Feedback from 2D-COS analysis confirms that PEU hydrolysis starts at esters in the soft-segments before those in the urethane linkage become susceptible. Only when the molecular weight of PEU is below a critical molar mass (Mc) will the hydrolysis occur in parallel in the hard-segments since protective morphological phase structures are then absent. The current observations demonstrate unexpected behavior that may result from 'unknown' additives in polymer degradation, the temporal and group-specific hydrolysis of PEU as a function of locally available water molecules, the order of reactivity of susceptible functional groups, and the importance of changes in molecular weight coupled with the phase structure of the polymer.« less

Search for:
All Records
Subject
Poly ester urethane

Refine by:
Article Type
Availability
Journal
Creator / Author
Publication Date
Research Organization