DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Phenological control of vegetation biophysical feedbacks to the regional climate

    Phenology shifts influence regional climate by altering energy, and water fluxes through biophysical processes. However, a quantitative understanding of the phenological control on vegetation’s biophysical feedbacks to regional climate remains elusive. Using long-term remote sensing observations and Weather Research and Forecasting (WRF) model simulations, we investigated vegetation phenology changes from 2003 to 2020 and quantified their biophysical controls on the regional climate in Northeast China. Our findings elucidated that earlier green-up contributed to a prolonged growing season in forests, while advanced green-up and delayed dormancy extended the growing season in croplands. This prolonged presence and increased maximum green cover intensifiedmore » climate-vegetation interactions, resulting in more significant surface cooling in croplands compared to forests. Surface cooling from forest phenology changes was prominent during May’s green-up (-0.53 ± 0.07 °C), while crop phenology changes induced cooling throughout the growing season, particularly in June (-0.47 ± 0.15 °C), July (-0.48 ± 0.11 °C), and September (-0.28 ± 0.09 °C). Furthermore, we unraveled the contributions of different biophysical pathways to temperature feedback using a two-resistance attribution model, with aerodynamic resistance emerging as the dominant factor. Crucially, our findings underscored that the land surface temperature (LST) sensitivity, exhibited substantially higher values in croplands rather than temperate forests. These strong sensitivities, coupled with the projected continuation of phenology shifts, portend further growing season cooling in croplands. These findings contribute to a more comprehensive understanding of the intricate feedback mechanisms between vegetation phenology and surface temperature, emphasizing the significance of vegetation phenology dynamics in shaping regional climate pattern and seasonality.« less
  2. Natural soil microbiome variation affects spring foliar phenology with consequences for plant productivity and climate-driven range shifts

    Identifying the potential for natural soil microbial communities to predictably affect complex plant traits is an important frontier in climate change research. Plant phenology varies with environmental and genetic factors, but few studies have examined if the soil microbiome interacts with plant population differentiation to affect phenology and ecosystem function. We compared soil microbial variation in a widespread tree species (Populus angustifolia) with different soil inoculum treatments in a common garden environment to test how the soil microbiome affects spring foliar phenology and subsequent biomass growth. We hypothesized and show that: 1) soil bacterial and fungal communities vary with treemore » conditioning from different populations and elevations, 2) this soil community variation influences patterns of foliar phenology and plant growth across populations and elevation gradients, and 3) transferring lower elevation plant genotypes to higher elevation soil communities delayed foliar phenology, thereby shortening the growing season and reducing annual biomass production. Our findings show the importance of plant-soil interactions that help shape the timing of tree foliar phenology and productivity. Here, these geographic patterns in plant population x microbiome interactions also broaden our understanding of how soil communities impact plant phenotypic variation across key climate change gradients, with consequences for ecosystem functioning.« less

Search for:
All Records
Subject
Phenology shifts

Refine by:
Article Type
Availability
Journal
Creator / Author
Publication Date
Research Organization