skip to main content

DOE PAGESDOE PAGES

14 results for: All records
Author ORCID ID is 0000000348024944
Full Text and Citations
Filters
  1. Here, a fast edge turbulence suppression event has been simulated in the electrostatic version of the gyrokinetic particle-in-cell code XGC1 in a realistic diverted tokamak edge geometry under neutral particle recycling. The results show that the sequence of turbulent Reynolds stress followed by neoclassical ion orbit-loss driven together conspire to form the sustaining radial electric field shear and to quench turbulent transport just inside the last closed magnetic flux surface. As a result, the main suppression action is located in a thin radial layer around ψ N≃0.96–0.98, where ψ N is the normalized poloidal flux, with the time scale ~0.1more » ms.« less
  2. Helium majority experiments on Alcator C-Mod were performed to compare with deuterium discharges, and inform ITER early operations. ELMy H-modes were produced with a special plasma shape at B T = 5.3 T, I P = 0.9 MA, at q 95 ~ 3.8. The He fraction ranged over, n He,L/n L = 0.2–0.4, with n D,L/n L = 0.15–0.26, compared to D plasmas with n D,L/n L = 0.85–0.97. The power to enter the H-mode in He was found to be greater than ~2 times that for D discharges, in the low density region <1.4 × 10 20/m 3. However, it appears to follow the D threshold for higher densities. The stored energies in the He discharges were about 80% of those in D, and about 40% higher net power was required to sustain them compared to D. Global particle confinement times for tungsten ofmore » $$\tau _{{\rm W}}^{{\rm *}}$$ /τ E ~ 4 were obtained with ELMy H-modes in He, however accumulation occurred when the ELMs were irregular and infrequent. The electron temperatures and densities in the pedestal were similar between D and He discharges, and the ΔT e/T e and Δn e/n e values were similar or larger in He than D. The higher net power required to access the H-mode, and sustain it in flattop, for He discharges in C-Mod, imply some limitations for He operation in ITER.« less
  3. New validation of global, nonlinear, ion-scale gyrokinetic simulations (GYRO) is carried out for L- and I-mode plasmas on Alcator C-Mod, utilizing heat fluxes, profile stiffness, and temperature fluctuations. Previous work at C-Mod found that ITG/TEM-scale GYRO simulations can match both electron and ion heat fluxes within error bars in I-mode [White PoP 2015], suggesting that multi-scale (cross-scale coupling) effects [Howard PoP 2016] may be less important in I-mode than in L-mode. New results presented here, however, show that global, nonlinear, ion-scale GYRO simulations are able to match the experimental ion heat flux, but underpredict electron heat flux (at most radii),more » electron temperature fluctuations, and perturbative thermal diffusivity in both L- and I-mode. Linear addition of electron heat flux from electron scale runs does not resolve this discrepancy. These results indicate that single-scale simulations do not sufficiently describe the I-mode core transport, and that multi-scale (coupled electron- and ion-scale) transport models are needed. In conclusion a preliminary investigation with multi-scale TGLF, however, was unable to resolve the discrepancy between ion-scale GYRO and experimental electron heat fluxes and perturbative diffusivity, motivating further work with multi-scale GYRO simulations and a more comprehensive study with multi-scale TGLF.« less
  4. Two-dimensional scrape-off layer turbulence (SOLT) code simulations are compared with an L-mode discharge on the Alcator C-Mod tokamak [M. Greenwald, et al., Phys. Plasmas 21, 110501 (2014)]. Density and temperature profiles for the simulations were obtained by smoothly fitting Thomson scattering and mirror Langmuir probe (MLP) data from the shot. Simulations differing in turbulence intensity were obtained by varying a dissipation parameter. Mean flow profiles and density fluctuation amplitudes are consistent with those measured by MLP in the experiment and with a Fourier space diagnostic designed to measure poloidal phase velocity. Blob velocities in the simulations were determined from themore » correlation function for density fluctuations, as in the analysis of gas-puff-imaging (GPI) blobs in the experiment. In the simulations, it was found that larger blobs moved poloidally with the ExB flow velocity, v E , in the near-SOL, while smaller fluctuations moved with the group velocity of the dominant linear (interchange) mode, v E + 1/2 v di, where v di is the ion diamagnetic drift velocity. Comparisons are made with the measured GPI correlation velocity for the discharge. The saturation mechanisms operative in the simulation of the discharge are also discussed. In conclusion, it is found that neither sheared flow nor pressure gradient modification can be excluded as saturation mechanisms.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.