skip to main content


15 results for: All records
Author ORCID ID is 0000000346555485
Full Text and Citations
  1. Considering the power constrained scaling of silicon complementary metal-oxide-semiconductor technology, the use of high mobility III–V compound semiconductors such as In 0.53Ga 0.47As in conjunction with high-κ dielectrics is becoming a promising option for future n-type metal-oxide-semiconductor field-effect-transistors. Development of low dissipation field-effect tunable III–V based photonic devices integrated with high-κ dielectrics is therefore very appealing from a technological perspective. In this work, we present an experimental realization of a monolithically integrable, field-effect-tunable, III–V hybrid metasurface operating at long-wave-infrared spectral bands. Here, our device relies on strong light-matter coupling between epsilon-near-zero (ENZ) modes of an ultra-thin In 0.53Ga 0.47As layermore » and the dipole resonances of a complementary plasmonic metasurface.« less
  2. In this paper we develop a fully-retarded, dipole approximation model to estimate the effective polarizabilities of a dimer made of dielectric resonators. They are computed from the polarizabilities of the two resonators composing the dimer. We analyze the situation of full-cubes as well as split-cubes, which have been shown to exhibit overlapping electric and magnetic resonances. We compare the effective dimer polarizabilities to ones retrieved via full-wave simulations as well as ones computed via a quasi-static, dipole approximation. We observe good agreement between the fully-retarded solution and the full-wave results, whereas the quasi-static approximation is less accurate for the problemmore » at hand. The developed model can be used to predict the electric and magnetic resonances of a dimer under parallel or orthogonal (to the dimer axis) excitation. This is particularly helpful when interested in locating frequencies at which the dimer will emit directional radiation.« less
  3. Here, we demonstrate the active tuning of all-dielectric metasurfaces exhibiting high-quality factor (high-Q) resonances. The active control is provided by embedding the asymmetric silicon meta-atoms with liquid crystals, which allows the relative index of refraction to be controlled through heating. It is found that high quality factor resonances (Q = 270 ± 30) can be tuned over more than three resonance widths. Our results demonstrate the feasibility of using all-dielectric metasurfaces to construct tunable narrow-band filters.
  4. Cited by 34Full Text Available
  5. Improving the sensitivity of infrared detectors is an essential step for future applications, including satellite- and terrestrial-based systems. We investigate nanoantenna-enabled detectors (NEDs) in the infrared, where the nanoantenna arrays play a fundamental role in enhancing the level of absorption within the active material of a photodetector. The design and optimization of nanoantenna-enabled detectors via full-wave simulations is a challenging task given the large parameter space to be explored. Here, we present a fast and accurate fully analytic circuit model of patch-based NEDs. This model allows for the inclusion of real metals, realistic patch thicknesses, non-absorbing spacer layers, the activemore » detector layer, and absorption due to higher-order evanescent modes of the metallic array. We apply the circuit model to the design of NED devices based on Type II superlattice absorbers, and show that we can achieve absorption of ~70% of the incoming energy in subwavelength (~λ/5) absorber layers. In conclusion, the accuracy of the circuit model is verified against full-wave simulations, establishing this model as an efficient design tool to quickly and accurately optimize NED structures.« less
  6. In this study, we analyze a compact silicon photonic phase modulator at 1.55 μm using epsilon-near-zero transparent conducting oxide (TCO) films. The operating principle of the non-resonant phase modulator is field-effect carrier density modulation in a thin TCO film deposited on top of a passive silicon waveguide with a CMOS-compatible fabrication process. We compare phase modulator performance using both indium oxide (In2O3) and cadmium oxide (CdO) TCO materials. Our findings show that practical phase modulation can be achieved only when using high-mobility (i.e. low-loss) epsilon-near-zero materials such as CdO. The CdO-based phase modulator has a figure of merit of 17.1°/dBmore » in a compact 5 μm length. This figure of merit can be increased further through the proper selection of high-mobility TCOs, opening a path for device miniaturization and increased phase shifts.« less
  7. Optical nonlocalities are elusive and hardly observable in traditional plasmonic materials like noble and alkali metals. Here we report experimental observation of viscoelastic nonlocalities in the infrared optical response of epsilon-near-zero nanofilms made of low-loss doped cadmium-oxide. The nonlocality is detectable thanks to the low damping rate of conduction electrons and the virtual absence of interband transitions at infrared wavelengths. We describe the motion of conduction electrons using a hydrodynamic model for a viscoelastic fluid, and find excellent agreement with experimental results. The electrons’ elasticity blue-shifts the infrared plasmonic resonance associated with the main epsilon-near-zero mode, and triggers the onsetmore » of higher-order resonances due to the excitation of electron-pressure modes above the bulk plasma frequency. We also provide evidence of the existence of nonlocal damping, i.e., viscosity, in the motion of optically-excited conduction electrons using a combination of spectroscopic ellipsometry data and predictions based on the viscoelastic hydrodynamic model.« less
  8. Opmore » tical communication systems increasingly require electro-optical modulators that deliver high modulation speeds across a large optical bandwidth with a small device footprint and a CMOS-compatible fabrication process. Although silicon photonic modulators based on transparent conducting oxides (TCOs) have shown promise for delivering on these requirements, modulation speeds to date have been limited. Here, we describe the design, fabrication, and performance of a fast, compact electroabsorption modulator based on TCOs. The modulator works by using bias voltage to increase the carrier density in the conducting oxide, which changes the permittivity and hence optical attenuation by almost 10 dB. Under bias, light is tightly confined to the conducting oxide layer through nonresonant epsilon-near-zero (ENZ) effects, which enable modulation over a broad range of wavelengths in the telecommunications band. Our approach features simple integration with passive silicon waveguides, the use of stable inorganic materials, and the ability to modulate both transverse electric and magnetic polarizations with the same device design. Using a 4-μm-long modulator and a drive voltage of 2 V p p , we demonstrate digital modulation at rates of 2.5 Gb/s. We report broadband operation with a 6.5 dB extinction ratio across the 1530–1590 nm band and a 10 dB insertion loss. This work verifies that high-speed ENZ devices can be created using conducting oxide materials and paves the way for additional technology development that could have a broad impact on future optical communications systems.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.