skip to main content

DOE PAGESDOE PAGES

2 results for: All records
Author ORCID ID is 0000000328053668
Full Text and Citations
Filters
  1. Here, this paper reports the first example of dearomatization of ubiquitous terpyridine (tpy) ligands via 2'/6'-, 3'/5'-, or 4'-selective alkylation of the central pyridine ring. The reaction is mediated by the most abundant metal in the Earth’s crust, aluminum (Al), and depending on the conditions employed, exhibits ionic or radical character as suggested by experimental and computational analysis. In the latter case, intermediate formation of an AlIII complex supported by π-radical monoanionic ligand (tpy•) 1– is apparent. The 3'/5'-alkylation leads to unprecedented zwitterionic Meisenheimer Al III complexes, which were identified as efficient precatalysts for the selective hydroboration of C=O andmore » C≡C functionalities. Turnover numbers (TONs) up to ~1000 place the corresponding complexes in the category of the most efficient Al catalysts reported to date for the title reaction. The acquired data suggest that aluminum monohydrides, or more likely dihydrides, could be relevant catalytic species. Alternatively, one can also imagine a mechanistic scenario in which the dearomatized “chemically noninnocent” ligand acts as hydride donor, and a detailed investigation of this is warranted in the future.« less
  2. Here, the molecular structures of CpMo(PMe 3)(CO) 2H and CpMo(PMe 3) 2(CO)H have been determined by X-ray diffraction, thereby revealing four-legged piano-stool structures in which the hydride ligand is trans to CO. However, in view of the different nature of the four basal ligands, the geometries of CpMo(PMe 3)(CO) 2H and CpMo(PMe 3) 2(CO)H deviate from that of an idealized four-legged piano stool, such that the two ligands that are orthogonal to the trans H–Mo–CO moiety are displaced towards the hydride ligand. While CpRMo(PMe 3) 3–x(CO) xH (Cp R = Cp, Cp*; x = 1, 2, 3) are catalysts formore » the release of H 2 from formic acid, the carbonyl derivatives, CpRMo(CO)3H, are also observed to form dinuclear formate compounds, namely, [Cp RMo(μ-O)(μ-O 2CH)] 2. The nature of the Mo···Mo interactions in [CpMo(μ-O)(μ-O 2CH)] 2 and [Cp*Mo(μ-O)(μ-O 2CH)] 2 have been addressed computationally. In this regard, the two highest occupied molecular orbitals of [CpMo(μ-O)(μ-O 2CH)] 2 correspond to metal-based δ* (HOMO) and σ (HOMO–1) orbitals. The σ 2δ *2 configuration thus corresponds to a formal direct Mo–Mo bond order of zero. The preferential occupation of the δ* orbital rather than the δ orbital is a consequence of the interaction of the latter orbital with p orbitals of the bridging oxo ligands. In essence, lone-pair donation from oxygen increases the electron count so that the molybdenum centers can achieve an 18-electron configuration without the existence of a Mo–Mo bond, whereas a Mo=Mo double bond is required in the absence of lone-pair donation.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.