skip to main content


17 results for: All records
Author ORCID ID is 0000000310453858
Full Text and Citations
  1. X-ray absorption spectroscopy is proposed as a method for studying the heating of solid-density matter excited by secondary X-ray radiation from a relativistic laser-produced plasma. The method was developed and applied to experiments involving thin silicon foils irradiated by 0.5–1.5 ps duration ultrahigh contrast laser pulses at intensities between 0.5×10 20 and 2.5×10 20 W/cm 2. The electron temperature of the material at the rear side of the target is estimated to be in the range of 140–300 eV. The diagnostic approach enables the study of warm dense matter states with low self-emissivity.
  2. Here, we report on a laser-induced breakdown spectroscopy (LIBS) experiment driven by mid-infrared (2.05-μm) fs pulses, in which time-resolved emission spectra of copper were studied. Ab-initio modeling is consistent with the results of new fs measurements at 2.05 μm and traditional 800-nm fs-LIBS. Ablation by mid-infrared fs pulses results in a plasma with a lower plasma density and temperature compared to fs-LIBS performed at shorter laser wavelength. LIBS driven by mid-infrared fs pulses results in a signal-to-background ratio ~50% greater and a signal-to-noise ratio ~40% lower than fs-LIBS at near-infrared laser wavelength.
  3. In 2015 Los Alamos National Laboratory (LANL) released a new set of OPLIB opacity tables for the elements hydrogen through zinc. The new LANL opacities are publicly available via our website and are already in use by the astrophysics community. In this contribution, we discuss the extension of our opacity calculations to elements beyond zinc. Such calculations are motivated by potential industrial applications (for elements such as Sn) as well as available experimental data with which to compare our calculations (for Ge and Br). After a short outline of our method for computing opacities for these elements, we make comparisonsmore » to available experimental data and find good agreement. Future plans are briefly discussed.« less
  4. Here, we present state-resolved (electronic, vibrational, and rotational) cross sections and rate coefficients for the photodissociation (PD) ofmore » $${{\rm{H}}}_{2}^{+}$$ and radiative association (RA) of H–H +. We developed a fully quantum mechanical approach within the nonrelativistic Born–Oppenheimer approximation to describe $${{\rm{H}}}_{2}^{+}$$ and calculate the data for transitions between the ground electronic state 1$$s{\sigma }_{g}$$ and the 2$$p{\sigma }_{u}$$, $$2p{\pi }_{u}$$, $$3p{\sigma }_{u}$$, $$3p{\pi }_{u}$$, 4$$p{\sigma }_{u}$$, $$4f{\sigma }_{u}$$, $$4f{\pi }_{u}$$, and $$4p{\pi }_{u}$$ electronic states (i.e., up to $${{\rm{H}}}_{2}^{+}$$ n = 4). Tables of the dipole-matrix elements and energies needed to calculate state-resolved cross sections and rate coefficients will be made publicly available. These data could be important in astrophysical models when dealing with photon wavelengths (or radiation temperature distributions that are weighted toward such wavelengths) around 100 nm. For example, at these wavelengths and a material temperature of 8400 K, the LTE-averaged PD cross section via the (second electronically excited) $$2p{\pi }_{u}$$ state is over three times larger than the PD cross section via the (first electronically excited) $$2p{\sigma }_{u}$$ state.« less
  5. The Sun is the most constrained and well-studied of all stars. As a consequence, the physical ingredients entering solar models are used as a reference to study all other stars observed in the Universe. However, our understanding of the solar structure is still imperfect, as illustrated by the current debate on the heavy element abundances in the Sun. Aims. We wish to provide additional information on the solar structure by carrying out structural inversions of a new physical quantity, a proxy of the entropy of the solar plasma which properties are very sensitive to the temperature gradient below the convectivemore » zone. Methods. We use new structural kernels to carry out direct inversions of an entropy proxy of the solar plasma and compare the solar structure to various standard solar models built using various opacity tables and chemical abundances. We also link our results to classical tests commonly found in the literature. Results. Our analysis allows us to probe more efficiently the uncertain regions of the solar models, just below the convective zone, paving the way for new in-depth analyses of the Sun taking into account additional physical uncertainties of solar models beyond the specific question of chemical abundances.« less
  6. A 100-μm-thick Cu foil is isochorically heated by a ~100-ns-long electron bunch with an energy of 19.8 MeV and current of 1.7 kA to T e > 1 eV. After 100 ns of heating and 20 ns of expansion, the plasma exhibits a stable, quiescent temperature and density distribution for >200 ns. Several intense Cu-I emission lines are observed after ~20 J of electron beam energy is deposited. These lines have well known Stark widths providing a direct measurement of n e. The Los Alamos ATOMIC code [Magee et al., AIP Conf. Proc. 2004, 168–179 and Hakel et al., J.more » Quant. Spectrosc. Radiat. Transfer 99, 265 (2006)] was run in local-thermodynamic-equilibrium mode to estimate T e and n e. Spatially and temporally resolved measurements are then presented in both the vertical and horizontal directions adjacent to the foil indicating temperatures >1 eV and densities ranging from 1–3 × 10 17 cm -3 after expansion and cooling.« less
  7. Recent advances in high-intensity laser-produced plasmas have demonstrated their potential as compact charge particle accelerators. Unlike conventional accelerators, transient quasi-static charge separation acceleration fields in laser produced plasmas are highly localized and orders of magnitude larger. Manipulating these ion accelerators, to convert the fast ions to neutral atoms with little change in momentum, transform these to a bright source of MeV atoms. The emittance of the neutral atom beam would be similar to that expected for an ion beam. Since intense laser-produced plasmas have been demonstrated to produce high-brightness-low-emittance beams, it is possible to envisage generation of high-flux, low-emittance, highmore » energy neutral atom beams in length scales of less than a millimeter. Here, we show a scheme where more than 80% of the fast ions are reduced to energetic neutral atoms and demonstrate the feasibility of a high energy neutral atom accelerator that could significantly impact applications in neutral atom lithography and diagnostics.« less
  8. Under the auspices of the IAEA Atomic and Molecular Data Center and the Korean Atomic Energy Research Institute, our assembled group of authors has reviewed the current state of dielectronic recombination (DR) rate coefficients for various ion stages of tungsten (W). Subsequent recommendations were based upon available experimental data, first-principle calculations carried out in support of this paper and from available recombination data within existing atomic databases. If a recommendation was possible, data were compiled, evaluated and fitted to a functional form with associated uncertainty information retained, where available. In conclusion, this paper also considers the variation of the Wmore » fractional abundance due to the underlying atomic data when employing different data sets.« less
  9. We show the analysis of light water reactor simulated used nuclear fuel using laser-induced breakdown spectroscopy (LIBS) is explored using a simplified version of the main oxide phase. The main oxide phase consists of the actinides, lanthanides, and zirconium. The purpose of this study is to develop a rapid, quantitative technique for measuring zirconium in a uranium dioxide matrix without the need to dissolve the material. A second set of materials including cerium oxide is also analyzed to determine precision and limit of detection (LOD) using LIBS in a complex matrix. Two types of samples are used in this study:more » binary and ternary oxide pellets. The ternary oxide, (U,Zr,Ce)O 2 pellets used in this study are a simplified version the main oxide phase of used nuclear fuel. The binary oxides, (U,Ce)O 2 and (U,Zr)O 2 are also examined to determine spectral emission lines for Ce and Zr, potential spectral interferences with uranium and baseline LOD values for Ce and Zr in a UO 2 matrix. In the spectral range of 200 to 800 nm, 33 cerium lines and 25 zirconium lines were identified and shown to have linear correlation values (R 2) > 0.97 for both the binary and ternary oxides. The cerium LOD in the (U,Ce)O 2 matrix ranged from 0.34 to 1.08 wt% and 0.94 to 1.22 wt% in (U,Ce,Zr)O 2 for 33 of Ce emission lines. The zirconium limit of detection in the (U,Zr)O 2 matrix ranged from 0.84 to 1.15 wt% and 0.99 to 1.10 wt% in (U,Ce,Zr)O 2 for 25 Zr lines. Finally, the effect of multiple elements in the plasma and the impact on the LOD is discussed.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.