skip to main content

DOE PAGESDOE PAGES

5 results for: All records
Author ORCID ID is 0000000299676021
Full Text and Citations
Filters
  1. A microcrystalline carboxyl-functionalized imidazolium chloride, namely 1-carboxymethyl-3-ethylimidazolium chloride, C 7H 11N 2O 2 +·Cl , has been synthesized and characterized by elemental analysis, attenuated total reflectance Fourier transform IR spectroscopy (ATR-FT-IR), single-crystal X-ray diffraction, thermal analysis (TGA/DSC), and photoluminescence spectroscopy. In the crystal structure, cations and anions are linked by C—H...Cl and C—H...O hydrogen bonds to create a helix along the [010] direction. Adjacent helical chains are further interconnected through O—H...Cl and C—H...O hydrogen bonds to form a (101¯) layer. Finally, neighboring layers are joined together via C—H...Cl contacts to generate a three-dimensional supramolecular architecture. Thermal analyses reveal that themore » compound melts at 449.7 K and is stable up to 560.0 K under a dynamic air atmosphere. Photoluminescence measurements show that the compound exhibits a blue fluorescence and a green phosphorescence associated with spin-allowed ( 1π← 1π*) and spin-forbidden ( 1π← 3π*) transitions, respectively. As a result, the average luminescence lifetime was determined to be 1.40 ns for the short-lived ( 1π← 1π*) transition and 105 ms for the long-lived ( 1π← 3π*) transition.« less
  2. As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less
  3. A family of isostructural undecanuclear 3d–4f coordination clusters of formula [Fe III 7Ln III 4O 4(OH) 3(tea) 2(Htea) 3(Piv) 7(H 2O) 2(NO 3) 3], where Ln = Y (1), Gd (2), Tb (3), Dy (4); PivH ≡ pivalic acid and H 3tea ≡ triethanolamine, was synthesised in this paper. The central Fe7 core of the coordination cluster can be described in terms of two {Fe 4O 2} butterfly motifs sharing a common body Fe atom. The two Fe 4 mean-planes subtend a dihedral angle of ca. 72°. The Tb (3) and Dy (4) compounds show Single Molecule Magnet (SMM) behaviourmore » as confirmed by ac-susceptibility and μ-SQUID measurements. Furthermore, 57Fe Mössbauer spectra of 1–4 confirm the presence of high-spin Fe III sites. The spectra of all complexes in the high temperature range (30–300 K) show broad overlapping doublets which were assigned to the body and wing-tip pairs of metal ions within the Fe 7 core. The low temperature Mössbauer spectra show dependence on the nature of the rare-earth metal as a result of its interaction with the iron sites. Finally, we observed a transition from fast (2), to intermediate (1) and very slow (frozen) (3, 4) spin fluctuation phenomena in these compounds.« less
  4. New synthesized polymeric mixed complexes {Tb x Eu 1−x } exhibit both tunable luminescence and SMM behavior.
  5. A family of bis(trifluoromethanesulfonyl)amide-based ionic liquids of composition [RE 5(C 2H 5-C 3H 3N 2-CH 2COO) 16(H 2O) 8](Tf 2N) 15 (RE = Er, Ho, Tm; C 3H 3N 2 ≡ imidazolium moiety) featuring the cationic, record quindecim {15+} charged pentanuclear rare earth (RE)-containing ion [RE 5(C 2H 5-C 3H 3N 2-CH 2COO) 16(H 2O) 8] 15+ has been synthesized and characterized. In addition, due to the presence of rare earth ions, these ionic liquids show a response to magnetic fields with the highest effective magnetic moment observed so far for an ionic liquid and are rare examples of ionicmore » liquids showing luminescence in the near-infrared. As a result, these ionic liquids also were successfully employed in a three-component synthesis of 2-pyrrolo-3'-yloxindole with an extremely low (<0.035 mol%) catalyst loading rate.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.